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Projected Equations and TD Type Methods

x∗: a solution of the linear fixed point equation

x = Ax + b

x̄ : the solution of the projected equation

x = Π(Ax + b)

Π: weighted Euclidean projection on subspace S ⊂ <n, dim(S) << n
Assume: I − ΠA invertible

Example: TD(λ) for approximate policy evaluation in MDP

• Solve a projected form of a multistep Bellman equation; linear function
approximation of the cost function

• A: a stochastic or substochastic matrix

• ΠA is usually a contraction

Example: large linear systems of equations in general
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Two Standard Error Bounds for the Contraction Case
x∗ − x̄ : approximation error due to solving projected equation

Standard bound I (arbitrary norm): assume ‖ΠA‖ = α < 1, then

‖x∗ − x̄‖ ≤ 1
1− α

‖x∗ − Πx∗‖ (1)

Standard bound II (weighted Euclidean norm ‖ · ‖ξ, use Pythagorean
theorem, much sharper than I): assume ‖ΠA‖ξ = α < 1, then

‖x∗ − x̄‖ξ ≤
1√

1− α2
‖x∗ − Πx∗‖ξ (2)

• These are upper bounds on the ratios of

amplification:
‖x∗ − x̄‖ξ

‖x∗ − Πx∗‖ξ
bias-to-distance:

‖x̄ − Πx∗‖ξ

‖x∗ − Πx∗‖ξ

• Our bounds will be in a similar form

‖x∗ − x̄‖ξ ≤ B(A, ξ, S) ‖x∗ − Πx∗‖ξ ,

but apply to both contraction and non-contraction cases.
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Illustration of the Form of Bounds

S

Cone specified by error bound
B(A, ξ, S)

x∗

Πx∗ Approximation x̄

• B(A, ξ, S) = 1 ⇒ x̄ = Πx∗
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Data-Dependent Error Analysis: Motivations

Motivation I: with or without contraction assumptions,

x∗ − x̄ = (I − ΠA)−1(x∗ − Πx∗) (3)

How this equality is relaxed in the standard bounds:

• Standard bound I:

(I − ΠA)−1 = I + ΠA + (ΠA)2 + · · · , ‖(ΠA)m‖ ≤ αm

• Standard bound II:

(I − ΠA)−1 = I + ΠA(I − ΠA)−1

‖x∗ − x̄‖2
ξ = ‖x∗ − Πx∗‖2

ξ + ‖ΠA(I − ΠA)−1(x∗ − Πx∗)‖2
ξ

= ‖x∗ − Πx∗‖2
ξ + ‖ΠA(x∗ − x̄)‖2

ξ ≤ ‖x∗ − Πx∗‖2
ξ + α2‖x∗ − x̄‖2

ξ
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Data-Dependent Error Analysis: Motivations

Motivation II:

(I − ΠA)−1 = I + ΠA(I − ΠA)−1 = I + (I − ΠA)−1ΠA

(i) Bound the term (I − ΠA)−1ΠA(x∗ − Πx∗) directly
so that α will not be in the denominator

(ii) Seek computable bounds
with low order calculations involving small size matrices

Consider the technical side of (ii): some notation and facts

• Φ : n × k matrix, whose columns form a basis of S; Ξ = diag(ξ)

• k × k matrices:

B = Φ′ΞΦ , M = Φ′ΞAΦ , F = (I − B−1M)−1

• Π = Φ(Φ′ΞΦ)−1Φ′Ξ = ΦB−1Φ′Ξ;
the projected equation is equivalent to Φr = ΦB−1`

Mr + Φ′Ξb
´
, r ∈ <k

• B and M can be computed easily by simulation.
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Technical Lemmas for New Error Bounds

Lemma 1

(I − ΠA)−1 = I + (I − ΠA)−1ΠA = I + ΦFB−1Φ′ΞA . (4)

Also, I − ΠA invertible ⇐⇒ F = (I − B−1M)−1 exists.

Lemma 2
H and D: n × k and k × n matrix, respectively. Then,

‖HD‖2
ξ = σ

`
(H ′ΞH)(DΞ−1D′)

´
. (5)

Apply the lemmas to bound ‖(I − ΠA)−1(x∗ − Πx∗)‖ξ:

First bound: (I − ΠA)−1ΠA(x∗ − Πx∗) Lemma 1
= ΦFB−1| {z }

H

Φ′Ξ|{z}
D

A (x∗ − Πx∗)

=⇒ ‖(I − ΠA)−1ΠA(x∗ − Πx∗)‖2
ξ

Lemma 2
≤ σ(G1)‖A‖2

ξ‖(x∗ − Πx∗)‖2
ξ

where G1 = (H ′ΞH)(DΞ−1D′) = B−1F ′BF .
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Main Results: First Bound

Theorem 1

‖x∗ − x̄‖ξ ≤
q

1 + σ(G1)‖A‖2
ξ ‖x

∗ − Πx∗‖ξ (6)

where

• G1 is the product of k × k matrices

G1 = B−1F ′BF (7)

• σ(G1) = ‖(I − ΠA)−1Π‖2
ξ, so the bound is invariant to the choice of basis

vectors of S (i.e., Φ).

Notes:

• Thm. 1 equivalent to
‖(I − ΠA)−1ΠA(x∗ − Πx∗)‖ξ ≤ ‖(I − ΠA)−1Π‖ξ‖A‖ξ‖x∗ − Πx∗‖ξ

• Easy to compute, and better than the standard bound I

• Weaknesses: two over-relaxations; ‖A‖ξ is required
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Two Over-Relaxations in Theorem 1

1. Π(x∗ − Πx∗) = 0 is not used.

