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Projected Equations and TD Type Methods

x*: a solution of the linear fixed point equation
X=AXx+Db
X: the solution of the projected equation
x = M(AX + b)
M: weighted Euclidean projection on subspace S C R", dim(S) << n

Assume: | — A invertible

Example: TD()\) for approximate policy evaluation in MDP

e Solve a projected form of a multistep Bellman equation; linear function
approximation of the cost function

e A: a stochastic or substochastic matrix
e [1A is usually a contraction
Example: large linear systems of equations in general
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Applications and Comparisons of Bounds

Two Standard Error Bounds for the Contraction Case
X* — X: approximation error due to solving projected equation

Standard bound | (arbitrary norm): assume ||MA|| = a < 1, then

1

—

Ix* = %[ < = [x* = x|

Standard bound Il (weighted Euclidean norm || - ||¢, use Pythagorean
theorem, much sharper than I): assume ||lMA||¢ = a < 1, then

- 1
X = Xle < ——||x* = Nx*
Ix* =Rl < === e
e These are upper bounds on the ratios of
T X* =X . . X — Mx*
amplification: w bias-to-distance: w
[[x* = x|l [[x* = Tx*le

e Our bounds will be in a similar form
[X* = X|le <B(A,£,S)[Ix" —NMx"|l¢ ,

but apply to both contraction and non-contraction cases.

Summary

@)

@)
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[llustration of the Form of Bounds

Cone specified by error bound
B(A,¢,S)

Approximation X

e B(AE,S)=1 = X=TIx"

Summary
o
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Data-Dependent Error Analysis: Motivations

Motivation I: with or without contraction assumptions,

X* =X = (I —NA)" (x* — Mx*)

How this equality is relaxed in the standard bounds:
e Standard bound I:

(—NA) P =1+NA+ (A +---, [[(MA)"]| <™
e Standard bound II:
(1—=NA)" " =1+NA( —NA)~*
Ix* = X[ = X" = Mx*[[2 + [NAQ = MA)~*(x™ — Nx")|I2

Summary
o

(©)

=[x = Mg+ IMAT = X)IIE < (X" = Mx7E + a®[|x ™ — X2
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Data-Dependent Error Analysis: Motivations

Motivation II:
(-=NA)" " =14+NAI-NA)"" =1+ (1 -NA)""NA
(i) Bound the term (I — MA)*MA(x* — Mx*) directly
so that a will not be in the denominator

(i) Seek computable bounds
with low order calculations involving small size matrices

Consider the technical side of (ii): some notation and facts
e & :n x k matrix, whose columns form a basis of S; = = diag(¢)
e k x k matrices:

B=¢=0, M=0¢=ZAd, F=(-B'M)*

o M=d(d'=d)1¢'= = dB L'z,
the projected equation is equivalent to or = CDB*l(Mr + <1>’Eb), r e R
e B and M can be computed easily by simulation.



Introduction Data-Dependent Error Analysis Applications and Comparisons of Bounds Summary
0000000 0

Technical Lemmas for New Error Bounds

Lemma 1

(—NA) =1+ -NA)""MA=1+dFB 'd'ZA . 4)
Also, | — NA invertible <= F = (I — B~*M) ™! exists.

Lemma 2
H and D: n x k and k x n matrix, respectively. Then,

|HD||Z = o((H'=H)(D="'D")) . (5)

Apply the lemmas to bound ||(I — MA)~(x* — Mx*)||¢:

First bound: (I — I‘IA)—lnA(X* — Mx*) temmal yep—1 ¢/= (X" — Mx")
N——
H D

1 " . 2LemmaZ 2 . o\ 112
= [ =NA)TTAKX" =7 < o(Ga)llAllell(x™ = NxT)]e

where G; = (H’ZH)(D="'D’) = B~'F'BF.
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Main Results: First Bound

Theorem 1

X" =lle < \/1+o(Ga)IAIZ [Ix* = x| ©

where
e G, is the product of k x k matrices

G. =B 'F'BF )

e 0(G1) = ||(I = MA)~'N||, so the bound is invariant to the choice of basis
vectors of S (i.e., 9).

Notes:

e Thm. 1 equivalent to
(= NA) A" = Mx*)le < (1= NA) T M lel|Alle[[x ™ — Mx*|le

o Easy to compute, and better than the standard bound |

e Weaknesses: two over-relaxations; |

Al|¢ is required
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Two Over-Relaxations in Theorem 1

1. N(x* — Nx*) = 0 is not used.

o Effect: degrade (to the standard bound I in the contraction case), if S
nearly contains an eigenvector of A associated with the dominant real
eigenvalue.

e For applications in practice: orthogonalization of basis vectors w.r.t. the
eigenspace to obtain sharper bounds

2. When MA is near zero, the bound cannot fully utilize this fact.
e This is due to the splitting of M and A in bounding ||(I — NA)*NA|:
Thm. 1 < ||[NA+NA(I—NA)"INA|e < [N+ DA — NA)Y =] ||Alle

o Effect: when MA is near zero but ||Alle = 1, 0(G1) ~ ||N|Z = 1, and the
bound tends to /2 instead of 1.

Apply the lemmas in a different way to sharpen the bound
— the second bound
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Main Results: Second Bound

Use the fact M(x* — MNx*) =0,

H(I —nA) AKX — Mx*)

= H(I —nA)IA( - M)(x* — Nx*)

.

