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Abstract

We consider linear systems of equations, Ax = b, with an emphasis on the case where A is singular.

Under certain conditions, necessary as well as sufficient, linear deterministic iterative methods generate

sequences {xk} that converge to a solution, as long as there exists at least one solution. This conver-

gence property can be impaired when these methods are implemented with stochastic simulation, as is

often done in important classes of large-scale problems. We introduce additional conditions and novel

algorithmic stabilization schemes under which {xk} converges to a solution when A is singular, and may

also be used with substantial benefit when A is nearly singular.
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1 Introduction

We consider the solution of the linear system of equations

Ax = b,

where A is an n × n real matrix and b is a vector in ℜn, by using approximations of A and b, generated
by simulation or other stochastic process. We allow A to be nonsymmetric and singular, but we assume
throughout that the system is consistent , i.e., it has at least one solution.

We are interested in methods where in place of A and b, we use simulation-generated approximations Ak

and bk with Ak → A and bk → b. In the case where A is nonsingular, a possible approach is to approximate
the solution A−1b with A−1

k bk, since the inverse A
−1
k will exist for sufficiently large k. In the case where A is

singular, it may seem possible to adopt a pseudoinverse approach, whereby we may attempt to approximate
a solution of Ax = b with a pseudoinverse solution A†

kbk. Unfortunately, this approach does not work (for
example, consider the case where A = 0 and b = 0, so that Ak and bk are equal to simulation noises, in
which case A†

kbk is unlikely to converge as k → ∞). This motivates the use of an iterative method of the
form

xk+1 = xk − γGk(Akxk − bk), (1)
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where γ is a positive stepsize, and Gk is an n× n scaling matrix. This method is motivated by the classical
iteration

xk+1 = xk − γG(Axk − b), (2)

which has been considered for singular A by several authors (see e.g., the survey by Dax [Dax90], and the
references cited there, such as Keller [Kel65], Young [You72], Tanabe [Tan74]), who have given necessary
and sufficient conditions for convergence of {xk} to a solution of the system Ax = b, assuming at least one
solution exists. Similar conditions for convergence arise in the context of stability analysis of discrete-time
linear dynamic systems.

Monte Carlo simulation has been proposed for solution of linear systems long ago, starting with a sug-
gestion by von Neumann and Ulam, as recounted by Forsythe and Leibler [FoL50], and Wasow [Was52]
(see also Curtiss [Cur54], [Cur57], and the survey by Halton [Hal70]). More recently, work on simulation
methods has focused on using low-order calculations for solving large least squares and other problems. In
this connection we note the papers by Strohmer and Vershynin [StV09], Censor and Herman [CeH09], and
Leventhal and Lewis [LeL10] on randomized versions of coordinate descent and iterated projection methods
for overdetermined least squares problems, and the series of papers by Drineas et. al. who consider the use
of simulation methods for linear least squares problems and low-rank matrix approximation problems; see
[DKM06a], [DKM06b], [DMM06], [DMM08], and [DMMS11].

Our motivation in this paper can be traced to the methodology of approximate dynamic programming
(ADP for short), also known as reinforcement learning. The aim there is to solve forms of Bellman’s
equation of very large dimension (billions and much larger) by using simulation (see the books by Bertsekas
and Tsitsiklis [BeT96], and by Sutton and Barto [SuB98]). In this context, Ax = b is a low-dimensional
system obtained from a high-dimensional system through a Galerkin approximation or aggregation process.
The formation of the entries of A and b often requires high-dimensional linear algebra operations that are
impossible to perform without the use of simulation. In another related context, the entries of A and b may
not be known explicitly, but only through a simulator, in which case using approximations (Ak, bk) instead
of (A, b) is the most we can expect.

To our knowledge, all of the existing works on simulation-based methods assume that the system Ax = b
has a unique solution (an exception is [Ber11], which considers, among others, simulation-based algorithms
where A is singular and has a special form that arises in ADP). By contrast, in this paper we address the
convergence issue in the singular case. Our line of development is to first analyze the convergence of the
deterministic iteration (2). Under a certain assumption that is necessary and sufficient for convergence, we
decompose the error xk − x∗, where x∗ is a solution of Ax = b, into the sum of two orthogonal components:

Uyk: a component in N(A), the nullspace of A [U is a basis matrix for N(A)],

V zk: a component in N(A)⊥ [V is a basis matrix for N(A)⊥].

The iterate zk is uncoupled from yk, and converges to 0 at a geometric rate, as it evolves according to a
contractive iteration. As a result, the cumulative effect of yk is to add a constant vector Uy0 from N(A) to
the component V zk, so {xk} converges to some vector in x∗ +N(A), the solution set of Ax = b.

The deterministic convergence analysis is the starting point for the analysis of stochastic variants, where
A, b, and G are replaced by convergent estimates Ak, bk, and Gk, as in iteration (1). Then, when A is
singular, it turns out that there is a major qualitative change in the nature of the convergence process. The
reason is that the iterates yk and zk become coupled in complicated ways, and the effects of the coupling
may also depend on the rate of the convergence of Ak, bk, and Gk. As a result, {xk} and even the residual
sequence {Axk − b} need not converge, under natural simulation-based implementations. To guarantee
satisfactory behavior, we impose additional assumptions and introduce stabilization schemes in iteration
(1), which are novel and broadly applicable. With these schemes, we prove that {xk} converges to a single
special solution, which is independent of the initial condition x0. The limit depends only on the algorithm
and the type of stabilization used, and in important special cases is related to the Drazin inverse solution
or the Moore-Penrose pseudoinverse solution of GAx = Gb. This is in sharp contrast with the deterministic
iteration (2), whose limit strongly depends on x0 when A is singular.
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While our analysis focuses explicitly on the case where A is singular, much of our algorithmic methodology
applies to the important case where A is nearly singular. Indeed, when simulation is used, there is little
difference from a practical point of view, between the cases where is A is singular and A is nonsingular
but highly ill-conditioned. This is particularly so in the early part of the iterative computation, when the
standard deviation of the simulation noise (Ak −A,Gk −G, bk − b) is overwhelming relative to the smallest
singular value of A.

The paper is organized as follows. In Section 2 we derive a necessary and sufficient condition for the
convergence of the deterministic iterative method (2) for singular linear systems. While this condition
is essentially a restatement of known results (see e.g., [Dax90] and the references cited there), our line
of development is different from those found in the literature (it has a strong linear algebra flavor), and
paves the way for analysis of related stochastic methods. In Section 3 we discuss a common simulation
framework and illustrate a few practical cases of simulation-based solution of large linear systems, and
we discuss the convergence issues of the stochastic iterative method (1). In Section 4, we introduce our
new stabilization schemes, we analyze their convergence under various conditions, and we discuss various
instances of alternative stabilization schemes that are well suited to the special structures of particular
problems and algorithms. In Section 5 we suggest that our stabilization schemes can substantially improve
the performance of stochastic iterative methods in the case where A is nonsingular but highly ill-conditioned.
Finally, in Section 6 we present computational experiments that support our analysis.

We summarize our terminology, our notation, and some basic facts regarding positive semidefinite ma-
trices. In our analysis all calculations are done with real finite-dimensional vectors and matrices. A vector
x is viewed as a column vector, while x′ denotes the corresponding row vector. For a matrix A, we use A′

to denote its transpose. The standard Euclidean norm of a vector x is ‖x‖ =
√
x′x.

The nullspace and range of a matrix A are denoted by N(A) and R(A), respectively. For two square
matrices A and B, the notation A ∼ B indicates that A and B are related by a similarity transformation
and therefore have the same eigenvalues. When we wish to indicate the similarity transformation P , we

write A
P∼ B, meaning that A = PBP−1. The spectral radius of A is denoted by ρ(A). We denote by ‖A‖

the Euclidean matrix norm of a matrix A, so that ‖A‖ is the square root of the largest eigenvalue of A′A.
We have ρ(A) ≤ ‖A‖, and we will use the fact that if ρ(A) < 1, there exists a weighted Euclidean norm
‖ · ‖P , defined for an invertible matrix P as ‖x‖P = ‖P−1x‖ for all x ∈ ℜn, such that the corresponding
induced matrix norm ‖A‖P = max‖x‖P=1 ‖Ax‖P = ‖P−1AP‖ satisfies ‖A‖P < 1 (see Ortega and Rheinboldt
[OrR70], Th. 2.2.8 and its proof, or Stewart [Ste73], Th. 3.8 and its proof).

If A and B are square matrices, we write A � B or B � A to denote that the matrix B −A is positive
semidefinite, i.e., x′(B − A)x ≥ 0 for all x. Similarly, we write A ≺ B or B ≻ A to denote that the matrix
B −A is positive definite, i.e., x′(B − A)x > 0 for all x 6= 0. We have A ≻ 0 if and only if A ≻ cI for some
positive scalar c [take c in the interval

(

0,min‖x‖=1 x
′Ax

)

].
If A ≻ 0, the eigenvalues of A have positive real parts (see Theorem 3.3.9, and Note 3.13.6 of Cottle,

Pang, and Stone [CPS92]). Similarly, if A � 0, the eigenvalues of A have nonnegative real parts (since if A
had an eigenvalue with negative real part, then for sufficiently small δ > 0, the same would be true for the
positive definite matrix A+ δI - a contradiction). For a singular matrix A, the algebraic multiplicity of the
0 eigenvalue is the number of 0 eigenvalues of A. This number is greater or equal to the dimension of N(A)
(the geometric multiplicity of the 0 eigenvalue, i.e., the dimension of the eigenspace corresponding to 0). We
will use the fact that in case of strict inequality, there exists a vector v such that Av 6= 0 and A2v = 0; this
is a generalized eigenvector of order 2 corresponding to eigenvalue 0 (see [LaT85], Section 6.3).

The abbreviations “
a.s.−→” and “

i.d.−→” mean “converges almost surely to,” and “converges in distribution
to,” respectively, while the abbreviation “i.i.d.” means “independent identically distributed.” For two se-
quences {xk} and {yk}, we use the abbreviation xk = O(yk) to denote that, there exists c > 0 such that
‖xk‖ ≤ c‖yk‖ for all k. Moreover, we use the abbreviation xk = Θ(yk) to denote that, there exists c1, c2 > 0
such that c1‖yk‖ ≤ ‖xk‖ ≤ c2‖yk‖ for all k.
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2 Deterministic Iterative Methods for Singular Linear Systems

In this section, we analyze the convergence of the deterministic iteration

xk+1 = xk − γG(Axk − b). (3)

For a given triplet (A, b,G), with b ∈ R(A), we say that this iteration is convergent if there exists γ > 0
such that for all γ ∈ (0, γ] and all initial conditions x0 ∈ ℜn, the sequence {xk} produced by the iteration
converges to a solution of Ax = b. Throughout our subsequent analysis we assume that A is singular . This
is done for convenience, since a major part of our analytical technique (e.g., the nullspace decomposition of
the subsequent Prop. 2) makes no sense if A is nonsingular, and it would be awkward to modify so that it
applies to both the singular and the nonsingular cases. However, our algorithms and results have evident
(and simpler) counterparts for the case where A is nonsingular. Indeed, a major motivation for our analysis
is the case where A is nonsingular but is instead nearly singular, so that methods for solving Ax = b are
highly susceptible to simulation noise.

The following condition, a restatement of conditions given in various contexts in the literature (e.g.,
[Kel65], [You72], [Tan74], [Dax90]), turns out to be equivalent to the iteration being convergent.

Assumption 1

(a) Each eigenvalue of GA either has a positive real part or is 0.

(b) The dimension of N(GA) is equal to the algebraic multiplicity of the eigenvalue 0 of GA.

(c) N(A) = N(GA).

We first show that the conditions above are necessary for convergence, which is relatively easy, and then
prove that they are also sufficient for convergence, using a special decomposition that will be useful in our
subsequent analysis.

Proposition 1 If the iteration (3) is convergent, the conditions of Assumption 1 must hold.

