
Q-Learning Algorithms for Optimal Stopping Based on Least Squares

Huizhen Yu and Dimitri P. Bertsekas

Abstract— We consider the solution of discounted optimal
stopping problems using linear function approximation meth-
ods. A Q-learning algorithm for such problems, proposed by
Tsitsiklis and Van Roy, is based on the method of temporal dif-
ferences and stochastic approximation. We propose alternative
algorithms, which are based on projected value iteration ideas
and least squares. We prove the convergence of some of these
algorithms and discuss their properties.

In Proc. of European Control Conference 2007, Kos, Greece

I. INTRODUCTION

Optimal stopping problems are a special case of Marko-
vian decision problems where the system evolves according
to a discrete-time stochastic system equation, until an explicit
stopping action is taken. At each state, there are two choices:
either to stop and incur a state-dependent stopping cost,
or to continue and move to a successor state according
to some transition probabilities and incur a state-dependent
continuation cost. Once the stopping action is taken, no
further costs are incurred. The objective is to minimize the
expected value of the total discounted cost. Examples are
classical problems, such as search, and sequential hypothesis
testing, as well as recent applications in finance and the
pricing of derivative financial instruments (see Tsitsiklis and
Van Roy [1], Barraquand and Martineau [2], Longstaff and
Schwartz [3]).

The problem can be solved in principle by dynamic pro-
gramming (DP for short), but we are interested in problems
with large state spaces where the DP solution is practically
infeasible. It is then natural to consider approximate DP
techniques where the optimal cost function or theQ-factors
of the problem are approximated with a function from a
chosen parametric class. Generally, cost function approxi-
mation methods are theoretically sound (i.e., are provably
convergent) only for the single-policy case, where the cost
function of a fixed stationary policy is evaluated. However,
for the stopping problem of this paper, Tsitsiklis and Van Roy
[1] introduced a linear function approximation to the optimal
Q-factors, which they prove to be the unique solution of a
projected form of Bellman’s equation. While in general this
equation may not have a solution, this difficulty does not
occur in optimal stopping problems thanks to a critical fact:
the mapping defining theQ-factors is a contraction mapping
with respect to the weighted Euclidean norm corresponding
to the steady-state distribution of the associated Markov

Huizhen Yu is with the Helsinki Institute for Information Technology,
University of Helsinki, Finlandjaney.yu@cs.helsinki.fi

Dimitri Bertsekas is with the Laboratory for Information and Decision
Systems (LIDS), Massachusetts Institute of Technology, Cambridge, MA
02139, USAdimitrib@mit.edu

chain. For textbook analyses, we refer to Bertsekas and
Tsitsiklis [4], Section 6.8, and Bertsekas [5], Section 6.4.

The algorithm of Tsitsiklis and Van Roy is based on single
trajectory simulation, and ideas related to the temporal dif-
ferences method of Sutton [6], and relies on the contraction
property just mentioned. We propose a new algorithm, which
is also based on single trajectory simulation and relies on
the same contraction property, but uses different algorithmic
ideas. It may be viewed as a fixed point iteration for solving
the projected Bellman equation, and it relates to the least
squares policy evaluation (LSPE) method first proposed by
Bertsekas and Ioffe [7] and subsequently developed by Nedić
and Bertsekas [8], Bertsekas, Borkar, and Nedić [8], and Yu
and Bertsekas [9] (see also the books [4] and [5]). We prove
the convergence of our method for finite-state models. We
also discuss variants of the method and prove convergence
of some of them. We refer to an extended version of this
paper [10] for the details of the corresponding convergence
analysis.

The paper is organized as follows. In Section II, we
introduce the optimal stopping problem, and we derive
the associated contraction properties of the mapping that
definesQ-learning. In Section III, we describe our LSPE-like
algorithm, and we prove its convergence. We also discuss
the convergence rate of the algorithm, and we provide a
comparison with another algorithm that is related to the least
squares temporal differences (LSTD) method, proposed by
Bradtke and Barto [11], and further developed by Boyan [12].
In Section IV, we describe some variants of the algorithm,
which involve a reduced computational overhead per iter-
ation, and discuss the relation of our algorithms with the
recent algorithm by Choi and Van Roy [13], which can be
used to solve the same optimal stopping problem. In this
section, we also give without proof a convergence result
for some of the variants of Section IV. A computational
comparison of our methods with other algorithms for the
optimal stopping problem is beyond the scope of the present
paper. However, our analysis and the available results using
least squares methods (Bradtke and Barto [11], Bertsekas
and Ioffe [7], Boyan [12], Bertsekas, Borkar, and Nedić
[14], Choi and Van Roy [13]) clearly suggest a superior
performance to the algorithm of Tsitsiklis and Van Roy [1],
and likely an improved convergence rate over the method of
Choi and Van Roy [13], at the expense of some additional
overhead per iteration.

