
LEARNING ALGORITHMS FOR MARKOV DECISION PROCESSES
WITH AVERAGE COST∗

J. ABOUNADI† , D. BERTSEKAS† , AND V. S. BORKAR‡

SIAM J. CONTROL OPTIM. c© 2001 Society for Industrial and Applied Mathematics
Vol. 40, No. 3, pp. 681–698

Abstract. This paper gives the first rigorous convergence analysis of analogues of Watkins’s
Q-learning algorithm, applied to average cost control of finite-state Markov chains. We discuss two
algorithms which may be viewed as stochastic approximation counterparts of two existing algorithms
for recursively computing the value function of the average cost problem—the traditional relative
value iteration (RVI) algorithm and a recent algorithm of Bertsekas based on the stochastic shortest
path (SSP) formulation of the problem. Both synchronous and asynchronous implementations are
considered and analyzed using the ODE method. This involves establishing asymptotic stability of
associated ODE limits. The SSP algorithm also uses ideas from two-time-scale stochastic approxi-
mation.

Key words. simulation-based algorithms, Q-learning, controlled Markov chains, average cost
control, stochastic approximation, dynamic programming

AMS subject classification. 93E20

PII. S0363012999361974

1. Introduction. Q-learning algorithms are simulation-based reinforcement learn-
ing algorithms for learning the value function arising in the dynamic programming
approach to Markov decision processes. They were first introduced for the discounted
cost problem by Watkins [27] and analyzed partially in Watkins [27] and then in
Watkins and Dayan [28]. A more comprehensive analysis was given by Tsitsiklis [25]
(also reproduced in Bertsekas and Tsitsiklis [7]), which made the connection between
Q-learning and stochastic approximation. (See also Jaakola, Jordan, and Singh [15]
for a parallel treatment, which made the connection between TD(λ) and stochastic
approximation.) In particular, Q-learning algorithms for discounted cost problems
or stochastic shortest path (SSP) problems were viewed as stochastic approximation
variants of well-known value iteration algorithms in dynamic programming.

These techniques, however, do not extend automatically to the average cost prob-
lem, which is harder to analyze even when the model (i.e., controlled transition prob-
abilities) is readily available. Not surprisingly, the corresponding developments for
the average cost problem have been slower. One of the first was the “R-learning”
algorithm proposed by Schwartz [22]. This is a two-time-scale algorithm that carries
out a value iteration-type step to update values of state-action pairs and updates con-
currently an estimate of the optimal average cost using the immediate reward along
with an adjustment factor. The idea is to obtain a good estimate for the average cost
while searching for the optimal policy using a value iteration-type update. Although
Schwartz presents some intuitive arguments to justify his algorithm along with some

∗Received by the editors September 29, 1999; accepted for publication (in revised form) March
14, 2001; published electronically September 7, 2001.

http://www.siam.org/journals/sicon/40-3/36197.html
†Laboratory for Information and Decision Systems, M.I.T., 77 Massachusetts Avenue, Cambridge,

MA 02139 (jinane@mit.edu, dimitrib@mit.edu). The work of these authors was supported by NSF
under grant 9600494-DMI and grant ACI-9873339.

‡School of Technology and Computer Science, Tata Institute of Fundamental Research, Homi
Bhabha Road, Mumbai 400005, India (borkar@tifr.res.in). The work of this author was supported in
part by the US Army grant PAAL 03-92-G-0115 at M.I.T., in part by the Homi Bhabha Fellowship,
and by the Government of India, Department of Science and Technology grant No. III 5(12)/96-ET.

681

682 J. ABOUNADI, D. BERTSEKAS, AND V. S. BORKAR

numerical results, he does not provide any convergence analysis. Singh [23] presents
two Q-learning algorithms for the average cost problem: one is a slight modification
of Schwartz’s algorithm which updates the estimate of optimal cost at every step.
The other one updates the estimate of average cost in a fashion similar to Jalali and
Ferguson’s deterministic asynchronous algorithm for average cost problems [16]. He
provides simulation results for medium-sized problems but no convergence analysis.
Finally, Mahadevan [20] discusses average cost problems and the need to consider the
average cost criterion, with an emphasis on the difference between gain-optimal and
bias-optimal policies. He presents extensive numerical experiments, highlighting the
problems the algorithm can run into. He does not, however, provide any convergence
analysis. It is also noteworthy that none of these algorithms use the relative value
iteration (RVI) algorithm for average cost problems (see, e.g., [4], [21], [24]) as a basis
for the learning algorithms because the latter may not converge asynchronously, as
shown in [3]. Nevertheless, a diminishing stepsize does work around this problem, as
we show in this paper.

We propose and give for the first time a complete convergence analysis of two Q-
learning algorithms for average cost. The first is a stochastic approximation analogue
of (RVI). The second is a stochastic approximation analogue of a recent value iteration
algorithm of Bertsekas based on the SSP formulation of the average cost problem. We
consider both synchronous and asynchronous implementations. The analysis relies on
the ODE method, based on establishing first the boundedness of iterates and then the
asymptotic stability of limiting ODEs. The rest then follows as in the Kushner–Clark
approach [18] (see also Kushner and Yin [19]) in the synchronous case and by Borkar’s
theorem [10] in the asynchronous case.

The paper is organized as follows. The next section describes the two algorithms
in both synchronous and asynchronous modes and states the assumptions required in
each case. Section 3 provides the convergence analysis of the RVI-based Q-learning
algorithm. Section 4 does likewise for the SSP Q-learning algorithm. Section 5 con-
cludes with some general remarks. An Appendix collects some key facts from the
literature that we used here.

2. Average cost Q-learning algorithms.

2.1. Preliminaries. We consider a controlled Markov chain {Xn} on a finite
state space S = {1, 2, . . . , d} with a finite action space A = {a1, . . . , ar} and transition
probabilities p(i, a, j) = the probability of transition from i to j under action a for
i, j ∈ S, a ∈ A. Associated with this transition is a “cost” g(i, a, j) and the aim is to
choose actions {Zn} nonanticipatively (i.e., conditionally independent of the future
state trajectory given past states and actions) so as to minimize the “average cost”

lim sup
n→∞

1

n

n−1∑
m=0

E[g(Xm, Zm, Xm+1)].(2.1)

This problem is extensively treated in [4], [21], and [24] among others, to which we
refer the reader for details. We recall here the minimal necessary background material
required to motivate our algorithms.

We shall be interested in “stationary policies” wherein Zn = v(Xn) for a map
v : S → A. It is known that an optimal one exists under the following “unichain”
condition which we assume throughout.