Proof. If part (a) of Assumption 1 does not hold, some eigenvalue of I − γGA will be strictly outside the
unit circle for all γ > 0, so the iteration (3) cannot be convergent. If part (b) does not hold, there exists a
vector w such that GAw 6= 0 but (GA)2w = 0; this is a generalized eigenvector of order 2. Assuming that
γ > 0, b = 0 and x0 = w, we then have

xk = (I − γGA)kx0 = (I − kγGA)x0, GAxk = GAx0 6= 0, k = 1, 2, . . . ,

so the iterate sequence {xk} diverges for all γ > 0. Finally, if part (c) does not hold, N(A) is strictly contained
in N(GA), so for any solution x∗ of Ax = b, the iteration (3) when started at any x0 ∈ x∗ +N(GA) with
x0 /∈ x∗ +N(A), will stop at x0, which is not a solution of Ax = b - a contradiction. �

To show that the iteration (3) is convergent under Assumption 1, we first derive a decomposition of GA,
which will also be useful in the analysis for the stochastic iterations of Section 4.
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Proposition 2 (Nullspace Decomposition) Let Assumption 1 hold. The matrix GA can be written
as

GA = [U V ]

[

0 N
0 H

]

[U V ]′, (4)

where

U is a matrix whose columns form an orthonormal basis of N(A).

V is a matrix whose columns form an orthonormal basis of N(A)⊥.

N = U ′GAV .

H is the square matrix given by
H = V ′GAV, (5)

and its eigenvalues are equal to the eigenvalues of GA that have positive real parts.

Proof. Let U be a matrix whose columns form an orthonormal basis of N(GA), and let V be a matrix whose
columns form an orthonormal basis of N(GA)⊥. We have

[U V ]′GA[U V ] =

[

U ′GAU U ′GAV
V ′GAU V ′GAV

]

=

[

0 U ′GAV
0 V ′GAV

]

=

[

0 N
0 H

]

, (6)

where we used the fact GAU = 0, so that U ′GAU = V ′GAU = 0. Clearly [U V ] is orthogonal, since

[U V ][U V ]′ = UU ′+V V ′ = I and [U V ]′[U V ] =

[

U ′U 0
0 V ′V

]

= I. Therefore Eq. (4) follows from Eq. (6).

From Eq. (6), the eigenvalues of GA are the eigenvalues of H plus 0 eigenvalues whose number is equal
to the dimension of N(GA). Thus by Assumption 1(a), the eigenvalues of H are either 0 or have positive
real parts. If H had 0 as an eigenvalue, the algebraic multiplicity of the 0 eigenvalue of GA would be strictly
greater than the dimension of N(GA), a contradiction of Assumption 1(b). Hence, all eigenvalues of H have
positive real parts. �

The significance of the decomposition (4) is that in a scaled coordinate system defined using y = U ′(x−x∗)
and z = V ′(x − x∗), where x∗ is a solution of Ax = b, the iteration (3) decomposes into two component
iterations, one for y, generating a sequence {yk}, and one for z, generating a sequence {zk}, which is
independent of the sequence {yk}. This is formalized in the following proposition.

Proposition 3 (Iteration Decomposition) Let Assumption 1 hold. If x∗ is a solution of the system
Ax = b, the iteration (3) can be written as

xk = x∗ + Uyk + V zk, (7)

where yk and zk are given by

yk = U ′(xk − x∗), zk = V ′(xk − x∗), (8)

and are generated by the iterations

yk+1 = yk − γ Nzk, zk+1 = zk − γHzk, (9)

and U , V , N , and H are the matrices of Prop. 2. Moreover the corresponding residuals are given by

rk = Axk − b = AV zk. (10)
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Proof. The iteration (3) is written as xk+1−x∗ = (I−γGA)(xk −x∗), which in view of Prop. 2 has the form

xk+1 − x∗ = [U V ]

[

I −γN
0 I − γH

]

[U V ]′(xk − x∗),

or since [U V ] is orthogonal,

[U V ]′(xk+1 − x∗) =

[

I −γN
0 I − γH

]

[U V ]′(xk − x∗). (11)

Defining yk = U ′(xk − x∗), and zk = V ′(xk − x∗), and using Eq. (11), we obtain Eq. (9). In addition, using
the facts xk − x∗ = Uyk +V zk, Ax

∗ = b and AU = 0, we have rk = A(xk − x∗) = A(Uyk +V zk) = AV zk. �

Based on the preceding proposition, the iteration for zk is independent of yk, and has the form zk+1 =
zk − γHzk [cf. Eq. (9)]. It then follows that {zk} converges to 0 (at a geometric rate) if and only if the
matrix I−γH is contractive, or equivalently if H has eigenvalues with positive real parts and γ is sufficiently
small. If this is so, it can be seen that {yk} involves a series of geometric powers of I − γH and hence also
converges. This, together with Prop. 1, proves the equivalence of Assumption 1 with the iteration (3) being
convergent, as indicated in the following proposition.

Proposition 4 (Convergence of Deterministic Iterative Methods) If Assumption 1 holds, the it-
eration (3) converges to the following solution of Ax = b:

x̂ = (UU ′ − UNH−1V ′)x0 + (I + UNH−1V ′)x∗, (12)

where x0 is the initial iterate and x∗ is the solution of Ax = b that has minimum Euclidean norm.

Proof. From Eq. (9), zk and yk are equal to

zk = (I − γH)kz0, yk = y0 − γN

k−1
∑

i=0

(I − γH)iz0.

By Prop. 2(a), I−γH has eigenvalues within the unit circle for all sufficiently small γ. Therefore zk converges
to 0 at a geometric rate, and yk also converges and its limit point is given by:

lim
k→∞

yk = y0 −NH−1z0.

Hence, by Eq. (7), {xk} converges to the vector x∗ + U(y0 − NH−1z0). By using the expression y0 =
U ′(x0 − x∗) and z0 = V ′(x0 − x∗) we further have

lim
k→∞

xk = x∗ + Uy0 − UNH−1z0

= x∗ + UU ′(x0 − x∗)− UNH−1V ′(x0 − x∗)

= (UU ′ − UNH−1V ′)x0 + (I + UNH−1V ′)x∗,

where the last equality uses the fact UU ′x∗ = 0 [since x∗ is the minimum norm solution, it is orthogonal to
N(A), so U ′x∗ = 0]. �

The limit x̂ of the iteration can be characterized in terms of the Drazin inverse of GA, which is denoted
by (GA)D (see the book [CaM91] for its definition and properties). According to a known result ([EMN88]
Theorem 1), it takes the form

x̂ =
(

I − (GA)(GA)D
)

x0 + (GA)DGb. (13)

6
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⊥ x∗ + V zk

Sequence {xk}
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k x∗ + Uyk
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x∗ + N(C) N

Nullspace Component Sequence Othogonal Component
Nullspace Component Sequence Othogonal Component

Nullspace Component Sequence Othogonal Component
Nullspace Component Sequence Orthogonal Component

Nullspace Component Sequence Orthogonal Component Full Iterate

Figure 1: Illustration of the convergence process of the deterministic iteration (3). The iteration decomposes
into two orthogonal components, on N(A) and N(A)⊥, respectively, and we have xk = x∗ + Uyk + V zk. In
this figure, x∗ is the solution of minimum norm, and {xk} converges to x∗ + Uy∗, where y∗ is the limit of
{yk}.

Note that x̂ consists of two parts: a linear function of the initial iterate x0 and the Drazin inverse solution
of the linear system GAx = Gb. Indeed we can verify that the expressions (12) and (13) for x̂ are equal.1

The preceding proof of deterministic convergence shows that under Assumption 1, the stepsizes γ that
guarantee convergence are precisely the ones for which I−γH has eigenvalues strictly within the unit circle.
Figure 1 illustrates the convergence process.

1We use a formula for the Drazin inverse for 2× 2 block matrices (see [Cve08]), which yields

(GA)D = [U V ]

[

0 N

0 H

]D

[U V ]′ = [U V ]

[

0 NH−2

0 H−1

]

[U V ]′.

Then we have

UU ′ − UNH−1V ′ = [U V ]

[

I −NH−1

0 0

]

[U V ]′

= [U V ]

(

I −

[

0 N

0 H

] [

0 NH−2

0 H−1

])

[U V ]′

= I − (GA)(GA)D .

The minimum norm solution is given by

x∗ =

(

[U V ]

[

0 0
0 H−1

]

[U V ]′
)

Gb,

so by using the equation UU ′ + V V ′ = I, we have

(I + UNH−1V ′)x∗ =

(

[U V ]

[

I NH−1

0 I

]

[U V ]′
)(

[U V ]

[

0 0
0 H−1

]

[U V ]′
)

Gb

= [U V ]

[

0 NH−2

0 H−1

]

[U V ]′Gb

= (GA)DGb.

By combining the preceding two equations with Eq. (12), we obtain

x̂ = (UU ′ − UNH−1V ′)x0 + (I + UNH−1V ′)x∗ =
(

I − (GA)(GA)D
)

x0 + (GA)DGb,

so the expressions (12) and (13) for x̂ coincide.
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2.1 Classical Algorithms

We will now discuss some special classes of methods for which Assumption 1 is satisfied. Because this
assumption is necessary and sufficient for the convergence of iteration (3) for some γ > 0, any set of
conditions under which this convergence has been shown in the literature implies Assumption 1. In what
follows we collect various conditions of this type, which correspond to known algorithms of the form (3) or
generalizations thereof. These fall in three categories:

(a) Projection algorithms, which are related to Richardson’s method.

(b) Proximal algorithms, including quadratic regularization methods.

(c) Splitting algorithms, including the Gauss-Seidel and related methods.

In their most common form, both projection and proximal methods for the system Ax = b require that
A � 0, and take the form of Eq. (3) for special choices of γ and G. Their convergence properties may be
inferred from the analysis of their nonlinear versions (originally proposed by Sibony [Sib70], and Martinet
[Mar70], respectively). Generally, these methods are used for finding a solution x∗, within a closed convex
set X , of a variational inequality of the form

f(x∗)′(x− x∗) ≥ 0, ∀ x ∈ X, (14)

where f is a mapping that is monotone on X , in the sense that
(

f(y)− f(x)
)′
(y − x) ≥ 0, for all x, y ∈ X .

For the special case where f(x) = Ax − b and X = ℜn, the projection method is obtained when G is
positive definite symmetric, and is related to Richardson’s method (see e.g., [HaY81]). Then strong (or weak)
monotonicity of f is equivalent to positive (or nonnegative, respectively) definiteness of A. The convergence
analysis of the projection method for the variational inequality (14) generally requires strong monotonicity
of f (see [Sib70]; also textbook discussions in Bertsekas and Tsitsiklis [BeT89], Section 3.5.3, or Facchinei
and Pang [FaP03], Section 12.1). When translated to the special case where f(x) = Ax − b and X = ℜn,
the conditions for convergence are that A ≻ 0, G is positive definite symmetric, and the stepsize γ is small
enough. A variant of the projection method for solving weakly monotone variational inequalities is the
extragradient method of Korpelevich [Kor76]. A special case where f is weakly monotone [it has the form
f(x) = Φ′f̄(Φx) for some strongly monotone mapping f̄ ] and the projection method is convergent was given
by Bertsekas and Gafni [BeG82].

The proximal method, often referred to as the “proximal point algorithm,” uses γ ∈ (0, 1] and

G = (A+ βI)−1,

where β is a positive regularization parameter. An interesting special case arises when the proximal method
is applied to the system A′Σ−1Ax = A′Σ−1b, with Σ: positive semidefinite symmetric; this is the necessary
and sufficient condition for minimization of (Ax − b)′Σ−1(Ax − b), so the system A′Σ−1Ax = A′Σ−1b is
equivalent to Ax = b, for A not necessarily positive semidefinite, as long as Ax = b has a solution. Then we
obtain the method xk+1 = xk − γG(Axk − b), where γ ∈ (0, 1] and

G = (A′Σ−1A+ βI)−1A′Σ−1.

The proximal method was analyzed extensively by Rockafellar [Roc76] for the variational inequality (14)
(and even more general problems), and subsequently by several other authors. It is well-known ([Mar70],
[Roc76]) that when f is weakly monotone, the proximal method is convergent.

There are several splitting algorithms that under various assumptions can be shown to be convergent.
For example, if A is positive semidefinite symmetric, (B,C) is a regular splitting of A (i.e. B + C = A and
B − C ≻ 0), and G = B−1, the algorithm

xk+1 = xk −B−1(Axk − b),
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converges to a solution, as shown by Luo and Tseng [LuT89]. Convergent Jacobi and asynchronous or Gauss-
Seidel iterations are also well known in dynamic programming, where they are referred to as value iteration
methods (see e.g., [Ber07], [Put94]). In this context, the system to be solved has the form x = g +Px, with
P being a substochastic matrix, and under various assumptions on P , the iteration

xk+1 = xk − γ
(

(I − P )xk − g
)

, (15)

can be shown to converge asynchronously to a solution for some γ ∈ (0, 1]. Also asynchronous and Gauss-
Seidel versions of iterations of the form (15) are known to be convergent, assuming that the matrix P is
nonnegative (i.e., has nonnegative entries) and irreducible, with ρ(P ) = 1 (see [BeT89], p. 517). In the
special case where P or P ′ is an irreducible transition probability matrix and g = 0, the corresponding
system, x = Px, contains as special cases the problems of consensus (multi-agent agreement) and of finding
the invariant distribution of an irreducible Markov chain (see [BeT89], Sections 7.3.1 and 7.3.2).