• Effect: degrade (to the standard bound I in the contraction case), if S
nearly contains an eigenvector of A associated with the dominant real
eigenvalue.

• For applications in practice: orthogonalization of basis vectors w.r.t. the
eigenspace to obtain sharper bounds

2. When ΠA is near zero, the bound cannot fully utilize this fact.

• This is due to the splitting of Π and A in bounding ‖(I − ΠA)−1ΠA‖:

Thm. 1 ⇔ ‖ΠA + ΠA(I − ΠA)−1ΠA‖ξ ≤ ‖Π + ΠA(I − ΠA)−1Π‖ξ‖A‖ξ

• Effect: when ΠA is near zero but ‖A‖ξ = 1, σ(G1) ≈ ‖Π‖2
ξ = 1, and the

bound tends to
√

2 instead of 1.

Apply the lemmas in a different way to sharpen the bound
=⇒ the second bound
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Main Results: Second Bound

Use the fact Π(x∗ − Πx∗) = 0,‚‚‚(I − ΠA)−1ΠA(x∗ − Πx∗)
‚‚‚

ξ
=

‚‚‚(I − ΠA)−1ΠA(I − Π)(x∗ − Πx∗)
‚‚‚

ξ

≤
‚‚‚(I − ΠA)−1ΠA(I − Π)

‚‚‚
ξ
‖x∗ − Πx∗‖ξ

Relate the norm of the matrix to the spectral radius of a k × k matrix:‚‚‚(I − ΠA)−1ΠA(I − Π)
‚‚‚2

ξ

Lemma 1
=

‚‚‚ ΦFB−1| {z }
H

Φ′ΞA(I − Π)| {z }
D

‚‚‚2

ξ

Lemma 2
= σ

`
(H ′ΞH)(DΞ−1D′)

´
Notes:

• Incorporating the matrix I − Π is crucial for improving the bound.

• ‖A‖ξ is no longer needed.
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Main Results: Second Bound

Theorem 2

‖x∗ − x̄‖ξ ≤
p

1 + σ(G2) ‖x∗ − Πx∗‖ξ (8)

where

• G2 is the product of k × k matrices

G2 = B−1F ′BFB−1(R −MB−1M ′) , R = Φ′ΞAΞ−1A′ΞΦ , (9)

• σ(G2) = ‖(I −ΠA)−1ΠA(I −Π)‖2
ξ, so the bound is invariant to the choice

of basis vectors of S (i.e., Φ).

Proposition 1 (Comparison with the Standard Bound II)
Assume that ‖ΠA‖ξ ≤ α < 1. Then, the error bound (8) is always no worse
than the standard bound II, i.e., 1 + σ(G2) ≤ 1/(1− α2).

Notes:

• The bound is tight in the worst case sense.

• Estimating R by simulation is less straightforward than estimating B and
M; it is doable, except for TD(λ) with λ > 0.
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MDP Applications and Numerical Comparisons of Bounds
Cost function approximation for MDP with TD(λ):

• A is defined for a pair of values (α, λ) by

A = P(α,λ) def
= (1− λ)

∞X
`=0

λ`(αP)`+1

discounted cases: α ∈ [0, 1), λ ∈ [0, 1]
undiscounted cases: α = 1, λ ∈ [0, 1)

Choices of the projection norm:

• W/o exploration: ξ = invariant distribution of P; ΠA contraction

• W/ exploration: ξ determined by policies/simulations that enhance
exploration; ΠA may or may not be contraction (λ needs to be chosen
properly; LSTD(0) always safe to apply)

On applying Thm. 1:

• e = [1, 1, . . . , 1]′: an eigenvector of A associated with the dominant
eigenvalue (1−λ)α

1−α
.

• To obtain a sharper bound, orthogonalize the basis vectors w.r.t. e (i.e.,
project them on e⊥ – easy to do online).
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Practical Ways of Applying Theorem 1
To Overcome the Eigenspace Related Over-relaxation

V

V ⊕W
W

ΠW x∗

ΠV x∗

Cone specified by B(A, ξ, V ⊕W )

Cone specified by B(A, ξ, W )

x∗

ΠV⊕W x∗
Approximation x̄

• Form the eq. satisfied by x∗ − ΠV x∗ and solve its proj. eq. on W
When V is an eigenspace of A, this is the same eq. as the original proj. eq. for
x∗, and ΠV x∗ is not needed if this quantity is unimportant.

• Can replace ΠV x∗ with any vector in V (a guess of ΠV x∗).
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Standard Bounds vs. Theorems 1 & 2 / Discounted

Markov chain: 200 states; k = 50; ξ: invariant distribution of P
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Standard Bounds vs. Theorems 1 & 2 / Exploration Case

Markov chain: 200 states; k = 50; ξ: uniform
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• In general, ‖ΠA‖ is not necessarily a contraction.
need to choose λ properly; TD(0) can always be safely applied.

• The first bound needs ‖A‖, so do the standard bounds for the
contraction case.
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Theorem 1 vs. Theorem 2 / Average Cost
Markov chains: 200 states; k = 50; ξ: invariant distribution of P
On the right: states of the Markov chain form two “tight clusters.”
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• The standard bound II in this case is qualitative:

‖x∗ − x̄‖ξ ≤
1q

1− α2
λ

‖x∗ − Πx∗‖ξ ,

where αλ < 1 and αλ → 0 as λ → 1.
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Discussion

New error bounds:

• Data dependent, w/o contraction assumptions

• Computable by simulation and low order calculations with small size
matrices

• Sharper than the standard bounds (which are available only for the
contraction case)

• Depend on A but not b (so they are valid for the worst case of b)
• Potential use in the MDP context:

• Provide error bound for exploration policies
• Aid in choosing the value of λ in TD
• Aid in basis function evaluation and selection
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