Assumption 2.1. Under any stationary policy, the chain has a single communi-
cating class and a common state (say, s) that is recurrent.

LEARNING ALGORITHMS FOR MARKOV DECISION PROCESSES 683

In particular, this implies that “limsup” in (2.1) is a limit under any stationary
policy. It is known that one can then associate a “value function” V : S → R with
the problem, given as the solution to the dynamic programming equations

V (i) = min
a


∑

j

p(i, a, j)(g(i, a, j) + V (j))− β


 , i ∈ S,(2.2)

where β is the optimal cost. V (·) is the unique solution to (2.2) modulo an additive
constant. Let Q(i, a) denote the expression inside the square brackets on the right-
hand-side (r.h.s.) of (2.2). Equation (2.2) is useful because of the following fact: A
stationary policy v : S → A is optimal if and only if v(i) ∈ Argmin (Q(i, ·)) for all i
that are recurrent under v. Q(·, ·) is called the “Q-factor,” also defined uniquely only
up to an additive constant. Thus V (i) = minaQ(i, a) for all i, and Q(·, ·) satisfies

Q(i, a) =
∑
j

p(i, a, j)

(
g(i, a, j) + min

b
Q(j, b)

)
− β, i ∈ S, a ∈ A.(2.3)

The aim of any Q-learning algorithm is to “learn” the Q-factors when p(·, ·, ·) is not
known, but one has access to a simulation device that can generate an independent S-
valued random variable (i.e., independent of other random variables that might have
been generated up to that point in time) ξia whose probability law is p(i, a, ·), i ∈
S, a ∈ A. Let ξ = [ξia].

2.2. RVI Q-learning. The RVI algorithm is given by (see, e.g., [4], [21], [24])

V n+1(i) = min
a


∑

j

p(i, a, j)(g(i, a, j) + V n(j))− V n(i0)


 , i ∈ S,(2.4)

where i0 ∈ S is an arbitrary but fixed state. This can be shown, under some additional
aperiodicity conditions (see [4, Chap. 4]), to converge to the unique V (·) that satisfies
(2.2) with V (i0) = β. The purpose of subtracting the scalar “offset” V n(i0) from
each component on the r.h.s. of (2.4) is to keep the iterations stable—recall that V (·)
is specified anyway only up to an additive constant. It turns out that V n(i0) → β.
However, V n(i0) is not the unique choice of an offset term that makes the algorithm
work. More generally, one can replace it by f(V) for an f : Rd → R satisfying suitable
hypotheses. (See below.)

Algorithm (2.4) suggests the “relative Q-factor iteration”

Qn+1(i, a) =
∑
j

p(i, α, j)

(
g(i, a, j) + min

b
Qn(j, b)

)
−Qn(i0, a0), i ∈ S, a ∈ A,

with i0 ∈ S, a0 ∈ A prescribed. The idea behind RVI Q-learning is to replace the
conditional average with respect to the transition probability p(i, a, ·) by an actual
evaluation at a random variable ξia with law p(i, a, ·) and then “see” the conditional
average by means of the well-known averaging effect of the stochastic approximation
algorithm. Thus the synchronous RVI Q-learning algorithm is

684 J. ABOUNADI, D. BERTSEKAS, AND V. S. BORKAR

Qn+1(i, a) = Qn(i, a) + γ(n)

(
g(i, a, ξnia) + min

b
Qn(ξnia, b)

−f(Qn)−Qn(i, a)

)
, i ∈ S, a ∈ A,(2.5)

where ξnia are independent with the law of ξnia being p(i, a, ·) for all n. {γ(k)} ∈ (0,∞)
is the usual diminishing stepsize schedule of stochastic approximation satisfying∑

k

γ(k) = ∞,
∑
k

γ2(k) < ∞.(2.6)

The function f : Rd×r → R satisfies the following assumption.
Assumption 2.2. f is Lipschitz, and, furthermore, for e equal to the constant

vector of all 1’s in Rd×r, f(e) = 1 and f(x+ ce) = f(x) + c for c ∈ R.
Examples are f(Q) = Q(i0, b0) for prescribed i0, b0, f(Q) = minuQ(i0, u) for

prescribed i0, f(Q) = 1
dr

∑
i,aQ(i, a), and so on.

For the asynchronous algorithm, we hypothesize a set-valued process {Y n} taking
values in the set of nonempty subsets of S ×A with the interpretation: Y n = {(i, a) :
(i, a)th component of Q was updated at time n}. (Thus Y n ≡ S×A is the synchronous
case.)

Remarks. As argued in [10], we may take Y n = {φn} for some φn ∈ S × A,
i.e., a singleton. This can be achieved by unfolding a single iteration that updates k
components into k iterations that update one component each. While this introduces
“delays” in the formulation of the algorithm below, that does not affect the results
of [10] that we use here. Alternatively, we may use the results of [17, section 4],
which work with the Y n’s directly. The only difference is that the resultant ODE is a
time-scaled version of the one arising in the former approach with a nonautonomous
time-scaling which, however, does not affect its qualitative behavior.

Define

ν(n, i, a) =
n∑

k=0

I{(i, a) ∈ Y k},

where I{. . .} is the indicator function. Thus ν(n, i, a) = the number of times Qm(i, a)
was updated up to time n.

The asynchronous RVI Q-learning algorithm then is

Qn+1(i, a) = Qn(i, a) + γ(ν(n, i, a))
(
g(i, a, ξnia) + min

u
Qn(ξnia, u)

−f(Qn)−Qn(i, a)
)
I{(i, a) ∈ Y n}(2.7)

for (i, a) ∈ S × A. For the asynchronous case, we need the following additional
assumptions.

Assumption 2.3. In addition to (2.6), {γ(n)} satisfy the following: If [. . .] stands
for “the integer part of . . .,” then for x ∈ (0, 1),

sup
k
γ([xk])/γ(k) < ∞,

and ∑[yk]
m=0 γ(m)∑k
m=0 γ(m)

→ 1 uniformly in y ∈ [x, 1].

LEARNING ALGORITHMS FOR MARKOV DECISION PROCESSES 685

Examples of stepsizes satisfying Assumption 2.3 are γ(n) = 1
n ,

1
n logn ,

logn
n , etc.,

for n ≥ 2.
Assumption 2.4. There exists ∆ > 0 such that

lim inf
n→∞

ν(n, i, a)

n+ 1
≥ ∆ a.s., (i, a) ∈ S ×A.