3 Stochastic Iterative Methods

We will now consider a stochastic version of the iterative method:

xk+1 = xk − γGk(Akxk − bk), (16)

where Ak, bk, and Gk, are estimates of A, b, and G, respectively. We will assume throughout the following
condition.

Assumption 2 The sequence {Ak, bk, Gk} is generated by a stochastic process such that

Ak
a.s.−→ A, bk

a.s.−→ b, Gk
a.s.−→ G.

Beyond Assumption 2, we will also need in various parts of the analysis additional conditions, which
we will introduce later. However, at this point it is worth pointing out another major class of stochastic
algorithms, stochastic approximation methods of the Robbins-Monro type, which have an extensive theory
(see e.g., Benveniste, Metivier, and Priouret [BMP90], Borkar [Bor08], Kushner and Yin [KuY03], and Meyn
[Mey07]), and many applications, including some in ADP (see [BeT96] and the references quoted there).
They have the form

xk+1 = xk − γkG(Axk − b+ wk), (17)

where wk is additive zero-mean random noise, and γk > 0 is a possibly time-varying stepsize. While this
iteration also requires Assumption 1 for convergence, it differs in fundamental ways from iteration (16). For
example, the method (17) cannot be convergent, even when A is invertible, unless γk → 0, for otherwise the
term γkGwk will ordinarily have nonzero covariance. By contrast, iteration (16) involves a constant stepsize
γ as well as multiplicative (rather than additive) noise. This both enhances its performance and complicates
its analysis when A is singular, as it gives rise to large stochastic perturbations that must be effectively
controlled in a stochastic setting. In what follows, we focus exclusively on iteration (16).

3.1 Some Simulation Contexts

The use of simulation often aims to deal with large-scale linear algebra operations, which would be very time
consuming or impossible if done exactly. A simulation framework, commonly used in many applications, is
to generate an infinite sequence of random variables

{

(Wt, vt) | t = 1, 2, . . .
}

,

9



where Wt is an n× n matrix and vt is a vector in ℜn, and then estimate A and b with Ak and bk given by

Ak =
1

k

k
∑

t=1

Wt, bk =
1

k

k
∑

t=1

vt. (18)

For simplicity, we have described the simulation contexts that use only one sample per iteration. In fact,
using multiple samples per iteration is also allowed, as long as the estimates Ak and bk possess appropriate
asymptotic behaviors. While we make some probabilistic assumptions on Ak, bk, and Gk, the details of the
simulation process are not material to our analysis.

We will illustrate some possibilities for obtaining Ak, bk, and Gk by simulation. In the first application
we aim to solve approximately an overdetermined system by randomly selecting a subset of the constraints
(see e.g., [DMM06], [DMMS11]).

Example 1 (Overdetermined Least Squares Problem) Consider the least squares problem

min
x∈ℜn

‖Cx− d‖2ξ,

where C is an m× n matrix with m very large and n is small, and ‖ · ‖ξ is a weighted Euclidean norm with
ξ being a vector with positive components, i.e. ‖y‖2ξ =

∑m
i=1 ξiy

2
i . Equivalently this is the n × n system

Ax = b where
A = C′ΞC, b = C′Ξd,

and Ξ is the diagonal matrix with ξ along its diagonal. We generate a sequence of i.i.d. indices {i1, . . . , ik}
according to a distribution ζ, and estimate A and b using Eq. (18), where

Wt =
ξit
ζit

citc
′
it , vt =

ξit
ζit

citdit ,

ξi and ζi denote the probabilities of the ith index according to distributions ξ and ζ respectively, and c′i is

the ith row of C. It can be verified that Ak =
1

k

k
∑

t=1

Wt
a.s.−→ A and bk =

1

k

k
∑

t=1

vt
a.s.−→ b by the strong law

of large numbers for i.i.d. random variables. The system Ax = b is likely to be singular or nearly singular
when C is singular or nearly singular.

In the second application, we consider the projected equation approach for approximate solution of large
linear systems. This approach is widely used in solving forms of Bellman’s equation arising in ADP.

Example 2 (Projected Equations with Galerkin Approximation) Consider a projected version of
the m×m system y = Py + g:

Φx = Πξ (PΦx+ g) ,

where Φ is an m× n matrix whose columns are viewed as features/basis vectors, Πξ denotes the orthogonal
projection onto the subspace S = {Φx | x ∈ ℜn} with respect to the weighted Euclidean norm ‖ · ‖ξ as in
Example 1. Equivalently this is the n× n system Ax = b where

A = Φ′Ξ(I − P )Φ, b = Φ′Ξg.

One approach is to generate a sequence of i.i.d. indices {i1, . . . , ik} according to a distribution ζ, and generate
a sequence of independent state transitions {(i1, j1), . . . (ik, jk)} according to transition probabilities θij . We
may then estimate A and b using Eq. (18), where

Wt =
ξit
ζit

φit

(

φit −
pitjt
θitjt

φjt

)′

, vt =
ξit
ζit

φitgit ,

10



φ′
i denotes the ith row of Φ, and pij denotes the (i, j)th component of the matrix P .
Projected equations are central in the theory of Galerkin approximation (see e.g., [Kra72]). They find

applications in approximate dynamic programming, which are often solved by simulation-based methods (see
e.g., [Ber07], [Put94]). In an important application to cost evaluation of average or discounted cost dynamic
programming problems, the matrix P is the transition probability matrix of an irreducible Markov chain
(multiplied with a discount factor in discounted problems). We use the Markov chain instead of i.i.d. sample
indices for sampling. In particular, we take ξ to be the invariant distribution of the Markov chain. We then
generate a sequence of indices {i1, . . . , ik} according to this Markov chain, and estimate A and b using Eq.
(18), where

Wt = φit(φit − φit+1
)′, vt = φitgit .

It can be verified that Ak =
1

k

k
∑

t=1

Wt
a.s.−→ A and bk =

1

k

k
∑

t=1

vt
a.s.−→ b by the strong law of large numbers for

irreducible Markov chains. This system Ax = b is typically near-singular for discounted cost problems when
the discount factor is close to 1, and is singular or near-singular for average cost problems when the nullspace
of I − P parallels or almost parallels the space spanned by Φ.

Note that the simulation formulas used in Examples 1 and 2 satisfy Assumption 2. Moreover they involve
low-dimensional linear algebra computations. In Example 1, this is a consequence of the low dimension n of
the solution space of the overdetermined system. In Example 2, this is a consequence of the low dimension
n of the approximation subspace defined by the basis matrix Φ.

3.2 Convergence Issues in Stochastic Methods

We now provide an overview of the special convergence issues introduced by the stochastic errors, and set
the stage for the subsequent analysis. Let us consider the simple special case where

Ak ≡ A, Gk ≡ G, (19)

so for any solution x∗ of Ax = b, the iteration (16) is written as

xk+1 − x∗ = (I − γGA)(xk − x∗) + γG(bk − b). (20)

If we assume that G(bk − b) ∈ N(GA) for all k, it can be verified by simple induction that the algorithm
evolves according to

xk+1 − x∗ = (I − γGA)k(x0 − x∗) + γG

k
∑

t=0

(bt − b). (21)

Since the last term on the right can accumulate uncontrollably, even under Assumption 2, {xk} need not
converge and may not even be bounded. What is happening here is that the iteration has no mechanism to
damp the accumulation of stochastic noise components on N(GA).

Still, however, it is possible that the residual sequence {rk}, where

rk = Axk − b,

converges to 0, even though the iterate sequence {xk} may diverge. To get a sense of this, note that in
the deterministic case, by Props. 3 and 4, {zk} converges to 0 geometrically, and since by Eq. (10) we have
rk = AV zk, the same is true for {rk}. In the special case of iteration (20), where Ak ≡ A and Gk ≡ G [cf.
Eq. (19)] the residual sequence evolves according to

rk+1 = (I − γAG)rk + γAG(bk − b),

and since the iteration can be shown to converge geometrically to 0 when the noise term (bk − b) is 0, it also
converges to 0 when (bk − b) converges to 0.

11



In the more general case where Ak → A and Gk → G, but Ak 6= A and Gk 6= G, the residual sequence
evolves according to

rk+1 = (I − γAGk)rk + γAGk

(

(A−Ak)(xk − x∗) + bk − b
)

,

a more sophisticated analysis is necessary, and residual convergence comes into doubt. If we can show, under
suitable conditions, that the rightmost simulation noise term converges to 0, then the iteration converges to
0. For this it is necessary to show that (Ak−A)(xk−x∗) → 0 so that the noise term converges to 0, i.e., that
Ak − A converges to 0 at a faster rate than the “rate of divergence” of (xk − x∗). In particular, if Ak ≡ A,
the residual sequence {rk} converges to 0, even though the sequence {xk} may diverge as indicated earlier
for iteration (20).

For another view of the convergence issues, let us consider the decomposition

xk = x∗ + Uyk + V zk,

where x∗ is a solution of the system Ax = b, and U and V are the matrices of the decomposition of Prop. 2
[cf. Eq. (7)], and

yk = U ′(xk − x∗), zk = V ′(xk − x∗). (22)

In the presence of stochastic error, yk and zk are generated by an iteration of the form

yk+1 = yk − γNzk + ζk(yk, zk), zk+1 = zk − γHzk + ξk(yk, zk), (23)

where ζk(yk, zk) and ξk(yk, zk) are stochasticity-induced errors that are linear functions of yk and zk [cf.
Eq. (9)]. Generally, these errors converge to 0 if yk and zk are bounded, in which case zk converges to 0
(since I − γH has eigenvalues with positive real parts by Prop. 2), and so does the corresponding residual
rk = AV zk [cf. Eq. (10)]. However, yk need not converge even if yk and zk are bounded. Moreover, because
of the complexity of iteration (23), the boundedness of yk is by no means certain and in fact yk may easily
become unbounded, as indicated by our earlier divergence example involving Eqs. (20) and (21).

In this paper we will analyze convergence in the general case where the coupling between yk and zk is
strong, and the errors ζk(yk, zk) and ξk(yk, zk) may cause divergence. For this case, we will introduce in the
next section a modification of the iteration xk+1 = xk − γGk(Akxk − bk) in order to attenuate the effect of
these errors. We will then show that {xk} converges.

4 Stabilized Stochastic Iterative Methods

In the preceding section we saw that the stochastic iteration

xk+1 = xk − γGk(Akxk − bk), (24)

need not be convergent under Assumptions 1 and 2, even though its deterministic counterpart (3) is con-
vergent. Indeed, there are examples for which both iterates and residuals generated by iteration (24) are
divergent with probability 1 (see [WaB11]). In the absence of special structure, divergence is common for
iteration (24). To remedy this difficulty, we will consider in this section modified versions with satisfactory
convergence properties.

4.1 A Simple Stabilization Scheme

We first consider a simple stabilization scheme given by

xk+1 = (1− δk)xk − γGk (Akxk − bk) , (25)

where {δk} is a scalar sequence from the interval (0, 1). For convergence, the sequence {δk} will be required
to converge to 0 at a rate that is sufficiently slow (see the following proposition).
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The idea here is to stabilize the divergent iteration (24) by shifting the eigenvalues of the iteration
matrix I − γGkAk by −δk, thereby moving them strictly inside the unit circle. For this it is also necessary
that the simulation noise sequence {GkAk − GA} decreases to 0 faster than {δk} does, so that the shifted
eigenvalues remain strictly within the unit circle with sufficient frequency to induce convergence. This is the
motivation for the following assumption on the simulation process and the subsequent assumptions on {δk}.
The stabilization scheme of Eq. (25) may also help to counteract the combined effect of simulation noise and
eigenvalues of I−γGA that are very close to the boundary of the unit circle, even if A is only nearly singular
(rather than singular). We provide some related analytical and experimental evidence in Sections 5 and 6.

In order to formulate an appropriate assumption for the rate at which δk converges to 0, we need the
following assumption on the convergence rate of the simulation process.