II. Q-LEARNING FOR OPTIMAL STOPPING
PROBLEMS

We are given a Markov chain with state space{1, . . . ,n},
described by transition probabilitiespi j . We assume that the
states form a single recurrent class, so the chain has a steady-
state distribution vectorπ =

(
π(1), . . . ,π(n)

)
with π(i) > 0

for all statesi. Given the current statei, we assume that
we have two options: to stop and incur a costc(i), or to
continue and incur a costg(i, j), where j is the next state
(there is no control to affect the corresponding transition
probabilities). The problem is to minimize the associatedα-
discounted infinite horizon cost, whereα ∈ (0,1).

For a given statei, we associate aQ-factor with each of the
two possible decisions. TheQ-factor for the decision to stop
is equal toc(i). TheQ-factor for the decision to continue is
denoted byQ(i). The optimalQ-factor for the decision to
continue, denoted byQ∗, relates to the optimal cost function
J∗ of the stopping problem by

Q∗(i) =
n

∑
j=1

pi j
(
g(i, j)+αJ∗(j)

)
, i = 1, . . . ,n,

and
J∗(i) = min

{
c(i),Q∗(i)

}
, i = 1, . . . ,n.

The valueQ∗(i) is equal to the cost of choosing to continue at
the initial statei and following an optimal policy afterwards.
The functionQ∗ satisfies Bellman’s equation

Q∗(i) =
n

∑
j=1

pi j

(
g(i, j)+α min

{
c(j),Q∗(j)

})
, i = 1, . . . ,n.

(1)
Once theQ-factorsQ∗(i) are calculated, an optimal policy
can be implemented by stopping at statei if and only if
c(i)≤ Q∗(i).

The Q-learning algorithm (Watkins [15]) is

Q(i) := Q(i)+ γ
(
g(i, j)+α min

{
c(j),Q(j)

}
−Q(i)

)
,

where i is the state at which we update theQ-factor, j
is a successor state, generated randomly according to the
transition probabilitiespi j , andγ is a small positive stepsize,
which diminishes to 0 over time. The convergence of this
algorithm is addressed by the general theory ofQ-learning
(see Watkins and Dayan [16], and Tsitsiklis [17]). However,
for problems where the number of statesn is large, this
algorithm is impractical.

Let us now consider the approximate evaluation ofQ∗(i).
We introduce the mappingF : ℜn 7→ ℜn given by

(FQ)(i) =
n

∑
j=1

pi j
(
g(i, j)+α min

{
c(j),Q(j)

})
, i = 1, . . . ,n.

We denote byFQ or F(Q) the vector whose components
are (FQ)(i), i = 1, . . . ,n. By (1), the optimalQ-factor for
the choice to continue,Q∗, is a fixed point ofF , and it is
the unique fixed point becauseF is a sup-norm contraction
mapping.

For the approximation considered here, it turns out to be
very important thatF is also a Euclidean contraction. Let

‖ · ‖π be the weighted Euclidean norm associated with the
steady-state probability vectorπ, i.e.,

‖v‖2
π =

n

∑
i=1

π(i)
(
v(i)
)2

.

It has been shown by Tsitsiklis and Van Roy [1] (see
also Bertsekas and Tsitsiklis [4], Section 6.8.4) thatF is a
contraction with respect to this norm. For purposes of easy
reference, we include the proof.

Lemma 1:The mappingF is a contraction with respect
to ‖ · ‖π , with modulusα.

Proof: For any two vectorsQ andQ, we have∣∣(FQ)(i)− (FQ)(i)
∣∣≤ α

n

∑
j=1

pi j
∣∣min

{
c(j),Q(j)

}
−min

{
c(j),Q(j)

}∣∣
≤ α

n

∑
j=1

pi j
∣∣Q(j)−Q(j)

∣∣,
or, in vector notation,

|FQ−FQ| ≤ αP|Q−Q|,

where|x| denotes a vector whose components are the abso-
lute values of the components ofx. Hence,

‖FQ−FQ‖π ≤ α
∥∥P|Q−Q|

∥∥
π
≤ α‖Q−Q‖π ,

where the last inequality follows from the relation‖PJ‖π ≤
‖J‖π , which holds for every vectorJ (see Tsitsiklis and Van
Roy [18] or Bertsekas and Tsitsiklis [4], Lemma 6.4).

We considerQ-factor approximations using a linear ap-
proximation architecture

Q̃(i, r) = φ(i)′r,

whereφ(i) is ans-dimensional feature vector associated with
state i. (In our notation, all vectors are viewed as column
vectors, and prime denotes transposition.) We also write the
vector

Q̃r =
(
Q̃(1, r), . . . ,Q̃(n, r)

)′
in the compact form

Q̃r = Φr,

whereΦ is then×s matrix whose rows areφ(i)′, i = 1, . . . ,n.
We assume thatΦ has ranks, and we denote byΠ the
projection mapping with respect to‖ · ‖π on the subspace

S= {Φr | r ∈ ℜs},

i.e., for all J ∈ ℜn,

ΠJ = argmin
Ĵ∈S

‖J− Ĵ‖π .

BecauseF is a contraction with respect to‖ · ‖π with
modulusα, and Π is nonexpansive, the mappingΠF is a
contraction with respect to‖·‖π with modulusα. Therefore,
the mappingΠF has a unique fixed point within the subspace
S, which (in view of the rank assumption onΦ) can be

uniquely represented asΦr∗. Thusr∗ is the unique solution
of the equation

Φr∗ = ΠF(Φr∗).