Furthermore, for all x > 0 and

N(n, x) = min

{
m ≥ n :

m∑
k=n

γ(k) ≥ x

}
,

the limit

limn→∞

∑ν(N(n,x),i,a)
k=ν(n,i,a) γ(k)∑ν(N(n,x),j,u)
k=ν(n,j,u) γ(k)

exists a.s. for all i, j, a, u.
That is, all components are updated comparably often in an evenly distributed

manner.

2.3. SSP Q-learning. SSP Q-learning is based on the observation that the
average cost under any stationary policy is simply the ratio of expected total cost and
expected time between two successive visits to the reference state s. This connection
was exploited by Bertsekas in [5] to give a new algorithm for computing V (·), which
we describe below.

Define a parametrized family of SSP problems parametrized by a scalar λ as
follows.

(i) The state space is S′ = S ∪ {s′}, where s′ is an artificially added terminal
state (i.e., zero-cost and absorbing).

(ii) The action set is A for all states.
(iii) The transition probabilities are

p′(i, a, j) =




p(i, a, j) if j �= s, s′,
0 if j = s,
p(i, a, s) if j = s′.

(iv) The costs are defined by

g′(i, a, j) =




g(i, a, j)− λ if j �= s, s′,
0 if j = s,
g(i, a, s)− λ if j = s′.

By Assumption 2.1, s′ is reached from every state with probability 1. Thus all
policies are proper (as defined in [4]). Let Vλ(·) denote the value function given as
the unique solution to the dynamic programming equations

Vλ(i) = min
a


 d∑
j=1

p(i, a, j)


g(i, a, j) +

∑
j �=s

p(i, a, j)Vλ(j)


− λ


 , 1 ≤ i ≤ d,

Vλ(s
′) = 0.

686 J. ABOUNADI, D. BERTSEKAS, AND V. S. BORKAR

For each fixed policy, the cost is linear in λ with negative slope. Thus Vλ(·), which by
standard dynamic programming arguments is the lower envelope thereof, is piecewise
linear with finitely many linear pieces and concave decreasing in λ for each component.
If λ = β, we “recover” (2.2), which can be shown to happen when Vλ(s) = 0. This
suggests the coupled iterations

V k+1(i) = min
a


 d∑
j=1

p(i, a, j)


g(i, a, j) +

∑
j �=s

p(i, a, j)V k(j)


− λk


 , i ∈ S,

λk+1 = λk + b(k)V k(s),

where {b(k)} ⊂ (0,∞) with
∑

k b(k) = ∞ and
∑

k b
2(k) < ∞. This is the algorithm

of [5], wherein the first “fast” iteration sees λk as quasi-static (b(k)’s are “small”)
and thus tracks Vλk(·), while the second “slow” iteration gradually guides λk to the
desired value.

This suggests the SSP Q-learning algorithm (synchronous) as
(2.8a)

Qn+1(i, a) = Qn(i, a)+γ(n)
[
(g(i, a, ξnia) + min

u
Qn(ξnia, u))I{ξnia �= s} − λn −Qn(i, a)

]
,

(2.8b) λn+1 = λn + b(n)min
u

Qn(s, u),

where b(n) = o(γ(n)). Unfortunately, it appears hard to ensure boundedness of {λn}.
So we propose replacing (2.8b) by

(2.8b′) λn+1 = Γ
(
λn + b(n)min

u
Qn(s, u)

)
,

where Γ(·) is the projection onto an interval [−K,K] with K chosen so that β ∈
(−K,K). (This assumes prior knowledge of a bound on β, but this can be obtained
from a bound on g(·, ·, ·).)

As in the case of RVI Q-learning, we impose Assumptions 2.3 and 2.4 for the
asynchronous SSP Q-learning, which is

Qn+1(i, a) = Qn(i, a) + γ(ν(n, i, a))
[(
g(i, a, ξnia) + min

u
Qn(ξnia, u)I{ξnia �= s}

)

(2.9a) −λn −Qn(i, a)
]
I{(i, a) ∈ Y n},

(2.9b) λn+1 = Γ
(
λn + b(n)min

u
Qn(s, u)

)
.

3. Convergence of RVI Q-learning.

3.1. ODE analysis. We can rewrite the synchronous RVI Q-learning algorithm
(2.5) as

Qn+1 = Qn + γ(n)(T (Qn)− f(Qn)e−Qn +Mn+1),(3.1)

where Qn stands for Qn(i, a), T : Rd×r → Rd×r is the map defined by

(TQ)(i, a) =
∑
j

p(i, a, j)
(
g(i, a, j) + min

u
Q(j, u)

)
,

LEARNING ALGORITHMS FOR MARKOV DECISION PROCESSES 687

and, for n ≥ 0,

Mn+1(i, a) = g(i, a, ξnia) + min
u

Qn(ξnia, u)− (TQn)(i, a).

Letting Fn = σ(Qm,Mm,m ≤ n), n ≥ 0, we note that, for all n,

E[Mn+1 | Fn] = 0,(3.2)

E[||Mn+1||2 | Fn] ≤ C1(1 + ||Qn||2)(3.3)

for a suitable constant C1 > 0.
Define T̂ : Rd×r → Rd×r, T ′ : Rd×r → Rd×r by

T̂ (Q) = T (Q)− βe,
T ′(Q) = T (Q)− f(Q)e = T̂ (Q) + (β − f(Q))e,

where, as before, e ∈ Rd×r is the constant vector of all 1’s.
Let ||x||∞ = maxi,a |xia|, ||x||s = maxi,a xia −mini,a xia for x ∈ Rd×r. These are,

respectively, the max-norm and the span seminorm, the latter having the property
that ||x||s = 0 if and only if x is a scalar multiple of e. The following “nonexpansivity”
properties are then easily verified:

||T (Q)− T (Q′)||∞ ≤ ||Q−Q′||∞,

and likewise for T̂ (·). Also,

||T (Q)− T (Q′)||s ≤ ||Q−Q′||s,

and likewise for T̂ (·), T ′(·). In fact, ||T (Q)||s = ||T ′(Q)||s = ||T̂ (Q)||s since ||e||s = 0.
Algorithm (3.1) is in the form of a standard stochastic approximation algorithm

with the martingale difference sequence {Mn+1} serving as the “noise.” The ODE
approach to analyzing the convergence of such algorithms (described in [2], [13], [18],
and [19], among others) is based on the stability of the associated ODE

Q̇(t) = T ′(Q(t))−Q(t).(3.4)

This subsection is devoted to studying the stability properties of this ODE. We
do so through a succession of lemmas. The analysis is inspired by a similar analysis
in [9] in the context of value iteration. (See also [17].)