Assumption 3 The simulation error sequence

Ek = (Ak −A,Gk −G, bk − b),

viewed as a (2n2 + n)-dimensional vector, satisfies

lim sup
k→∞

√
kq E

[

‖Ek‖q
]

< ∞,

for some q > 2.

Assumptions 2 and 3 are very general and apply to practical situations that involve a stochastic simulator
or a Monte Carlo sampler. For instance, the sample sequence can be generated by independently sampling
according to a certain distribution (e.g., [DMM06]); or it can be generated adaptively according to a sequence
of importance sampling distributions. Also, the sample sequence can be generated through state transitions
of an irreducible Markov chain, as for example in temporal difference methods for cost evaluation problems
in ADP (see [BrB96], [Boy02], [NeB03], and [Ber10]), or for general projected equations ([BeY09], [Ber11]).
Under natural conditions, all these simulation methods satisfy Assumption 2 through a strong law of large
numbers, and Assumption 3 through forms of the central limit theorem (see the discussions in the preceding
references). On the other hand, we note that our analysis can accommodate a rate of convergence of Ek

different than 1/
√
k, as long as the rate of convergence of δk is appropriately adjusted.

The following proposition shows that if δk decreases to 0 at a rate sufficiently slower than 1/
√
k, the

sequence of iterates {xk} converges to a solution. Moreover, it turns out that in sharp contrast to the
deterministic version of iteration (24), the stabilized version (25) may converge to only one possible solution
of Ax = b, as the following proposition shows. This solution has the form

x̂ = (I + UNH−1V ′)x∗ = (GA)DGb, (26)

where U , V , N , and H are as in the decomposition of Prop. 2, and x∗ is the projection of the origin on the
set of solutions (this is the unique solution of minimum Euclidean norm). Note that x̂ is the Drazin inverse
solution of the system GAx = Gb, as noted following Prop. 4. A remarkable fact is that the limit of the
iteration does not depend on the initial iterate x0 as is the case for the deterministic iteration where δk ≡ 0
[cf. Eq. (12) in Prop. 4]. Thus the parameter δk provides a dual form of stabilization: it counteracts the
effect of simulation noise and the effect of the choice of initial iterate x0.
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Proposition 5 Let Assumptions 1, 2, and 3 hold, and let {δk} ⊂ (0, 1) be a decreasing sequence of
scalars satisfying

lim
k→∞

δk = 0, lim
k→∞

k(1/2−(ε+1)/q) δk = ∞,

where ε is some positive scalar and q is the scalar of Assumption 3. Then there exists γ̄ > 0 such that
for all γ ∈ (0, γ̄] and all initial iterates x0, the sequence {xk} generated by iteration (25) converges with
probability 1 to the solution x̂ of Ax = b, given by Eq. (26).

We will develop the proof of the proposition through a series of preliminary lemmas.

Lemma 1 Let {δk} satisfy the assumptions of Prop. 5. Then Ek/δk
a.s.−→ 0.

Proof. We first note that such {δk} always exists. Since q > 2, there exists ε > 0 such that 1/2−(1+ε)/q > 0
and k1/2−(1+ε)/q → ∞, implying the existence of {δk} that satisfies the assumptions of Prop. 5 (e.g., we may
take δk = (k1/2−(1+ε)/q)−1/2).

Let ǫ be an arbitrary positive scalar. We use the Markov inequality to obtain

P

(

1

δk
‖Ek‖ ≥ ǫ

)

= P

((

1

δk
‖Ek‖

)q

≥ ǫq
)

≤ 1

ǫq
E

[(

1

δk
‖Ek‖

)q]

. (27)

By Assumption 3,
√
kq E

[

‖Ek‖q
]

is a bounded sequence so there exists c > 0 such that

1

ǫq
E

[(

1

δk
‖Ek‖

)q]

≤ 1

ǫq
c

kq/2δqk
. (28)

From the assumption limk→∞ k(1/2−(1+ε)/q) δk = ∞, we have

1

ǫq
≤

(

k(1/2−(1+ε)/q)δk
)q
,

for sufficiently large k. Combining this relation with Eqs. (27) and (28), we obtain

P

(

1

δk
‖Ek‖ ≥ ǫ

)

≤ c k(1/2−(1+ε)/q)q

kq/2
=

c

k1+ε
,

and since ε > 0 we obtain
∞
∑

k=1

P

(

1

δk
‖Ek‖ ≥ ǫ

)

≤ c
∞
∑

k=1

1

k1+ε
< ∞.

Using the Borel-Cantelli Lemma, it follows that the event

{

1

δk
‖Ek‖ ≥ ǫ

}

occurs only a finite number of

times, so
1

δk
‖Ek‖ ≤ ǫ for k sufficiently large with probability 1. By taking ǫ ↓ 0 we obtain Ek/δk

a.s.−→ 0. �

Lemma 2 Let {δk} satisfy the assumptions of Prop. 5, and let f be a function that is Lipschitz continuous
within a neighborhood of (A,G, b). Then

1

δk

∥

∥f(Ak, Gk, bk)− f(A,G, b)
∥

∥

a.s.−→ 0.
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Proof. If L is the Lipschitz constant of f within a neighborhood of (A,G, b), we have within this neighborhood

1

δk

∥

∥f(Ak, Gk, bk)− f(A,G, b)
∥

∥ ≤ L

δk

∥

∥(Ak −A,Gk −G, bk − b)
∥

∥ =
L

δk

∥

∥Ek

∥

∥,

for all sufficiently large k with probability 1. Thus the result follows from Lemma 1. �

We will next focus on iteration (25), which is equivalent to

xk+1 = Tkxk + gk,

where
Tk = (1− δk)I − γGkAk, gk = γGkbk,

so that we have
Tk

a.s.−→ T = I − γGA, gk
a.s.−→ g = γGb.

The key of our convergence analysis is to show that Tk is contractive with respect to some induced norm,
and has modulus that is sufficiently smaller than 1 to attenuate the simulation noise. To be precise, we will
find a matrix P such that

‖Tk‖P = ‖P−1TkP‖ ≤ 1− cδk, (29)

for k sufficiently large with probability 1, where c is some positive scalar.
To this end, we construct a block diagonal decomposition of T and Tk. Let Q = [U V ] be the orthogonal

matrix defined in Prop. 2, and let R be the matrix R =

[

I NH−1

0 I

]

. We have

GA
Q∼
[

0 N
0 H

]

R∼
[

0 0
0 H

]

, (30)

where the first similarity relation follows from the nullspace decomposition of Prop. 2, and the second follows
by verifying directly that

[

0 N
0 H

]

R =

[

0 N
0 H

] [

I NH−1

0 I

]

=

[

I NH−1

0 I

] [

0 0
0 H

]

= R

[

0 0
0 H

]

.

The matrix H has eigenvalues with positive real parts, so ρ(I − γH) < 1 for γ > 0 sufficiently small. Thus
there exists a matrix S such that

‖I − γH‖S = ‖I − γS−1HS‖ < 1.

Denoting H̃ = S−1HS, we obtain from the above relation

I ≻
(

I − γH̃
)′(

I − γH̃
)

= I − γ
(

H̃ ′ + H̃
)

+ γ2H̃ ′H̃,

implying that
H̃ = S−1HS ≻ 0. (31)

Defining

P = QR

[

I 0
0 S

]

= [U V ]

[

I NH−1

0 I

] [

I 0
0 S

]

, (32)

we can verify using Eq. (30) that

GA
P∼
[

I 0
0 S−1

] [

0 0
0 H

] [

I 0
0 S

]

=

[

0 0

0 H̃

]

. (33)
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We are now ready to prove the contraction property of Tk [cf. Eq. (29)] by using the matrix P constructed
above. Let us mention that although we have constructed P based on a single γ, any such P will work in
the subsequent analysis.

Lemma 3 Let the assumptions of Prop. 5 hold, and let P be the matrix given by Eq. (32). There exist
scalars c, γ̄ > 0 such that for any γ ∈ (0, γ̄] and all initial iterates x0, we have

∥

∥(1− δk)I − γGkAk

∥

∥

P
≤ 1− cδk,

for k sufficiently large with probability 1.

Proof. By using Eq. (32) and Eq. (33), we obtain for all k that

(1− δk)I − γGA
P∼
[

(1− δk)I 0

0 (1 − δk)I − γH̃

]

.

Since H̃ ≻ 0 [cf. Eq. (31)], we have

(

(1 − δk)I − γH̃
)′(

(1− δk)I − γH̃
)

= (1− δk)
2I − γ(1− δk)

(

H̃ ′ + H̃
)

+ γ2H̃ ′H̃ ≺ (1− δk)
2I,

for γ > 0 sufficiently small. It follows that, there exists γ̄ > 0 such that for all γ ∈ (0, γ̄] and k sufficiently
large

∥

∥(1− δk)I − γH̃
∥

∥ < 1− δk.

Thus we have
∥

∥(1− δk)I − γGA
∥

∥

P
=

∥

∥

∥

∥

[

(1− δk)I 0

0 (1 − δk)I − γH̃

]∥

∥

∥

∥

= 1− δk,

for all γ in some interval (0, γ̄] and k sufficiently large. Finally, by using the triangle inequality and the fact

O(Ek)/δk
a.s.−→ 0 (cf. Lemma 2), we obtain

∥

∥(1 − δk)I − γGkAk

∥

∥

P
≤

∥

∥(1 − δk)I − γGA
∥

∥

P
+ γ‖GkAk −GA‖P = 1− δk +O

(

‖Ek‖
)

≤ 1− cδk,

for k sufficiently large with probability 1, where c is some positive scalar. �

Lemma 4 Under the assumptions of Prop. 5, the sequence {xk} is bounded with probability 1.

Proof. For any solution x̂ of Ax = b, using Eq. (25) we have

xk+1 − x̂ =
(

(1− δk)I − γGkAk

)

(xk − x̂)− δkx̂+ γGk(bk −Akx̂),

from which we obtain

‖xk+1 − x̂‖P ≤
∥

∥(1 − δk)I − γGkAk

∥

∥

P
‖xk − x̂‖P + δk‖x̂‖P + γ

∥

∥Gk(bk −Akx̂)
∥

∥

P
,

where ‖ · ‖P is the norm of Lemma 3. Since
∥

∥Gk(bk − Akx̂)
∥

∥

P
= O(Ek) and O(Ek)/δk

a.s.−→ 0, there exists
c̄ > 0 such that

δk‖x̂‖P + γ
∥

∥Gk(bk −Akx̂)
∥

∥

P
≤ c̄δk,

for k sufficiently large with probability 1. Thus by using Lemma 3 in conjunction with the preceding two
inequalities, we obtain

‖xk+1 − x̂‖P ≤ (1− cδk)‖xk − x̂‖P + c̄δk.
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Hence if ‖xk − x̂‖P ≥ c̄/c, we have

‖xk+1 − x̂‖P ≤ ‖xk − x̂‖P − cδk‖xk − x̂‖P + c̄δk ≤ ‖xk − x̂‖P ,

implying that {xk − x̂} is bounded with probability 1, hence {xk} is also bounded with probability 1. �

Our proof idea of Prop. 5 is to start with x∗, the solution of Ax = b that has minimum norm, and to
decompose the sequence {xk − x∗} into the two sequences {Uyk} and {V zk}, which lie in the orthogonal
subspaces N(A) and N(A)⊥, respectively (cf. the decomposition of Prop. 3). Thus we will view iteration
(25) as two interconnected subiterations, one for yk and the other for zk.

Proof of Proposition 5: We rewrite iteration (25) as

xk+1 − x∗ =
(

(1− δk)I − γGA
)

(xk − x∗)− δkx
∗ + γ(GA−GkAk)(xk − x∗) + γGk(bk −Akx

∗). (34)

Since {xk} is bounded with probability 1 (cf. Lemma 4), we have

γ(GA−GkAk)(xk − x∗) + γGk(bk −Akx
∗) = O(Ek), w.p.1.

Let Q = [U V ] be the orthogonal matrix used to construct the decomposition of I − γGA in Section 2. We
multiply both sides of Eq. (34) with Q′ on the left, apply the above relation, and obtain

Q′(xk+1 − x∗) = Q′
(

(1− δk)I − γGA
)

QQ′(xk − x∗)− δkQ
′x∗ +O(Ek). (35)

Let us define [cf. Eq. (8)]

yk = U ′(xk − x∗), zk = V ′(xk − x∗), Q′(xk − x∗) =

[

yk
zk

]

.