< H(I —nA)"NA(l — ﬂ)Hg [[x* — Mx*|

Relate the norm of the matrix to the spectral radius of a k x k matrix:

2 2
H(| —nA)nA( — I'I)H temma 1 H OFB L o'=A(I — I'I)H
¢ o
D

Lemga 2 a((H’EH)(DE’lD’))

Notes:
e Incorporating the matrix | — I is crucial for improving the bound.
¢ ||Al|¢ is no longer needed.
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Main Results: Second Bound

Theorem 2

IX* = X|le < +V/1+0(Gz) |x*—Nx~ ||5

where
e G; is the product of k x k matrices

G, =B 'F'BFB"Y(R-MB 'M’), R=¢'=ZA='A'=¢,

Summary

®)

©

e o(Gz) = ||(I = MA)"*NA(I — M)||Z, so the bound is invariant to the choice

of basis vectors of S (i.e., ®).

Proposition 1 (Comparison with the Standard Bound I1)

Assume that ||MA|¢ < a < 1. Then, the error bound (8) is always no worse

than the standard bound 11, i.e., 1 + 0(G;) < 1/(1 — o?).

Notes:
e The bound is tight in the worst case sense.

e Estimating R by simulation is less straightforward than estimating B and

M; it is doable, except for TD()) with A > 0.
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MDP Applications and Numerical Comparisons of Bounds
Cost function approximation for MDP with TD(\):

o Ais defined for a pair of values (a, A) by
A=PENE (1 3)3" N (aP)
£=0

discounted cases: a € [0,1), A € [0,1]
undiscounted cases: o = 1,\ € [0,1)

Choices of the projection norm:
e WI/o exploration: £ = invariant distribution of P; A contraction

e W/ exploration: £ determined by policies/simulations that enhance
exploration; NA may or may not be contraction (A needs to be chosen
properly; LSTD(0) always safe to apply)

On applying Thm. 1:

e e =[1,1,...,1]": an eigenvector of A associated with the dominant
eigenvalue (-2

e To obtain a sharper bound, orthogonalize the basis vectors w.r.t. e (i.e.,
project them on e+ — easy to do online).
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Practical Ways of Applying Theorem 1
To Overcome the Eigenspace Related Over-relaxation X

’ Cone specified by B(A, £,V & W)
N Cone specified by B(A, £, W)

w

e Form the eq. satisfied by x* — My x™ and solve its proj. eq. on W
When V is an eigenspace of A, this is the same eq. as the original proj. eq. for
x*, and My x* is not needed if this quantity is unimportant.

e Can replace lNMyx™ with any vector in V (a guess of Ny x™).
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Standard Bounds vs. Theorems 1 & 2 / Discounted

Markov chain: 200 states; k = 50; ¢: invariant distribution of P

4=0.99, 1. €[0,1] 4=0.99, 1. €[0,1]
++ standard | - = - standard Il
90 o - - - standard Il —_Thm.2, S=S:e-LS,
Th 1 Thm. 1, S=S:e-1S, Te~o. STD Il Thm. 1, S=S,ie 1S,
80 m. STD | Thm. 1, S=S,;e LS, RN o _Thm.2, s=S;els,
70 ' i
= o
& 60 ) c
3% 3
w0l m
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Markov chain: 200 states; k = 50; &: uniform

4=0.99, lP1I=0.995, ) € [0,1]

4=0.99, lluPll=0.995, 2 € [0,1]
++ standard | = = = standard Il
160k - -~ standard Il of - Thm.2, S=S:e~LS,
——Thm. 1, S=S,:e ~L S, STD I Thm. 1, S=S,:e LS,
140 Thm. 1, S=5,:e LS, 8 . _Thm.2,S=S;els,
1200
© ie]
% 100F %
o Thm. 1 o
om sor m
60f-
40f
Thm. 1/ L
20} L

¢ In general, |MA|| is not necessarily a contraction.
need to choose X properly; TD(0) can always be safely applied.

e The first bound needs ||A||, so do the standard bounds for the
contraction case.
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Theorem 1 vs. Theorem 2 / Average Cost
Markov chains: 200 states; k = 50; ¢&: invariant distribution of P
On the right: states of the Markov chain form two “tight clusters.”

a=1, LE[0,1)

a=1, LE[0,1)
2
Thm.1,elS Thm.1,elS
-=-=-Thm.2,elS -=--Thm.2,elS
1.8
20
Thm. 1/L
16 Thm. 1/ L
i) °© 15
c c
e 3
m o,
12 Thm. 2/L
| Vo o Thm. 2/L
D.un 011 DTZ DrS Dr4 0r5 DjS ﬂj7 ﬂjB DjQ 1 uD 0.1 0.2 0.3 0.4 ﬂjS 0.6 0.7 0.8 0.9 1

A A
e The standard bound Il in this case is qualitative:
* — 1 * *
X = Xlle £ ———=Ix" —x"[l¢ ,

1,a>\
where ay < landay — 0as X — 1.
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Discussion

New error bounds:

¢ Data dependent, w/o contraction assumptions

o Computable by simulation and low order calculations with small size
matrices

e Sharper than the standard bounds (which are available only for the
contraction case)

e Depend on A but not b (so they are valid for the worst case of b)

¢ Potential use in the MDP context:

e Provide error bound for exploration policies
e Aid in choosing the value of A in TD
e Aid in basis function evaluation and selection
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