We shall also consider the related ODE

Q̇(t) = T̂ (Q(t))−Q(t).(3.5)

Note that by the properties of T (·), f(·), both (3.4) and (3.5) have Lipschitz r.h.s.’s
and thus are well-posed.

The set G of equilibrium points of (3.5) is precisely the set of fixed points of T̂ (·),
i.e., the solutions of (2.3) which are unique up to an additive constant. Thus G = {Q :
Q = Q∗ + ce, c ∈ R}, where Q∗ is the solution to (2.3) satisfying f(Q∗) = β. (That
there will indeed be one such solution follows from the fact that f(x+ ce) = f(x) + c
for c ∈ R.)

The next lemma is a special case of Theorem 4.1 of [14] (see the appendix).

688 J. ABOUNADI, D. BERTSEKAS, AND V. S. BORKAR

Lemma 3.1. Let y(·) and z be a solution and an equilibrium point of (3.5),
respectively. Then ||y(t)− z||∞ is nonincreasing, and y(t) → y∗ for some equilibrium
point y∗ of (3.5) that may depend on y(0).

We use this to analyze (3.4). But first note the following.
Lemma 3.2. Equation (3.4) has a unique equilibrium point at Q∗.
Proof. Since f(Q∗) = β, it follows that T ′(Q∗) = T̂ (Q∗) = Q∗; thus Q∗ is an

equilibrium point for (3.4). Conversely, if T ′(Q) = Q, then Q = T̂ (Q) + (β − f(Q))e.
But the Bellman equation

Q = T̂ (Q) + ce

has a solution if and only if c = 0. (This can be deduced from the corresponding
statement for (2.2), which is well known, and the relation V (i) = minuQ(i, u) modulo
an additive constant.) Thus f(Q) = β, implying Q = Q∗.

Lemma 3.3. Let x(·), y(·) satisfy (3.4) and (3.5), respectively, with x(0) = y(0) =
x0. Then x(t) = y(t) + r(t)e, where r(·) satisfies the ODE

ṙ(t) = −r(t) + (β − f(y(t))).

Proof. By the variation of constants formula,

x(t) = x0e
−t +

∫ t

0

e−(t−s)T̂ (x(s))ds+

[∫ t

0

e−(t−s)(β − f(x(s)))ds

]
e,

y(t) = x0e
−t +

∫ t

0

e−(t−s)T̂ (y(s)).

Therefore, with T̂i(·) denoting the ith component of T̂ (·),

max
i

(xi(t)− yi(t)) ≤
∫ t

0

e−(t−s) max
i

(T̂i(x(s))− T̂i(y(s)))ds+

∫ t

0

e−(t−s)(β − f(x(s)))ds,

min
i
(xi(t)− yi(t)) ≥

∫ t

0

e−(t−s) min
i
(T̂i(x(s))− T̂i(y(s)))ds+

∫ t

0

e−(t−s)(β − f(x(s)))ds.

Subtracting, we have

||x(t)− y(t)||s ≤
∫ t

0

e−(t−s)||T̂ (x(s))− T̂ (y(s))||sds

≤
∫ t

0

e−(t−s)||x(s)− y(s)||sds.

By Gronwall’s inequality, ||x(t)−y(t)||s = 0 for all t ≥ 0. Since ||x||s = 0 if and only if
x = ce for some c ∈ R, we have x(t) = y(t) + r(t)e, t ≥ 0. Since x(0) = y(0), r(0) = 0.
Since

T̂ (x+ ce) = T̂ (x) + ce,
f(x+ ce) = f(x) + c,

for r ∈ R we have

ṙ(t)e = ẋ(t)− ẏ(t)
= (T̂ (x(t))− x(t) + β − f(x(t))e)− (T̂ (y(t))− y(t))
= (−r(t) + β − f(y(t)))e.

LEARNING ALGORITHMS FOR MARKOV DECISION PROCESSES 689

Theorem 3.4. Q∗ is the globally asymptotically stable equilibrium point for
(3.4).

Proof. By the variation of constants formula, in the foregoing,

r(t) =

∫ t

0

e−(t−s)(β − f(y(s)))ds.(3.6)

Let y(t) → y∗ ∈ G. Then r(t) → β − f(y∗) so that x(t) → y∗ + (β − f(y∗))e, which
must coincide with Q∗, since that is the only equilibrium point for (3.4). To claim
asymptotic stability, we also need to prove Liapunov stability. (That is, we need to
show that given any ε > 0, we can find a δ > 0 such that ‖x(0) −Q∗‖∞ < δ implies
‖x(t)−Q∗‖∞ < ε for t ≥ 0.) Now

||x(t)−Q∗||∞ ≤ ||y(t)−Q∗||∞ + |r(t)|
≤ ||y(0)−Q∗||∞ +

∫ t

0

e−(t−s)|β − f(y(s))|ds

≤ ||x(0)−Q∗||∞ +

∫ t

0

e−(t−s)|f(Q∗)− f(y(s))|ds.(3.7)

Since f(·) is Lipschitz,
|f(Q∗)− f(y(s))| ≤ L||y(s)−Q∗||∞

≤ L||y(0)−Q∗||∞
= L||x(0)−Q∗||∞(3.8)

for a suitable L > 0. Thus

||x(t)−Q∗||∞ ≤ (1 + L)||x(0)−Q∗||∞.

Liapunov stability follows, completing the proof.

3.2. Boundedness and convergence. The ODE method described variously
in [2], [13], [18], [19], etc. immediately yields the following.

Theorem 3.5. In both the synchronous and the asynchronous Q-learning itera-
tions (cf. (2.5), (2.7)), if {Qn} remain bounded a.s., then Qn → Q∗ a.s.

Proof. The synchronous case follows from the standard ODE approach in view
of Theorem 3.4. The asynchronous case follows likewise from the results of [10].
(In either case, given our prior assumptions, the only things left to verify are the
a.s. boundedness of the iterates, which we simply assumed for the time being, and
the global asymptotic stability of the associated ODE, which we just proved in the
previous subsection.)

The problem of proving a.s. boundedness remains. We shall indicate two proof ap-
proaches. The first, which works only for the synchronous case, is based on Lemma 2.2
of [1] (see Appendix). Note that by Theorem 3.4 and the converse Liapunov theorem
[29], there exists a C1 Liapunov function V : Rd×r → R+ with lim||x||→∞ V (x) = ∞
and

〈∇V (x), T ′(x)− x〉 < 0, x �= Q∗.