Then Eq. (35) can be rewritten as

[

yk+1

zk+1

]

=

[

(1− δk)I −γN
0 (1 − δk)I − γH

] [

yk
zk

]

− δk

[

0
V ′x∗

]

+O(Ek), (36)

where we have used the fact U ′x∗ = 0, which follows from the orthogonality of x∗ to N(A), the subspace
that is parallel to the set of solutions of Ax = b. By letting ỹk = yk −NH−1zk −NH−1V ′x∗, we have from
Eq. (36)

ỹk+1 = (1 − δk)ỹk +O(Ek). (37)

We can now analyze the asymptotic behavior of {zk}, {ỹk}, and {yk} according to Eqs. (36)-(37).

• The zk-portion is given by

zk+1 =
(

(1− δk)I − γH
)

zk − δkV
′x∗ +O(Ek),

where
∥

∥(1− δk)I − γH
∥

∥

S

a.s.−→ η ∈ (0, 1) for some norm ‖ · ‖S and γ within a sufficiently small interval

(0, γ̄]. Since δk ↓ 0 and Ek
a.s.−→ 0, we then obtain zk

a.s.−→ 0.

• The ỹk-portion satisfies that
‖ỹk+1‖ ≤ (1− δk) ‖ỹk‖+O(‖Ek‖).

Since
∑∞

k=0 δk = ∞ and O(Ek)/δk
a.s.−→ 0, it follows from a well-known result that limk→∞ ‖ỹk‖ = 0

(cf. [Ber99], Lemma 1.5.1) with probability 1. Therefore ỹk
a.s.−→ 0.

• The yk-portion is given by
yk = ỹk +NH−1zk +NH−1V ′x∗.

By using the earlier result zk
a.s.−→ 0 and ỹk

a.s.−→ 0, we obtain yk
a.s.−→ NH−1V ′x∗.
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To summarize, we have shown that zk
a.s.−→ 0 and yk

a.s.−→ NH−1V ′x∗. Therefore xk = x∗ + Uyk + V zk
converges with probability 1 to the vector x̂ = (I + UNH−1V ′)x∗ given by Eq. (26). �

To understand the convergence mechanism of the algorithm, we may review the line of proof, for the
simpler case where there is no simulation noise, i.e., Ak ≡ A, bk ≡ b, Gk ≡ G. Then the stabilized iteration
(25) is equivalent to the decomposed version

yk+1 = (1− δk)yk − γNzk, zk+1 =
(

(1− δk)I − γH
)

zk − δkV
′x∗

[cf. Eq. (36)]. The iteration for zk is subject to the slowly varying driving term −δkV
′x∗, but has geo-

metrically/fast converging dynamics. As a result the iteration “sees” the driving term as being essentially
constant, and we have zk ≈ −δk(γH)−1V ′x∗ for sufficiently large k. After substituting this expression in
the preceding iteration for yk, we obtain

yk+1 ≈ (1 − δk)yk + γδkN(γH)−1V ′x∗,

which yields yk → NH−1V ′x∗ and

xk = x∗ + Uyk + V zk → (I + UNH−1V ′)x∗ = x̂.

The preceding argument also provides insight into the rate of convergence of the algorithm. When there
is no stochastic noise, the iterates yk and zk operate on two different time scales. The iteration of zk is
naturally contractive, and can be equivalently written as

zk+1

δk+1
+ (γH)−1V ′x∗ ≈ δk

δk+1

(

(1− δk)I − γH
)

(

zk
δk

+ (γH)−1V ′x∗

)

,

where both sides of the above relation are approximately equal and differ only by a term decreasing to
0. This implies zk/δk

a.s.−→ −(γH)−1V ′x∗. Therefore zk converges linearly to the slowly decreasing bias
−δk(γH)−1V ′x∗. On the other hand, the iteration of yk is convergent due to the stabilization with modulus
(1− δk). Thus yk converges to its limit at a rate much slower than the geometric rate.

In the case where the stochastic noise satisfies Assumption 3, we have Ek/δk
a.s.−→ 0. Thus the effect of

the noise eventually becomes negligible compared with the effect of stabilization. This suggests that the
asymptotic behavior of the stochastic stabilized iteration is the same with that of the stabilized iteration in
the absence of stochastic noise. We will address this issue in a future publication. Let us also mention that,
there may exist stochastic noise whose asymptotic behavior does not conform to Assumption 3. In this case,
as long as we choose a sequence of {δk} such that Ek/δk

a.s.−→ 0, the convergence results of the stabilized
iterations still follow.

4.2 A Class of Stabilization Schemes and a Unified Convergence Analysis

While the stabilization scheme of the preceding section is simple and general, there are variations of this
scheme that may be better suited for specific iterative algorithms. In this section, we will introduce a broad
class of stabilization schemes, within which we will embed the algorithm of the preceding section. We will
provide a unified convergence analysis that can be applied to that algorithm and other alternative algorithms
as well. We will then discuss several such algorithms in Section 4.3.

We first write the deterministic iteration (2) in the form

xk+1 = Txk + g,

where we define
T = I − γGA, g = γGb.

We consider the modified/stabilized stochastic iteration

xk+1 = Tkxk + gk, (38)
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where the n× n matrix Tk and the n-dimensional vector gk are approximations of T and g of the form

Tk = T + δkD +O
(

δ2k + ‖Ek‖
)

, gk = g + δkd+O
(

δ2k + ‖Ek‖
)

. (39)

Here D is an n×n matrix and d is a vector in ℜn, δk ∈ (0, 1) is the stabilization parameter, and Ek represents
the simulation error, as earlier. We may view Eq. (39) as a form of first order expansion of Tk and gk with
respect to δk. The algorithm (25) of the preceding section is obtained for D = −I and d = 0.

The following convergence result shows that if ‖Tk‖P has a certain contraction property for a suitable
matrix P , and if D and d satisfy a certain consistency condition, the stochastic iteration (38) converges to
a solution of Ax = b that is uniquely determined by D and d.

Proposition 6 (Convergence of General Stabilization Schemes) Let Assumptions 1, 2, and 3
hold, and let γ be a sufficiently small scalar such that the deterministic iteration (3) converges. As-
sume that D and d are such that there exists c > 0 and an invertible matrix P such that

‖Tk‖P ≤ 1− cδk, ∀ k sufficiently large, (40)

and let {δk} satisfy the same assumptions as in Prop. 5. Then there is a unique solution x̂ to the system
of equations

Π̂(Dx+ d) = 0, Ax = b, (41)

where Π̂ denotes orthogonal projection onto N(A) with respect to the norm ‖ · ‖P . Furthermore, for all
initial iterates x0, the sequence {xk} generated by iteration (38) converges to x̂ with probability 1.

We develop the proof of the proposition through some preliminary lemmas. We first establish the existence
and uniqueness of the solution x̂. Note that in the algorithm of the preceding section, x̂ is the Drazin inverse
solution of Ax = b, but in the more general case considered at present x̂ depends on D and d.

Lemma 5 Under the assumptions of Prop. 6, the system (41) has a unique solution.

Proof. It can be seen that an equivalent form of system (41) is

(Dx+ d)′(P−1)′P−1y = 0, ∀ y ∈ N(A), Ax = b,

which is also equivalent to

(Dx+ d)′(P−1)′P−1(y − x) = 0, ∀ y ∈ x+N(A), Ax = b.

Therefore the system (41) can be written equivalently as the following projected equation

x = Π̃
(

x+ β(Dx+ d)
)

,

where Π̃ is the orthogonal projection matrix with respect to ‖ · ‖P on the solution set

X∗ = {x | Ax = b} = {x | Tx+ g = x},

and β is any nonzero scalar. By using Eq. (40), there exists β > 0 and η ∈ (0, 1) such that

‖T + βD‖P ≤ η < 1.

For any x, y ∈ X∗, we have
∥

∥x+ β(Dx + d)− y − β(Dy + d)
∥

∥

P
=

∥

∥Tx+ g + β(Dx + d)− Ty − g − β(Dy + d)
∥

∥

P

=
∥

∥(T + βD)(x − y)
∥

∥

P

≤ η‖x− y‖P ,
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where the first equality holds because x, y ∈ X∗, so x = Tx+ g and y = Ty+ g. By applying the projection
Π̃, the contractive property is preserved, i.e.,

∥

∥Π̃
(

x+ β(Dx+ d)
)

− Π̃
(

y + β(Dy + d)
)
∥

∥

P
≤ η‖x− y‖P , ∀ x, y ∈ X∗.

This implies that the projected mapping x 7→ Π̃
(

x+ β(Dx+ d)
)

is also a contraction on X∗. It follows that
it has a unique fixed point in X∗, which is the unique solution of the system (41). �

We next construct a nullspace decomposition similar to the one of Prop. 2. Let Ū be an orthonormal basis
for the subspace P−1N(A), which is equal to P−1N(GA) by Assumption 1. Since P−1N(GA) = N(GAP ) =
N(P−1GAP ), we see that Ū is an orthonormal basis for N(P−1GAP ). Let also V̄ be an orthonormal basis
for the complementary subspace N(P−1GAP )⊥, and let Q be the orthogonal matrix

Q̄ = [Ū V̄ ].

We use Ū and V̄ to construct a nullspace decomposition of P−1GAP and P−1TP , with the procedure that
was used for nullspace decomposition of GA and T (cf. Prop. 2). This yields

P−1(I − T )P = γ(P−1GAP ) = Q̄

[

0 γN̄
0 γH̄

]

Q̄′, P−1TP = Q̄

[

I −γN̄
0 I − γH̄

]

Q̄′, (42)

where N̄ and H̄ are matrices defined analogously to the matrices N and H of Prop. 2. As in the case of H , it
follows from Assumption 1 that the eigenvalues of H̄ have positive real parts, since GA and P−1GAP have
the same eigenvalues. Hence for all γ within a sufficiently small interval (0, γ̄] such that the deterministic
iteration (3) converges, the eigenvalues of I − γH̄ lie strictly within the unit circle. In what follows, we will
always assume that γ has been chosen within such an interval.

The following lemma shows that this decomposition is block diagonal. The lemma relies only on the
assumption (40) and not on the detailed nature of D and d. Thus the lemma highlights the role of P
as a matrix that block-diagonalizes the iteration mapping along two orthogonal subspaces, similar to the
corresponding matrix P of the preceding section [cf. Eq. (32)].

Lemma 6 Under the assumptions of Prop. 6, the decomposition (42) is block diagonal, i.e., N̄ = 0.

Proof. Since
‖P−1TP‖ = ‖T ‖P = lim

k→∞
‖Tk‖P ≤ lim

k→∞
(1− cδk) = 1,

and also ‖T ‖P ≥ ρ(T ) = 1 [since 1 is an eigenvalue of T , cf. Eq. (42)], we conclude that ‖P−1TP‖ = 1.
Assume to arrive at a contradiction, that some component of −γN̄ is nonzero, say the component mij of
the ith row and jth column of the matrix

M =

[

I −γN̄
0 I − γH̄

]

,

(note that i is an index of the first block, and j is an index of the second block.) Consider a vector y with
components yi 6= 0, yj 6= 0, yℓ = 0 for all ℓ 6= i, j, such that the ith component of My satisfies

(My)2i = (yi +mijyj)
2 > y2i + y2j .

Let also x be such that Q̄′x = y. Using Eq. (42) and the fact Q̄′Q̄ = I, we have

‖P−1TPx‖2 = ‖MQ̄′x‖2 = ‖My‖2 ≥ (My)2i > y2i + y2j = ‖y‖2 = ‖Q̄′x‖2 = ‖x‖2,

where the last equality holds since Q̄′ is orthogonal. Thus we have ‖P−1TPx‖ > ‖x‖, which contradicts the
fact ‖P−1TP‖ = 1 shown earlier. �
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We are now ready to prove convergence of {xk} to the solution of the system (41). Note that this system
can be written in a more explicit form by observing that the first equation Π̂(Dx + d) = 0 means that
(Dx+ d) is orthogonal to N(A) in the scaled geometry of the norm ‖ · ‖P , i.e.,

P−1(Dx + d) ⊥ P−1N(A). (43)

Then the equation Π̂(Dx + d) = 0 or its equivalent form (43) is written as Ū ′P−1(Dx + d) = 0 and the
system (41) is written as

[

I 0
0 0

]

Q̄′P−1(Dx+ d) = 0, Ax = b. (44)

Proof of Proposition 6: We first prove that {xk} is bounded, using the solution x̂ of the system (41).
Subtracting x̂ from both sides of Eq. (38), and using the relation x̂ = T x̂+ g, we obtain

xk+1 − x̂ = Tk(xk − x̂) + Tkx̂− x̂+ gk = Tk(xk − x̂) + (Tk − T )x̂+ gk − g,

and finally, using Eq. (39),

xk+1 − x̂ = Tk(xk − x̂) + δk(Dx̂+ d) +O
(

δ2k + ‖Ek‖
)

. (45)

By using the assumption ‖Tk‖P ≤ 1− cδk, we further obtain

‖xk+1 − x̂‖P ≤ ‖Tk‖P ‖xk − x̂‖P +
∥

∥δk(Dx̂+ d) +O
(

δ2k + ‖Ek‖
)
∥

∥

P
≤ (1− cδk)‖xk − x̂‖P +O(δk).