Let B be an open neighborhood of Q∗, and let C = {x : V (x) ≤ c}, where c > 0
is chosen sufficiently large so as to ensure that B ⊂ interior (C). Note that C is
compact. Define π : Rd×r → C by

π(x) = x if x ∈ C,

690 J. ABOUNADI, D. BERTSEKAS, AND V. S. BORKAR

= Q∗ + η(x)(x−Q∗) if x �∈ C,

where η(x) = max{a > 0 : Q∗ + a(x − Q∗) ∈ B}. Consider the “scaled” version of
(2.5) given by

Q
n+1

(i, a) = Q̃n(i, a) + γ(n)
(
g(i, a, ξnia) + min

u
Q̃n(ξnia, u)

−f(Q̃n)− Q̃n(i, a)
)
, i ∈ S, a ∈ A,(3.9)

where Q̃n = π(Q
n
). The iterates (3.9) remain bounded a.s. by construction. To use

Lemma 2.2 of [1], we need the following:
(i) The maps x → (1−γ(n))x+γ(n)T ′(x) are nonexpansive with respect to || · ||s

(where without any loss of generality we take γ(n) < 1). Note that they are
so if T ′(·) is, which it indeed is, as already observed.

(ii) The iterates {Qn} converge to Q∗ a.s., which, in view of Theorem 3.4, is
proved exactly as in [1, section 3].

We shall also need the following additional assumption on f(·).
Assumption 3.6. |f(Q)| ≤ ||Q||∞ for all Q ∈ Rd×r.
Note that this is satisfied by the examples of f(·) that follow Assumption 2.2.
Lemma 3.7. Under the additional Assumption 3.6, {Qn} given by the syn-

chronous Q-learning iteration 2.5 is bounded a.s.
Proof. In view of above remarks and Lemma 2.2 of [1], ||Qn − Qn||s remains

bounded a.s. Note that

sup
n

||Qn||s ≤ sup
n

||Qn||s + sup
n

||Qn −Q
n||s ∆

= K < ∞.

Let D = max(||Q0||,maxi,a,j |g(i, a, j)|+K). Then by Assumptions 2.2 and 3.6,∣∣∣min
u

Qn(ξnia, u)− f(Qn)
∣∣∣ = ∣∣∣f (Qn −

(
min
u

Qn(ξnia, u)
)
e
)∣∣∣

≤
∣∣∣∣∣∣Qn −

(
min
u

Qn(ξnia, u)
)
e
∣∣∣∣∣∣
∞≤ ||Qn||s ≤ K.

Then

|Qn+1(i, a)| ≤ (1− γ(n))||Qn||∞ + γ(n)

(
max
i,a,j

g(i, a, j) +K

)
≤ (1− γ(n))||Qn||∞ + γ(n)D.

A simple induction shows that ||Qn||∞ ≤ D for all n.
The boundedness argument above does not work for the asynchronous iteration

(2.7). The reason is as follows: The term f(Qn)e (resp., f(Q
n
)e) being subtracted

from the r.h.s. of (2.5) (resp., (3.7)) implies that exactly the same “offset” is being
subtracted from all the components. These terms, being scalar multiples of e, con-
tribute nothing to the span seminorm, a fact that is crucial in the analysis of [1] used
above. In the asynchronous case, there is no way of achieving this without artificial
restrictions.

The second technique is that of [13], which applies to both synchronous and
asynchronous cases. We need the following assumption.

Assumption 3.6′. f(cQ) = cf(Q) for all c ∈ R,Q ∈ Rd×r.

LEARNING ALGORITHMS FOR MARKOV DECISION PROCESSES 691

Once again, this is satisfied by all the examples of f(·) given in the preceding
section. Define T0 : Rd×r → Rd×r by

(T0(x))ia =
∑
j

p(i, a, j)min
b

xjb, x = [[xia]] ∈ Rd×r.

The technique of [13] requires that we look at

h(x)
∆
= lim

c→∞(T ′(cx)− cx)/c

= T0(x)− x− f(x)e

(in view of Assumption 3.6′) and requires that the origin be the globally asymptotically
stable equilibrium point of the ODE ẋ(t) = h(x(t)). But this is merely a special case
of Theorem 3.4, corresponding to g(·, ·, ·) being identically zero. Thus Theorem 2.2
of [13] applies, implying that {Qn} remains bounded a.s. for both the synchronous
iteration (2.5), and its asynchronous version (2.7). (For the latter, see section 4 of
[13].) We state this conclusion as a lemma.

Lemma 3.8. Under the additional Assumption 3.6′, {Qn} given by the syn-
chronous Q-learning iteration (2.5) and its asynchronous version (2.7) is bounded
a.s.

4. Convergence of SSP Q-learning.

4.1. ODE analysis. Redefine T, T ′, f as follows. T : Rd×r → Rd×r, T ′ :
Rd×r×1 → Rd×r, f : Rd×r → R are given by

(TQ)(i, a) =
d∑

j=1

p(i, a, j)


g(i, a, j) +

∑
j �=s

p(i, a, j)min
u

Q(j, u)


 ,

(T ′(Q,λ))(i, a) = (TQ)(i, a)− λ,
f(Q) = min

u
Q(s, u).

Then the synchronous iteration (2.8a)–(2.8b′) can be rewritten as

Qn+1 = Qn + γ(n)[T ′(Qn, λn)−Qn +Mn+1],(4.1)

λn+1 = Γ(λn + b(n)f(Qn)),(4.2)

where Mn+1 = [Mn+1(i, a)] with

Mn+1(i, a) =
[
g(i, a, ξnia) + min

u
Qn(ξnia, u)

]
I{ξnia �= s}

−λn − T ′(Qn, λn).

In this new setup one verifies (3.2), (3.3) as before. Note that (4.2) can be rewritten
as

λn+1 = λn + e(n),

where e(n) = O(b(n)) = o(γ(n)). Thus the limiting ODE associated with (4.1)–(4.2)
is

Q̇(t) = T ′(Q(t), λ(t))−Q(t),

692 J. ABOUNADI, D. BERTSEKAS, AND V. S. BORKAR

λ̇(t) = 0.

Thus it suffices to consider

Q̇(t) = T ′(Q(t), λ)−Q(t)(4.3)

for a fixed λ. As observed in [25], the map T (·), and therefore the map T ′(·, λ) for
fixed λ, is a contraction on Rd×r with respect to a certain weighted max-norm

||x||w ∆
= max |wixi|, x ∈ Rd×r,

for an appropriate weight vector w = [w1, . . . , wrd], wi > 0 for all i. In particular,
T ′(·, λ) has a unique fixed point Q(λ). A straightforward adaptation of the arguments
of [14] then shows the following.

Lemma 4.1. Q(λ) is the globally asymptotically stable equilibrium for (4.1). In
fact, ||Q(t)−Q(λ)||w decreases monotonically to zero.

4.2. Boundedness and convergence. Once again we present two alternative
schemes for proving the a.s. boundedness of {Qn}. (Note that {λn} are bounded
anyway, as they are constrained to remain in [−K,K].) The first approach is based
on [25].

Lemma 4.2. For both synchronous and asynchronous SSP Q-learning algorithms,
{Qn} remain bounded a.s.

Proof. Since T (·) is a contraction with respect to || · ||w, we have

||T (Q)||w ≤ α||Q||w +D

for some α ∈ (0, 1), D > 0. Thus

||T ′(Q,λ)||w ≤ α||Q||w +D′

with D′ = D+K. Since the r.h.s. does not involve λ, one can mimick the arguments
of [25] to conclude.

An alternative proof of Lemma 4.2 is to directly quote the results of [13]. For
this, consider T 0 : Rd×r → Rd×r defined by

(T 0Q)(i, a) =
∑
j �=s

p(i, a, j)min
u

Q(j, u).

Then

lim
a→∞

T ′(cQ, λ)
c

= T 0(Q),

and the ODE

Q̇(t) = T 0(Q)−Q

has the origin as the globally asymptotically stable equilibrium. (This is just a special
case of Lemma 4.1 with g(·) ≡ 0.) Thus the results of [13] apply, allowing us to
conclude Lemma 4.2.

Given the a.s. boundedness of iterates, one proves a.s. convergence for the syn-
chronous case as follows.

Lemma 4.3. ||Qn −Q(λn)|| → 0 a.s.

LEARNING ALGORITHMS FOR MARKOV DECISION PROCESSES 693

Proof. Note that Q(λ) is simply the Q-factor associated with the SSP problem
described in section 2.3 with the prescribed λ, that is,

(Q(λ))(i, a) =

d∑
j=1

p(i, a, j)


g(i, a, j) +

∑
j �=s

p(i, a, j)Vλ(j)− λ


 , i ∈ S, a ∈ A.

Since the map λ → Vλ is concave, it is continuous, and therefore so is the map
λ → Q(λ). In view of Lemmas 4.1 and 4.2, the claim now follows as in Corollary 2.1
of [8].

We shall also need the following lemma.
Lemma 4.4.

Πn
i=0(1− b(i)) → 0, lim supn→∞

n∑
i=0

Πn
j=i+1(1− b(j))b(i) < ∞,

and for any sequence {an} with an → 0,

n∑
i=0


 n∏

j=i+1

(1− b(j))


 b(i)ai → 0.

Proof. Since
∑

i b(i) = ∞ and 1− x ≤ e−x for all x,

n∏
i=0

(1− b(i)) ≤ e−
∑n

i=0
b(i) → 0

as n → ∞. Let t(0) = 0, t(n) =
∑n−1

i=0 b(i), n ≥ 1. Then

n∑
i=0

n∏
j=i+1

(1− b(j))b(i) ≤
n∑

i=0

b(i) exp


−

n∑
j=i+1

b(j)




=

n∑
i=0

e−(t(n+1)−t(i))(t(i+ 1)− t(i))

≤
∫ t(n+1)

0

e−(t(n+1)−s)ds → 1

as n → ∞. Define h(t), t ≥ 0, by h(t) = an for t ∈ [t(n), t(n + 1)), n ≥ 0. Then a
similar argument shows that

n∑
i=0

n∏
j=i+1

(1− b(j))b(i)ai ≤
∫ t(n+1)

0

e−(t(n+1)−s)h(s)ds.

Since h(t) → 0 as t → ∞, the r.h.s. → 0 as n → ∞.
Theorem 4.5. For the synchronous SSP Q-learning algorithm (2.8a)–(2.8b′),

(Qn, λn) → (Q∗, β) a.s.
Proof. Define ∆n = λn − β, rn = f(Qn) − f(Q(λn)), n ≥ 0. By Lemma 4.3,

rn → 0. Also,

694 J. ABOUNADI, D. BERTSEKAS, AND V. S. BORKAR

∆n+1 = Γ(∆n + β + b(n)f(Qn))− β
= Γ(∆n + β + b(n)f(Q(λn)) + b(n)rn)− β.(4.4)

Since the map λ → Vλ, and therefore also the map λ → f(Q(λ)) = minu(Q(λ))(s, u),
is concave and piecewise linear with finitely many linear pieces, it follows that there
exist 0 < L1 ≤ L2 such that

−L2(λ1 − λ2) ≤ f(Q(λ1))− f(Q(λ2)) ≤ −L1(λ1 − λ2)

for all λ1, λ2 ∈ R. (Basically, these are upper and lower bounds on the slope of the map
λ → f(Q(λ)).) With λ1 = λn, λ2 = β, and using the fact that f(Q(β)) = f(Q∗) = 0,
this reduces to

−L2∆
n ≤ f(Q(λn)) ≤ −L1∆

n.

Using this, (4.4), and the fact that Γ(·) is nondecreasing, we have

Γ((1− L2b(n))∆
n + b(n)rn + β)− β ≤ ∆n+1

≤ Γ((1− L1b(n))∆
n + b(n)rn + β)− β.

Note that for i = 1, 2,

(1− Lib(n))∆
n + b(n)rn + β = λn + b(n)(rn − Li∆

n)
= λn +O(b(n)).

Since λn ∈ [−K,K] for all n and b(n) → 0, it follows from the definition of Γ(·) that
for any ε > 0, there is an N ≥ 1 sufficiently large so that for n ≥ N ,

(1− L2b(n))∆
n + (b(n)rn − ε) + β

≤ Γ((1− L2b(n))∆
n + b(n)rn + β)

≤ Γ((1− L1b(n))∆
n + b(n)rn + β)

≤ (1− Lib(n))∆
n + (b(n)rn + ε) + β.

Therefore,

(1− L2b(n))∆
n + b(n)rn − ε ≤ ∆n+1 ≤ (1− L1b(n))∆

n + b(n)rn + ε.

Iterating the inequalities, we have for n > N

n+1∏
i=N

(1− L2b(i))∆
N +

n∑
i=N

n∏
j=i+1

(1− L2b(j))(b(i)ri − ε) ≤ ∆n+1

≤
n+1∏
i=N

(1− L1b(i))∆
N +

n∑
i=N

n∏
j=i+1

(1− L1b(j))b(i)(ri − ε).