It follows similar to the proof of Lemma 4 that {xk} is bounded with probability 1.
We will use the decomposition of iteration (38) to prove convergence. From Lemma 6, we have

P−1TP = Q̄

[

I 0
0 I − γH̄

]

Q̄′.

Combining this equation with Eq. (39), we obtain

P−1TkP = P−1(T + δkD)P +O
(

δ2k + ‖Ek‖
)

= Q̄

[

I − δkJ O(δk)
O(δk) I − γH̄ +O(δk)

]

Q̄′ +O
(

δ2k + ‖Ek‖
)

, (46)

where J is the upper diagonal block of −P−1DP . From Eqs. (40) and (46), we have

‖I − δkJ‖ ≤ ‖P−1TkP‖+O
(

δ2k + ‖Ek‖
)

= ‖Tk‖P +O
(

δ2k + ‖Ek‖
)

≤ 1− c̄δk, (47)

for some positive scalar c̄, for k sufficiently large with probability 1.
We now introduce scaled iterates yk, zk, and a vector x̄ defined by

[

yk
zk

]

= Q̄′P−1(xk − x̂),

[

0
x̄

]

= Q̄′P−1 (Dx̂+ d) ,

where the top component of the vector in the equation on the right is 0 in light of Eq. (44). We rewrite Eq.
(46) in the equivalent form

Q̄′P−1Tk =

[

I − δkJ O(δk)
O(δk) I − γH̄ +O(δk)

]

Q̄′P−1 +O
(

δ2k + ‖Ek‖
)

,

and we use it after applying the transformation Q̄′P−1 to iteration (45), to obtain the following scaled form
of this iteration:

[

yk+1

zk+1

]

=

[

I − δkJ O(δk)
O(δk) I − γH̄ +O(δk)

] [

yk
zk

]

+ δk

[

0
x̄

]

+O
(

δ2k + ‖Ek‖
)

. (48)

We now analyze the asymptotic behavior of the sequences of scaled iterates {yk} and {zk}.
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• The zk-portion of Eq. (48) is

zk+1 =
(

I − γH̄ +O(δk)
)

zk +O(δk)yk + δkx̄+O
(

δ2k + ‖Ek‖
)

.

By the boundedness of {xk}, the sequence {yk} is also bounded with probability 1, implying

O(δk)yk + δkx̄+O
(

δ2k + ‖Ek‖
)

= O(δk).

Hence the zk-portion can be simplified to

zk+1 =
(

I − γH̄ +O(δk)
)

zk + O(δk),

where δk → 0, so that
(

I − γH̄ + O(δk)
) a.s.−→ I − γH̄ . Since I − γH̄ is a contraction for γ ∈ (0, γ̄], it

follows that zk
a.s.−→ 0.

• The yk-portion of Eq. (48) is

yk+1 = (I − δkJ)yk +O(δk)zk +O
(

δ2k + ‖Ek‖
)

.

From this equation and Eq. (47), it follows that

‖yk+1‖ ≤ ‖I − δkJ‖‖yk‖+O
(

δ2k + ‖Ek‖+ δkzk
)

≤ (1 − c̄δk)‖yk‖+O
(

δ2k + ‖Ek‖+ δkzk
)

.

Using the assumption
∑∞

k=0 δk = ∞, and the fact O
(

δ2k + ‖Ek‖+ δkzk
)

/δk → 0, we obtain yk
a.s.−→ 0.

In summary, we have zk
a.s.−→ 0 and yk

a.s.−→ 0, so xk − x̂
a.s.−→ 0. �

The preceding proposition can be used to prove convergence of a variety of iterations of the form (38):
we only need to verify that the condition (40) is satisfied for some matrix P . The solution x̂ depends on
D and d. In particular, if we let D = −I and d = 0, we recover the result of Prop. 5, and x̂ is the Drazin
inverse solution of GAx = Gb. As will be illustrated by the subsequent analysis, other possible limit points
exist.

4.3 Some Instances of Alternative Stabilization Schemes

The idea of the simple stabilization scheme of Section 4.1 is to shift all eigenvalues of I − γGA by −δk,
so that the modified iteration has a modulus sufficiently smaller than 1. We will now discuss some other
schemes that work similarly, and can be shown to be convergent using the unified analysis of Section 4.2.

4.3.1 A Stabilization Scheme for Fixed Point Iterations

One alternative is to multiply the entire iteration with (1− δk):

xk+1 = (1− δk)
(

xk − γGk(Akxk − bk)
)

. (49)

When this iteration is applied to the fixed point problem x = Fx+ b with A = I −F , Gk = I, and γ = 1, it
yields the iteration

xk+1 = (1− δk)(Fkxk + bk),

where Fk and bk are simulation-based estimates of F and b.
We may write iteration (49) as

xk+1 = Tkxk + gk,

[cf. Eq. (38)] where
Tk = (1− δk)(I − γGkAk), gk = γ(1− δk)Gkbk.
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The first order approximations of Tk and gk are

Tk ≈ T + δkD, gk ≈ g + δkd

[cf. Eq. (39)], where we can verify that

D = −(I − γGA) = −T, d = −γGb = −g.

We have the following convergence result by applying Prop. 6.

Proposition 7 Let Assumptions 1, 2, and 3 hold, and let {δk} satisfy the assumptions of Prop. 5. Then
for any γ within a sufficiently small interval (0, γ̄] and all initial iterates x0, the sequence {xk} generated
by iteration (49) converges with probability 1 to the solution x̂ of Ax = b given by Eq. (26).

Proof. Let P be the transformation matrix defined in the analysis preceding Lemma 3:

P = [U V ]

[

I NH−1

0 I

] [

I 0
0 S

]

,

where U, V,N,H are the matrices used to construct the decomposition of I − γGA in Prop. 2, and S is the
matrix defined in the analysis preceding Lemma 3. Using the line of analysis of Lemma 3, we obtain

T + δkD = (1− δk)(I − γGA)
P∼ (1− δk)

[

I 0

0 I − γH̃

]

,

where H̃ = S−1HS [cf. Eq. (31)], and we also have

‖T + δkD‖P = (1− δk)‖I − γGA‖P ≤ 1− δk.

Then there exists c > 0 such that

‖Tk‖P ≤ ‖T + δkD‖P +O
(

δ2k + ‖Ek‖P
)

≤ 1− cδk,

for k sufficiently large with probability 1, so the assumptions of Prop. 6 are satisfied. It follows that xk

converges to the unique solution x̂ of Eq. (41) or Eq. (44) with probability 1.
Now we consider the limit point. By applying Eq. (32) and the equation

Dx+ d = −(Tx+ g) = −x

to Eq. (44) with Q̄ = I [since P−1TP already takes the desired form of nullspace decomposition, we let
Q̄ = I so that Eq. (42) holds], we obtain

0 =

[

I 0
0 0

]([

I 0
0 S−1

] [

I −NH−1

0 I

]

[U V ]′
)

(−x), Ax = b,

or equivalently
U ′x−NH−1V ′x = 0, V ′x = V ′x∗.

Thus x̂ = (I + UNH−1V ′)x∗, as given by Eq. (26), is the unique solution to the above system. �

23



4.3.2 A Stabilization Scheme by Selective Eigenvalue Shifting

Another alternative stabilization scheme is to shift by −δk only those eigenvalues of I − γGA that are equal
to 1, instead of shifting all eigenvalues. This avoids the perturbation on those eigenvalues that are strictly
contained in the unit circle, and reduces the bias induced by −δk on the iterate portion V ′xk that lies in
N(A)⊥. Note that this approach requires knowledge of the eigenspace of I−γGA corresponding to eigenvalue
1, i.e., the nullspace N(A). In some cases, we can estimate a projection matrix of N(A) based on stochastic
simulation (we refer to the paper [WaB11] for more details).

Suppose that we can form a sequence of estimates {Πk} such that

Πk
a.s.−→ ΠN(A),

where ΠN(A) is the orthogonal projection matrix ontoN(A) with respect to the Euclidean norm. We consider
the stabilized iteration

xk+1 = (I − δkΠk)xk − γGk(Akxk − bk), (50)

which can be written as
xk+1 = Tkxk + gk,

[cf. Eq. (38)] where
Tk = I − δkΠk − γGkAk, gk = γGkbk.

The first order approximations of Tk and gk are

Tk = T + δkD +O
(

δk(Πk −ΠN(A)) + δ2k + ‖Ek‖
)

, gk = g + δkd+O(‖Ek‖),

[cf. Eq. (39)] where
D = −ΠN(A), d = 0.

By applying Prop. 6, we have the following convergence result for iteration (50).

Proposition 8 Let Assumptions 1, 2, and 3 hold. Let {δk} satisfy the assumptions of Prop. 5, and let
Πk converge to ΠN(A) with probability 1. Then for any γ within a sufficiently small interval (0, γ̄] and
all initial iterates x0, the sequence {xk} generated by iteration (50) converges with probability 1 to the
solution x∗ of Ax = b that has minimal Euclidean norm.

Proof. Let U, V,N,H be the matrices used to construct the decomposition of I − γGA in Prop. 2, and let P
and S be the transformation matrices used in the proof of Lemma 3 [cf. Eq. (32)]. Since U is an orthonormal
basis of N(A), we have ΠN(A) = UU ′ so that

P−1ΠN(A)P =

([

I 0
0 S−1

] [

I −NH−1

0 I

]

[U V ]′
)

UU ′

(

[U V ]

[

I NH−1

0 I

] [

I 0
0 S

])

=

[

I 0
0 0

]

.

By using the line of analysis of Lemma 3, we obtain

T + δkD = I − γGA− δkΠN(A)
P∼
[

I 0

0 I − γH̃

]

− δk

[

I 0
0 0

]

=

[

(1− δk)I 0

0 I − γH̃

]

,

where H̃ = S−1HS ≻ 0 [cf. Eq. (31)]. Thus by using the matrix norm ‖ · ‖P we have for all k

‖T + δkD‖P = ‖I − γGA− δkΠN(A)‖P ≤ 1− δk,

and for some c > 0 and all k sufficiently large,

‖Tk‖P ≤ ‖T + δkD‖P +O((Πk −ΠN(A))δk + δ2k + ‖Ek‖) ≤ 1− cδk.
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Therefore the assumptions of Prop. 6 are satisfied, implying that the sequence {xk} converges to the unique
solution of Eq. (41) or Eq. (44) with probability 1.

Finally, let us solve for the limit point of {xk}. We apply the definition of P given by Eq. (32), D =
−ΠN(A) = −UU ′ and d = 0 to Eq. (44) [note that Q̄ = I since P−1TP is already nullspace-decomposed].
This yields

0 =

[

I 0
0 0

]([

I 0
0 S−1

] [

I −NH−1

0 I

]

[U V ]′
)

(−UU ′x) , Ax = b,

or equivalently
U ′x = 0, V ′x = V ′x∗.

We see that the unique solution to the above system is the minimal Euclidean norm solution. �

4.3.3 A Stabilization Scheme for the Proximal Iteration

Assume that A � 0. When simulation is used, neither the iterate sequence {xk} nor the residual sequence
{Axk − b} generated by the natural analog of the proximal iteration

xk+1 = xk − (Ak + βI)−1 (Akxk − bk) , (51)

necessarily converge (for a divergent example we refer to [WaB11]). Moreover the sequence {xk} generated
by the proximal iteration applied to the system A′Σ−1Ax = A′Σ−1b, i.e.

xk+1 = xk − (A′
kΣ

−1Ak + βI)−1A′
kΣ

−1(Akxk − bk),

also need not converge (see Example 6 in Section 6; on the other hand it is shown in [WaB11] that the residual
sequence generated by this iteration does converge to 0). This is remarkable since proximal iterations are
used widely for regularization of singular systems.

We may stabilize the proximal iteration (51) by shifting the eigenvalues of I − (Ak + βI)−1Ak by −δk,
as discussed earlier in Section 4.1. However, for the special case of the proximal iteration we may consider
an alternative scheme, which shifts instead the eigenvalues of the positive semidefinite matrix A into the
positive half-plane by δk. It has the form

xk+1 = xk − (Ak + δkI + βI)−1
(

(Ak + δkI)xk − bk
)

. (52)

In this way, we still have Ak + δkI
a.s.−→ A, and assuming that δk ↓ 0 at a rate sufficiently slow, we will show

that the sequence of iterates {xk} converges with probability 1. Iteration (52) can be written as

xk+1 = Tkxk + gk,

where by using the identity I − (Ak + δkI + βI)
−1

(Ak + δkI) = β (Ak + δkI + βI)
−1

, we have

Tk = β (Ak + δkI + βI)
−1

, gk = (Ak + δkI + βI)
−1

bk.

The first order approximations of Tk and gk are Tk ≈ T + δkD and gk ≈ g+ δkd as given by Eq. (39), where
we can verify that2

D = −β(A+ βI)−2, d = −(A+ βI)−2b. (53)

2To see this, note that

I − Tk = (Ak + δkI)(Ak + δkI + βI)−1 =
1

β
(Ak + δkI)Tk =

1

β
A(T + δkD) +

1

β
δk(T + δkD) + O(δ2

k
+ ‖Ek‖),

and also note that
I − Tk = I − T − δkD + O(δ2

k
+ ‖Ek‖).

By combining these two relations, we obtain
δk

β
AD +

δk

β
T = −δkD.

Thus the expression for D is
D = −(βI +A)−1T = −β(A+ βI)−2,

where we used T = β(A+ βI)−1. The expression for d can be obtained similarly.
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We will apply Prop. 6 and show that iteration (52) converges. Moreover, we will show that the limit point,
or the unique solution of the system (41), is the solution x∗ with minimum Euclidean norm.

Proposition 9 Let Assumptions 2 and 3 hold, and assume that A � 0, β > 0. Let {δk} satisfy the
assumptions of Prop. 5. Then for all initial iterates x0, the sequence {xk} generated by iteration (52)
converges with probability 1 to the solution x∗ of Ax = b with minimum Euclidean norm.

Proof. Since A � 0, the proximal iteration with G = (A + βI)−1 and β > 0 is convergent, implying
that Assumption 1 is satisfied (this is the well-known convergence results for weakly monotone variational
inequalities; see [Mar70], [Roc76]). We denote

Gk = (Ak + δkI + βI)−1,

[cf. Eq. (52)], and we will show that the condition (40) of Prop. 6 is satisfied with P = I, i.e., there exists
c > 0 such that

‖I −Gk(Ak + δkI)‖ ≤ 1− cδk,

for k sufficiently large with probability 1. Then the convergence will follow from Prop. 6.
Indeed, we have

I −Gk(Ak + δkI) = β(Ak + δkI + βI)−1 = β(A+ δkI + βI)−1 + Ẽk, (54)

where we define
Ẽk = β(Ak + δkI + βI)−1 − β(A+ δkI + βI)−1.

First we consider β(A + δkI + βI)−1. We have

‖β(A+ δkI + βI)−1‖ = β
∥

∥

∥
((A′ + δkI + βI)(A+ δkI + βI))

−1
∥

∥

∥

1/2

= β
∥

∥

∥

(

A′A+ (δk + β)(A′ +A) + (δk + β)2I
)−1

∥

∥

∥

1/2

≤ β
∥

∥

∥

(

(δk + β)2I
)−1

∥

∥

∥

1/2

=
β

δk + β
,

where the inequality uses the symmetry and positive semidefiniteness of A′A + (δk + β)(A′ + A), and the
fact ‖(M1 +M2)

−1‖ ≤ ‖M−1
1 ‖ if both M1 and M2 are symmetric positive semidefinite matrices.3 Letting

c1 ∈
(

0, 1
δ0+β

)

we have for all k that

∥

∥β(A+ δkI + βI)−1
∥

∥ ≤ β

δk + β
< 1− c1δk. (55)

Second we consider the matrix Ẽk. Let f : ℜn×n 7→ ℜn×n be the function defined by f(Ã) = (Ã + βI)−1,
which is Lipschitz continuous within a neighborhood of Ã = A [since A + βI is invertible]. Note that

Ak + δkI
a.s.−→ A and A+ δkI

a.s.−→ A, so we have

‖Ẽk‖ = ‖f(Ak + δk)− f(A+ δkI)‖ = O(‖Ak −A‖) = O(‖Ek‖), w.p.1. (56)

By combining Eqs. (54)-(56), we obtain
∥

∥I −Gk(Ak + δkI)
∥

∥ ≤
∥

∥β(A + δkI + βI)−1
∥

∥+O(‖Ek‖) ≤ 1− c1δk +O(‖Ek‖).
3 To prove this, we note that x′(M1+M2)x ≥ x′M1x for any none-zero x ∈ ℜn and symmetric positive semidefinite matrices

M1 and M2, so that ‖(M1 +M2)−1‖ ≤ ‖M−1

1
‖.
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Since O(‖Ek‖)/δk a.s.−→ 0 by Lemma 2, there exists c > 0 such that
∥

∥I −Gk(Ak + δkI)
∥

∥ ≤ 1− cδk,

for all k sufficiently large with probability 1. Therefore we may apply Prop. 6 with P = I and obtain that
xk converges with probability 1 to the unique solution of Eq. (41).

Finally, let us verify that the solution to Eq. (41) is the solution x∗ with minimum Euclidean norm. By
using Eq. (53), we write the equivalent condition (44) [note that P = I, and Q̄ = Q since Q transforms
P−1TP = T into its nullspace decomposition] as

[

I 0
0 0

]

Q′(A+ βI)−2(βx+ b) = 0, Ax = b.

We will now verify that the above condition is satisfied with x∗. The equation Ax∗ = b clearly holds, so we
will focus on the first part of the condition. By using the fact b = Ax∗, we rewrite the matrix involved as

0 =

[

I 0
0 0

]

Q′(A+ βI)−2(βx∗ + b)

=

[

I 0
0 0

]

Q′(A+ βI)−1(β(A+ βI)−1x∗ + (A+ βI)−1Ax∗)

=

[

I 0
0 0

]

Q′(A+ βI)−1x∗

=

[

I 0
0 0

]

Q′(A+ βI)−1QQ′x∗,

(57)

where the third equality uses the fact β(A+ βI)−1 + (A+ βI)−1A = I and the fourth equality uses the fact
QQ′ = I. From the nullspace decomposition of I − γGA given in Prop. 2, we have

βQ′(A+ βI)−1Q = Q′(I −GA)Q =

[

I −N
0 I −H

]

, Q′x∗ = [U V ]′x∗ =

[

0
V ′x∗

]

.

By using the fact ‖β(A+ βI)−1‖ ≤ 1 and using an analysis similar to that of Lemma 6, we obtain that the
above decomposition is block diagonal, i.e., N = 0. By combining the above relations with Eq. (57), we
obtain

[

I 0
0 0

]

Q′(A+ βI)−1QQ′x∗ =

[

I 0
0 0

] [

I −0
0 I −H

] [

0 · V ′x∗

V ′x∗

]

= 0.

Therefore the system (41) is satisfied with the vector x∗, so x∗ is the limit point. �

5 Stabilization Schemes for Nearly Singular Systems

In this section we discuss the application of stabilization schemes to problems that are nearly singular (i.e.,
nonsingular but ill-conditioned, having smallest singular value that is close to 0). It is well known that
such problems are highly susceptible to computational error, so it is not surprising that their solution by
simulation can be almost as difficult as for their singular counterparts. This motivates the use of stabilization
to solve systems that are nonsingular, but nearly singular. For some insight into this idea, we consider the
following one-dimensional example and use a constant scalar δ > 0 instead of the decreasing sequence {δk}.

Example 3 (A One-Dimensional Problem with Constant δ) Consider the system x = αx+ b where
α ∈ (0, 1) is a scalar and b is a positive scalar. Suppose that we estimate α with αk based on k i.i.d. samples
with mean α and variance σ2, and estimate b with bk based on k i.i.d. samples with mean b and variance
σ̄2. Consider the stabilized iteration

xk+1 = (1− δ)(αkxk + bk),
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Figure 2: Comparison of stabilized iterations with δ = 0, δ = 0.01, and δ = 0.1 in Example 3. The figure
plots the error Lk = E

[

log |xk − x(δ)|2
]

, which is relative to the biased limit.

where a constant positive scalar δ is used instead of δk [compare with Eq. (49) in Section 4.3.1]. The iteration
converges to the biased limit

x(δ) =
(1− δ)b

1− (1− δ)α
.

We let α = 0.999, b = 1, σ2 = 0.01, σ̄2 = 1, and we consider three cases: δ = 0, δ = 0.01, and δ = 0.1. For
each case, we start with x(0) = x(δ) + 1, generate 100 independent trajectories {αk, bk, xk}, and plot the
average logarithm of squared errors |xk − x(δ)|2 in Figure 2.

According to Figure 2, in all three cases the errors increase until k reaches a threshold, and then decrease
to −∞ eventually. However, the errors of the iteration with δ = 0 increase by roughly four orders of
magnitude until k reaches the order of 104. By contrast, the iterations with δ = 0.01 and δ = 0.1 have much
smaller peak errors, and their thresholds of k are of the order of 102 and 10 respectively.

For a simplified analysis that is qualitatively consistent with the results of Example 3, we rewrite the
iteration as

xk+1 − x(δ) = (1− δ)αk

(

xk − x(δ)
)

+ (1− δ)
(

(αk − α)x(δ) + bk − b
)

,

where (1 − δ)αk
a.s.−→ (1 − δ)α < 1 and (1 − δ)

(

(αk − α)x(δ) + bk − b
) a.s.−→ 0. Intuitively, the multiplicative

term (1 − δ)αk has a more significant effect than the additive error does. To emphasize its role, we assume
that (αk − α)x(δ) + bk − b is negligibly small, which is true if the initial condition |x0 − x(δ)| is relatively
large. Then the iteration becomes approximately

xk+1 − x(δ) ≈ (1− δ)αk

(

xk − x(δ)
)

.

Defining

Lk = E
[

log (xk − x(δ))
2
]

,

we obtain
Lk+1 ≈ Lk + 2 log(1− δ) +E

[

log(α2
k)
]

≈ Lk − 2δ +E
[

log(α2
k)
]

. (58)

Note that by a first-order Taylor expansion we have log(1− δ) ≈ −δ since δ is close to 0.
We now analyze E

[

log(α2
k)
]

. Note that α2
k is a random variable with expectation satisfying

E
[

α2
k

]

= α2 +
σ2

k
> 1,
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when k is small and σ2 is large. In many simulation contexts and under the same assumptions we often have

E
[

log(α2
k)
]

≈ E
[

α2
k

]

− 1 > 0.

Indeed, let us suppose that αk is a Gaussian random variable with mean α and variance σ2/k. By using a
result for the expected logarithm of chi-squares (Theorem 3 of [Mos07]), we have

E
[

log(α2
k)
]

= log(α2) +

∫ ∞

kα2

σ2

e−t

t
dt.

When α ≈ 1 and σ2/k is sufficiently large, we have the approximations

log(α2) ≈ α2 − 1,

∫ ∞

kα2

σ2

e−t

t
dt ≈ Θ

(

1

k

)

,

so that

E
[

log(α2
k)
]

≈ α2 − 1 + Θ

(

1

k

)

> 0.

In this case, Eq. (58) becomes

Lk+1 ≈ Lk +Θ

(

1

k

)

− 2δ + α2 − 1.

Assume that σ2 is sufficiently large. We analyze the behavior of Lk for two different values of k:

(a) When k is small, the constant −2δ + α2 − 1 is negligible compared to Θ

(

1

k

)

. Then we have

Lk+1 ≈ Lk +Θ

(

1

k

)

≈ L0 +

k−1
∑

t=1

Θ

(

1

t

)

≈ Θ(log k).

(b) When k is large, the error of the iteration becomes decreasing when

k ≥ Θ

(

1

1 + 2δ − α2

)

. (59)

As k → ∞, we have Lk → −∞ and xk
a.s.−→ x(δ).