Letting n → ∞ and using Lemma 4.4, we have ∆n → [−Cε,Cε] for a suitable constant
C > 0. Since ε > 0 was arbitrary, ∆n → 0, i.e., λn → β. Since λ → Q(λ) is
continuous, Q(λn) → Q(β) = Q∗, and, by Lemma 4.3, Qn → Q∗.

Remark. If we consider instead the SSP Q-learning algorithm (2.8a)–(2.8b) that
does not use the projection Γ(·), it is possible to argue as above to conclude that if
the iterates {λn} remain bounded a.s., then Theorem 4.5 holds.

Finally, we have the following theorem.
Theorem 4.6. For the asynchronous SSP Q-learning algorithm (2.9a)–(2.9b),

(Qn, λn) → (Q∗, λ∗) a.s.
Proof. The analysis of [10], [17] applies, implying, in particular, that Lemma 4.3

holds exactly as before. The only difference is that now the interpolated algorithm
would track a time-scaled version of (4.1). The rest is as before because the iteration
scheme for {λn} is unchanged.

LEARNING ALGORITHMS FOR MARKOV DECISION PROCESSES 695

5. Conclusions. We have presented two Q-learning algorithms for average cost
control of finite Markov chains—one based on RVI and another on an SSP formula-
tion of the average cost problem. We have rigorously established their stability and
convergence to the desired limits with probability one. As already remarked in the in-
troduction, this is the first rigorous analysis of any Q-learning algorithms for average
cost problems. Nevertheless, this is only a first step toward a better understanding
of these algorithms. In conclusion, we mention three important directions for future
work in this area:

(i) Typically, the state space can be very large. This calls for approximations,
such as state aggregation or considering a parametrized family of candidate
Q-factor functions with a low dimensional parameter space. (See, e.g., [7],
[26].) The algorithms presented need to be interlaced with such approxima-
tion architectures and analyzed as such. A popular architecture is a linear
combination of suitable basis functions, the weights in question being the pa-
rameters that are tuned [7], [26]. A good choice of basis functions is crucial,
and it has been suggested that they be based upon sample simulation runs
[6]. Yet another technique for reducing computation is to update not at every
sample but at an appropriately chosen subsequence of samples. This can be
combined with “kernel” methods, where one updates in a neighborhood of
the sample in a weighted fashion. While there is an enormous amount of
empirical work on such ideas in recent years, the theory has been lacking.
Finally, it is worthwhile exploring the use of acceleration techniques in tradi-
tional Monte Carlo methods (such as importance sampling) to reinforcement
learning.

(ii) Simulation-based algorithms are slow. An analysis of rate of convergence and
good speed-up procedures are needed. To some extent, the rate of convergence
statements for general stochastic approximation algorithms, based on asso-
ciated limit theorems or asymptotics for moments, will also bear upon these
algorithms. However, they have enough special structure that one should be
able to say more. A recent work [12] takes a step in this direction by estimat-
ing the number of steps required by Q-learning for discounted cost problems
to attain a prescribed level of accuracy with a prescribed probability.

(iii) Extension to the case where the state space is not finite is an open issue. See,
however, [11] for the discounted cost problem.

Appendix. We briefly recall the key results from the literature that have been
used here in a crucial manner. To begin with, let F (·, ·) = [F1(·, ·), . . . , Fd(·, ·)]T :
Rd × Rm → Rd be Lipschitz in the first argument uniformly with respect to the
second, i.e., for some scalar K, we have

‖F (x, y)− F (y, u)‖ ≤ K‖x− y‖ ∀ x, y, u.

Consider the stochastic approximation algorithm of the form

xk=1 = xk + γ(k)F (xk, ξk), k ≥ 0,

for xk = [xk1 , . . . , x
k
d], with {ξk} i.i.d., Rn-valued random variables. Let h(x) =

E[F (x, ξ)]. The ODE approach views the above recursion as

xk=1 = xk + γ(k)[h(xk) +Mk+1]

with

Mk+1 = F (xk, ξk)− h(xk), k ≥ 0,

696 J. ABOUNADI, D. BERTSEKAS, AND V. S. BORKAR

a “martingale difference” sequence. The term in square brackets is viewed as a noisy
measurement of h(xk) with Mk+1 as the “noise.” The iteration can then be viewed
as a noisy discretization of the ODE ẋ(t) = h(x(t)) with diminishing time steps. We
assume that this ODE has a globally asymptotically stable equilibrium x∗. If {xk}
remains bounded and the martingale

∑
γ(k)Mk+1 converges with probability one,

both the discretization error and the error due to noise in the above “approximation”
of the ODE become asymptotically negligible, and therefore the iterates track the
ODE. In particular, xk → x∗ a.s.

The asynchronous version of this algorithm is

xk+1
i = xki + ν(k, i)I(i ∈ Y k)Fi(x

k−τ1i
1 (k), . . . , xk−τdi

d (k), ξk), 1 ≤ i ≤ d,

for k ≥ 0, where (1) {Y k} is a set-valued random process taking values in the
subsets of {1, . . . , d}, representing the components that do get updated at time k,
(2) {τij(k)}, 1 ≤ i, j ≤ d, k ≥ 0}, are bounded random delays, and (3) ν(k, i) =∑k

m=0 I(i ∈ Y m) denotes the number of times component i gets updated up to time
k. Under the kind of assumptions on {γ(k)} and {ν(k, i)} we have used here, Borkar
[10] shows that the asynchronous iterations track the ODE ẋ(t) = 1

dh(x(t)), which is
a time-scaled version of ẋ(t) = h(x(t)) and has the same trajectories.

The two-time-scale stochastic approximation algorithm of Borkar [8] considers the
following iteration:

xk+1 = xk + γ(k)F (xk, yk, ξk),

yk=1 = yk + β(k)G(xk, yk, ζk),

where {ξk}, {ζk} are i.i.d., and {β(k)} satisfy

∞∑
k=0

β(k) = ∞,

∞∑
k=0

β(k)2 < ∞, β(k) = o(γ(k)).

Thus {yk} (resp., {xk}) is the slow (resp., fast) component of the iteration. One can
analyze {xk} viewing {yk} as quasi-static, and then analyze {yk}, viewing {xk} as
essentially equilibrated. In other words, consider the ODE ẋ(t) = h(x(t), y), where
h(x, y) = E[F (x, y, ξ)] and y is treated as a fixed parameter. Suppose it has a globally
asymptotically stable equilibrium λ(y), where λ(·) is a Lipschitz function. Then {xk}
tracks {λ(yk)}. In turn, {yk} tracks the ODE ẏ(t) = g(λ(y(t)), y(t)), where g(x, y) =
E[G(x, y, ζ)]. If the latter ODE has a globally asymptotically stable equilibrium y∗,
one can show that (xk, yk) → (λ(y∗), y∗) a.s.