Comparing the case where δ = 0 and the case where δ ≫ 1− α2 ≈ 2(1− α) > 0, we have

1

1 + 2δ − α2
≪ 1

1− α2
,

This suggests that a small δ > 0 greatly reduces the number of samples needed for the iteration error to
decrease, and stabilizes the dramatic rise of the iteration error at the early stage. Our analysis is consistent
with the performance of the stabilized iteration as illustrated in Figure 2, and the orders of estimated
thresholds of k as given by Eq. (59) are consistent with those illustrated in Figure 2.

One point missing from the above analysis relates to the bias. In the preceding one-dimensional example,
the bias |x∗ − x(δ)| can be very large. In particular, we have

x∗ = 1000, x(0.01) ≈ 100, x(0.1) ≈ 10.

To eliminate the bias we must take δ ↓ 0, and the preceding analysis does not provide any conclusive
information about this case. We note, however, that when δ is kept constant, there may be substantial
benefit in the use of stabilization in multi-dimensional problems, as we will demonstrate in the next example.
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Example 4 (A Multi-Dimensional Problem with Constant δ) Consider the stabilized iteration for
an n× n system:

[

xk+1(1)
xk+1

]

=

[

(1− δ)αk 0

ek A

] [

xk(1)
xk

]

+

[

bk
b

]

,

where αk is a scalar that converges to α ∈ (0, 1) with α ≈ 1, A is an (n− 1)× (n− 1) matrix with spectral
radius strictly smaller than 1 (but not close to 1), xk(1) is the first component of the iterate xk ∈ ℜn,
x̄k ∈ ℜn−1 is a subvector consisting of the remaining components of xk, bk ∈ ℜ is an estimate of b ∈ ℜ, b̄ is
a vector in ℜn−1, and ek ∈ ℜn−1 is the simulation error.

To simplify the analysis, we have only applied stabilization to xk(1) [this is essentially the selective
eigenvalue shifting scheme, cf. Eq. (50)], and have assumed that the vector 0 and matrix Ā in the iteration
does not involve simulation error. It can be seen that the component xk(1) evolves according to the same
iteration as in the previous one-dimensional example. We will focus on the remaining components xk, which
evolve according to

xk+1 = Axk + ekxk(1) + b.

Let x∗ =
(

A
)−1

b be the corresponding subvector of the fixed point x∗. Then we have

xk+1 − x∗ = A(xk − x∗) + ekxk(1).

Note that since A has a spectral radius smaller than 1, the above iteration error “tracks” the slow driving

term
(

I−A
)−1

ekxk(1). Thus xk(1) may “pollute” x̄k with its substantial simulation error if no stabilization
is used. As a result when k is small, ‖xk − x∗‖ may increase very fast because |ekxk(1)| increases fast.
However, if we choose δ > 0, by stabilizing xk(1), we will also make ekxk(1) converge to 0 at a faster rate.

Let us test the above analysis on a 2 × 2 example. We let α = 0.999, A = 0.5, b = b = 1. We add
noise to each entry of the matrix and vector involved, which is the empirical mean of i.i.d. Gaussian random
variables with mean 0 and variance 0.01. We again consider three cases: δ = 0, δ = 0.01 and δ = 0.1. In
each case, we start with x0 = x∗ + [10 10]′ and generate 100 independent trajectories. In Figure 3, we plot
the average logarithm of the iterate errors ‖xk − x∗‖, and compare it with the average logarithm of residual
errors.

According to Figure 3, the residual is less susceptible to both the simulation error and the stabilization
bias. Although the iterate xk may have large bias (when δ > 0) or large noise (when δ ≈ 0), the residual
performs well with a reasonable δ > 0: the residual has a small bias and converges fast even for small k. We
have also tested the stabilization scheme that applies (1− δ) to the entire iteration instead of only to xk(1),
and obtained results almost identical with the ones of Figure 3. This observation suggests that the (1 − δ)
stabilization scheme has minor effects on the “well-conditioned” components.

The preceding two examples have illustrated a key beneficial effect of stabilization: in a multi-dimensional
ill-conditioned system, it reduces the effects of the noisy “poorly-conditioned” components on the relatively
“well-conditioned” components, yielding a good performance in terms of the residual error. If we replace
δ > 0 with a sequence {δk} that decreases to 0 at an appropriate rate, we achieve both a stabilization effect
and asymptotic unbiasedness. Additional computational examples will be presented in the next section to
justify the use of stabilization in nearly singular problems.

6 Computational Illustrations

To illustrate the nature of our convergence results, we will use a 2 × 2 problem for computational experi-
mentation, where

A =

[

1
2 0
0 0

]

, b =

[

1
0

]

, X∗ = {x | Ax = b} =

[

2
0

]

+R

{[

0
1

]}

,

and we will artificially add stochastic error to the entries of A and b. We will test each of several algorithms
with 100 randomly generated iteration trajectories and we will plot, as a function of k, the corresponding
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Figure 3: Comparison of stabilized iterations with δ = 0, δ = 0.01, and δ = 0.1 in Example 4. The left figure
plots the average logarithm of residual errors, and the right figure plots the average logarithm of iterate
errors. Comparing the left and right, we observe that although the iterates may either be very noisy or be
severely biased, the residual errors can be stabilized to converge fast with a small bias.

“95% confidence interval” of various quantities of interest, which is the range of the 95 values that are in the
“middle” of all 100 values.

Example 5 (Stabilized Iteration vs. Unstabilized Iteration for a Singular System) LetAk and bk
be given by

Ak = A+
1

k

k
∑

t=1

Wt, bk = b+
1

k

k
∑

t=1

wt,

where the entries of Wt and wt are i.i.d. Gaussian random variables with mean 0 and variance 0.1. We
generate {xk} with the iteration

xk+1 = (1− δk)xk − γGk(Akxk − bk),

where γ = 1, Gk = I, and we consider the two cases (i) δk = k−1/3, and (ii) δk = 0. We start with
x0 = [10, 10]′, and we generate 100 independent trajectories of {Ak, bk, xk}.

In Figure 4 we plot the 95% confidence intervals of the spectral radius of the iteration matrix (1− δk)I −
GkAk, and the sequence of components {yk} and {zk} respectively. The left side of Figure 4(i) shows that
the spectral radius converges to 1, while staying below 1 for k sufficiently large. The right side of Figure 4(i)
shows that both {zk} and {yk} are convergent, implying that {xk} converges to a solution of Ax = b. For
comparison, Figure 4(ii) shows that the unstabilized iteration has spectral radius that is frequently above 1,
while {zk} and {yk} both diverge, implying that {Axk − b} and {xk} both diverge.

Example 6 (Comparison of Stabilization Schemes for Proximal Iterations) Let Ak and bk be giv-
en as in Example 5, and consider the following cases of the proximal iteration:

(i) xk+1 = (1− δk)xk − (Ak + I)−1(Akxk − bk) with δk = k−1/3.

(ii) xk+1 = xk − (Ãk + I)−1(Ãkxk − bk) with Ãk = Ak + δkI and δk = k−1/3.

(iii) xk+1 = xk − (A′
kAk + I)−1A′

k(Akxk − bk).
4

4 This is the proximal algorithm applied to the positive semidefinite symmetric system A′Ax = A′b.
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Figure 4: Convergence of stabilized iteration with δk = k−1/3 in Example 5 [figure (i)], compared with the
unstabilized iteration with δk = 0 [figure (ii)]. The spectral radius of the stabilized iteration converges to 1
from below, and the iterate xk = x∗ + Uyk + V zk converges to a solution of Ax = b. For the unstabilized
iteration, the spectral radius converges to 1 but crosses frequently above 1, and both {yk} and {zk} diverge,
implying that the residual and the iterate sequences both diverge.
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For each algorithm, we start with x0 = [10, 10]′, and we generate 100 independent trajectories of {Ak, bk, xk}.
The trajectories of “95% confidence intervals” of {zk} and {yk} are plotted in Figure 5.

According to Figure 5, the stabilized versions of proximal iteration [cases (i) and (ii)] are convergent and
are subject to a decreasing bias. Comparing algorithms (i) and (ii), we notice that (ii) is subject to less bias
in zk, thus also in its residual. A possible reason is that adding δkI to A has a reduced biasing effect on
V ′xk, relative to adding −δkI to the iteration matrix I − γGA. This implies that the stabilization approach
used in (ii) is preferable to the one used in (i) for this example.

In algorithm (iii), where quadratic regularization without stabilization is used, the component zk and
thus also the residual seem to be unbiased, but are subject to larger variance. Most importantly, the sequence
{yk} diverges. This is an example of a stochastic iterative method, which generates iterates that diverge and
residuals that converge to 0.

In the next two examples, we test numerically the stabilization scheme in nearly singular 2× 2 systems.
The first example involves a diagonal system with a diagonal component particularly small. The second
example involves a rotation matrix with an added small multiple of the identity such that it “nearly violates”
Assumption 1.

Example 7 (Stabilized Iteration for a Nearly Singular System I) Let Ak and bk be given by

Ak =

[

0.5 0
0 0.01

]

+
1

k

k
∑

t=1

Wt, bk =

[

0
0

]

+
1

k

k
∑

t=1

wt,

where the entries of Wt and wt are i.i.d. Gaussian random variables with mean 0 and variance 0.1. Let {xk}
be generated by

xk+1 = (1− δk)xk − γGk(Akxk − bk),

with γ = 1, Gk = I and consider two cases: (i) δk = k−1/3; (ii) δk = 0. We start with x0 = [10, 10]′, and we
generate 100 independent trajectories of {Ak, bk, xk}. The trajectories of {xk(1)} and {xk(2)} are plotted
in Figure 6.

According to Figure 6, both iterations (i) and (ii) converge eventually to the unique solution x∗ =
A−1b. We notice a threshold effect in the trajectories of iteration (ii) with δk = 0: the iterates are subject
to substantial simulation error when k is small, and behave well when k is above a certain value. This
phenomenon can be explained by using the analysis of Section 5. By contrast, iteration (i) with δk = k−1/3

has moderate variance for all values of k.

Example 8 (Stabilized Iteration for a Nearly Singular System II) Let Ak and bk be given by

Ak =

[

10−3 1
−1 10−3

]

+
1

k

k
∑

t=1

Wt, bk =

[

0
0

]

+
1

k

k
∑

t=1

wt,

where the entries of Wt and wt are i.i.d. Gaussian random variables with mean 0 and variance 0.1. Let {xk}
be generated by

xk+1 = (1− δk)xk − γGk(Akxk − bk),

with γ = 1, and consider three cases: (i) δk = k−1/3 and Gk = (Ak + I)−1; (ii) δk = 0 and Gk = (Ak + I)−1;
(iii) δk = 0 and Gk = (A′

kAk + I)−1A′
k [this is the quadratic regularization algorithm as in Example 6(iii)].

We start with x0 = [10, 10]′, and we generate 100 independent trajectories of {Ak, bk, xk}. The iterate errors
are plotted in Figure 7. According to Figure 7, all three iterations are convergent, since the problem is
nonsingular, but the stabilized iteration clearly has the smallest variance and bias.
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Figure 5: Comparison of the stabilized proximal iterations in Example 6. The left figure plots {zk}, indicating
that all three iterations generate residuals converging to 0. The right figure plots {yk}, indicating that both
versions of stabilized proximal iteration have convergent iterates, while the quadratic regularized iteration
has divergent iterates.

Figure 6: Stabilized iteration for the nearly singular system of Example 7, compared with the unstabilized
iteration. The left and right figures plot trajectories of xk(1) and xk(2) respectively. We notice that xk(2)
is very noisy without stabilization, and cannot be estimated accurately when k is small due to the small
second diagonal component of the matrix. However, the iterates xk(1) obtained using stabilization is less
affected by the simulation noise, as opposed to the case without using stabilization.
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Figure 7: Stabilized iteration for the nearly singular system of Example 8, compared with the unstabilized
iteration and quadratic regularization.

7 Concluding Remarks

In this paper we have considered the convergence of iterative methods for solving singular linear systems
Ax = b. We have constructed a framework for analysis of deterministic iterative methods, based on an
iteration decomposition along the nullspace of A and its orthogonal subspace, and provided necessary and
sufficient conditions for convergence. For the natural stochastic extensions, the residual sequence or the
iterate sequence, or both, may not converge due to the fact that stochastic error can accumulate in the
nullspace of A. We have developed new algorithmic modifications that stabilize the methods in the presence
of stochastic noise, which ensure that the stochastic iteration converges to a specific solution of Ax = b.
Besides the case where A is singular, our algorithms seem promising for problems where A is nonsingular
but highly ill-conditioned. This seems to be an interesting area for further research.
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