In dynamic programming applications, an important special class of ODEs arises,
wherein h(x) = f(x)−x for an f : Rd → Rd satisfying the “nonexpansivity property”

‖f(x)− f(y)‖∞ ≤ ‖x− y‖∞.

The set B = {x : f(x) = x} of fixed points of f(·), assumed to be nonempty, is
precisely the set of equilibria for the ODE ẋ(t) = f(x(t))−x(t). It is shown in Borkar
and Soumyanath [14] that x(·) converges to a point in B and, furthermore, for any
x∗ ∈ B, ‖x(t)− x∗‖∞ is nonincreasing in t.

Finally, we recall Lemma 2.2 of [1], which has been used here. Let D ⊂ Rd be an
open bounded set, and let C ⊂ Rd be a set containing D. Define ΠD,C : Rd → D by∏

D,C

(x) = αD,C(x) · x,

LEARNING ALGORITHMS FOR MARKOV DECISION PROCESSES 697

where

αD,C(x) =

{
1 if x ∈ C,
max{β > 0 : βx ∈ D} if x /∈ C.

Let ‖x‖s = maxi xi −mini xi define the span seminorm on Rd. Consider an iteration

xk+1 = Gk(xk, ξk),

where {ξk} is a random process and {Gk} satisfy

‖Gk(x, ξ)−Gk(y, ξ)‖s ≤ ‖x− y‖s ∀x, y, ξ.

Suppose the sequence {x̃k} generated by the “scaled” iteration

x̃k+1 = Gk


∏

D,C

(x̃k), ξk




converges a.s. Lemma 2.1 of [1] then says that {‖xk‖s} remains bounded with prob-
ability one.

REFERENCES

[1] J. Abounadi, D. P. Bertsekas, and V. S. Borkar, Stochastic Approximation for Nonexpan-
sive Maps: Application to Q-Learning, Report LIDS-P-2433, Laboratory for Information
and Decision systems, MIT, Cambridge, MA, 1998.

[2] A. Benveniste, M. Metivier, and P. Priouret, Adaptive Algorithms and Stochastic Ap-
proximations, Springer-Verlag, Berlin, Heidelberg, 1990.

[3] D. P. Bertsekas, Distributed dynamic programming, IEEE Trans. Automat. Control, 27
(1982), pp. 610–616.

[4] D. P. Bertsekas, Dynamic Programming and Optimal Control, Vol. 2, Athena Scientific,
Belmont, MA, 1995.

[5] D. P. Bertsekas, A new value iteration method for the average cost dynamic programming
problem, SIAM J. Control Optim., 36 (1998), pp. 742–759.

[6] D. P. Bertsekas and D. A. Castanon, Rollout algorithms for stochastic scheduling problems,
J. Heuristics, 5 (1999), pp. 89–108.

[7] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming, Athena Scientific, Bel-
mont, MA, 1996.

[8] V. S. Borkar, Stochastic approximation with two time scales, Systems Control Lett., 29 (1996),
pp. 291–294.

[9] V. S. Borkar, Recursive self-tuning control of finite Markov chains, Appl. Math. (Warsaw),
24 (1996), pp. 169–188.

[10] V. S. Borkar, Asynchronous stochastic approximations, SIAM J. Control Optim., 36 (1998),
pp. 840–851.

[11] V. S. Borkar, A learning algorithm for discrete time stochastic control, Probab. Engrg. Inform.
Sci., 14 (2000), pp. 243–248.

[12] V. S. Borkar, On the number of samples required for Q-learning, in Proceedings of the 38th
Allerton Conference, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL,
2000.

[13] V. S. Borkar and S. P. Meyn, The ODE method for convergence of stochastic approximation
and reinforcement learning, SIAM J. Control Optim., 38 (2000), pp. 447–469.

[14] V. S. Borkar and K. Soumyanath, A new analog parallel scheme for fixed point computation,
part I: Theory, IEEE Trans. Circuits Systems I Fund. Theory Appl., 44 (1997), pp. 351–355.

[15] T. Jaakola, M. I. Jordan, and S. P. Singh, On the convergence of stochastic iterative
dynamic programming algorithms, Neural Computation, 6 (1994), pp. 1185–1201.

[16] A. Jalali and M. Ferguson, Adaptive control of Markov chains with local updates, Systems
Control Lett., 14 (1990), pp. 209–218.

698 J. ABOUNADI, D. BERTSEKAS, AND V. S. BORKAR

[17] V. R. Konda and V. S. Borkar, Actor-critic–type learning algorithms for Markov decision
processes, SIAM J. Control Optim., 38 (2000), pp. 94–123.

[18] H. J. Kushner and D. Clark, Stochastic Approximation Methods for Constrained and Un-
constrained Systems, Springer-Verlag, New York, 1978.

[19] H. J. Kushner and G. Yin, Stochastic Approximation Algorithms and Applications, Springer-
Verlag, New York, 2000.

[20] S. Mahadevan, Average reward reinforcement learning: Foundations, algorithms and empiri-
cal results, Machine Learning, 22 (1996), pp. 1–38.

[21] M. L. Puterman, Markov Decision Processes, John Wiley and Sons, New York, 1994.
[22] A. Schwartz, A reinforcement learning method for maximizing undiscounted rewards, in Pro-

ceedings of the 10th International Conference on Machine Learning, Morgan Kaufmann,
San Mateo, 1993, pp. 298–305.

[23] S. P. Singh, Reinforcement learning algorithms for average payoff Markovian decision pro-
cesses, in Proceedings of the 12th National Conference on Artificial Intelligence, MIT
Press, Cambridge, MA,1994, pp. 202–207.

[24] H. C. Tijms, Stochastic Modeling and Analysis: A Computational Approach, John Wiley and
Sons, New York, 1986.

[25] J. N. Tsitsiklis, Asynchronous stochastic approximation and Q-learning, Machine Learning,
16 (1994), pp. 185–202.

[26] J. N. Tsitsiklis and B. van Roy, Feature-based methods for large scale dynamic programming,
Machine Learning, 22 (1996), pp. 59–94.

[27] C. Watkins, Learning from Delayed Rewards, Ph.D. thesis, Cambridge University, Cambridge,
U.K., 1989.

[28] C. Watkins and P. Dayan, Q-learning, Machine Learning, 8 (1992), pp. 279–292.
[29] F. W. Wilson, Smoothing derivatives of functions and applications, Trans. Amer. Math. Soc.,

139 (1967), pp. 413–428.