Tsitsiklis and Van Roy [1] show that the error of thisQ-
factor approximation can be bounded by

‖Φr∗−Q∗‖π ≤
1√

1−α2
‖ΠQ∗−Q∗‖π .

Furthermore, if we implement a policyµ that stops at state
i if and only if c(i) ≤ φ(i)′r∗, then the cost of this policy,
denoted byJµ , satisfies

n

∑
i=1

π(i)
(
Jµ(i)−J∗(i)

)
≤ 2

(1−α)
√

1−α2
‖ΠQ∗−Q∗‖π .

These bounds indicate that ifQ∗ is close to the subspace
S spanned by the basis functions, then the approximateQ-
factor and its associated policy will also be close to the
optimal.

The contraction property ofΠF suggests the fixed point
iteration

Φrk+1 = ΠF(Φrk),

which in the related contexts of policy evaluation for dis-
counted and average cost problems (see [14], [9], [5]) is
known asprojected value iteration[to distinguish it from the
value iteration method, which isQk+1 = F(Qk)]; see Fig. 1.
This iteration converges to the unique fixed pointΦr∗ of
ΠF , but is not easily implemented because the dimension
of the vectorF(Φrk) is potentially very large. In the policy
evaluation context, a simulation-based implementation of the
iteration has been proposed, which does not suffer from
this difficulty, because it uses simulation samples of the
cost of various states in a least-squares type of parametric
approximation of the value iteration method. This algorithm
is known as least squares policy evaluation (LSPE), and can
be conceptually viewed as taking the form

Φrk+1 = ΠF(Φrk)+ εk,

where εk is simulation noise which diminishes to 0 (with
probability 1) ask → ∞ (see Fig. 1). The algorithm to be
introduced in the next section admits a similar conceptual
interpretation, and its analysis has much in common with
the analysis given in [14], [5] for the case of single-policy
evaluation. In fact, if the stopping option was not available
[or equivalently if c(i) is so high that it is never optimal
to stop], ourQ-learning algorithm would coincide with the
LSPE algorithm for approximate evaluation of the discounted
cost function of a fixed stationary policy. Let us also note
that LSPE (like the temporal differences method) is actually
a family of methods parameterized by a scalarλ ∈ [0,1].
Our Q-learning algorithm of the next section corresponds to
LSPE(0), the case whereλ = 0; we do not have a convenient
Q-learning algorithm that parallels LSPE(λ) for λ > 0.

III. A LEAST SQUARESQ-LEARNING
ALGORITHM

A. Algorithm

We generate a single1 infinitely long simulation trajectory
(x0,x1, . . .) corresponding to an unstopped system, i.e., using
the transition probabilitiespi j . Our algorithm starts with an
initial guessr0, and generates a parameter vector sequence
{rt}. Following the transition(xt ,xt+1), we form the follow-
ing least squares problem at each timet,

min
r∈ℜs

t

∑
k=0

(
φ(xk)′r−g(xk,xk+1)

−α min
{

c(xk+1),φ(xk+1)′rt
})2

, (2)

whose solution is

r̂t+1 =

(
t

∑
k=0

φ(xk)φ(xk)′
)−1

t

∑
k=0

φ(xk)
(

g(xk,xk+1)+α min
{

c(xk+1),φ(xk+1)′rt
})

.

(3)

Then we set
rt+1 = rt + γ(r̂t+1− rt), (4)

where γ is some fixed constant stepsize, whose range will
be given later.2

This algorithm is related to the LSPE(0) algorithm, which
is used for the approximate evaluation of a single stationary
policy of a discounted Markovian decision problem, and is
analyzed by Bertsekas and Ioffe [7], Nedić and Bertsekas [8],
Bertsekas, Borkar, and Nedić [14], and Yu and Bertsekas [9]
(see also the recent book by Bertsekas [5], Chapter 6). In
particular, if there were no stopping action (or equivalently if
the stopping costs are so large that they are inconsequential),
then, forγ = 1, the algorithm (3) becomes

rt+1 =

(
t

∑
k=0

φ(xk)φ(xk)′
)−1

t

∑
k=0

φ(xk)
(

g(xk,xk+1)+αφ(xk+1)′rt

)
, (5)

and is identical to the LSPE(0) algorithm for evaluating the
policy that never stops. On the other hand, we note that
the least squaresQ-learning algorithm (3) has much higher
computation overhead than the LSPE(0) algorithm (5) for
evaluating this policy. In the process of updatingrt via (3),
we can compute the matrix

(
1

t+1 ∑t
k=0 φ(xk)φ(xk)′

)−1
and the

vector 1
t+1 ∑t

k=0 φ(xk)g(xk,xk+1) iteratively and efficiently as
in (5). The terms min

{
c(xk+1),φ(xk+1)′rt

}
, however, need

to be recomputed for all the samplesxk+1, k < t. Intuitively,
this computation corresponds to repartitioning the states into

1Multiple independent infinitely long trajectories can also be used simi-
larly.

2We ignore the issues associated with the invertibility of the matrix in (3).
They can be handled, for example, by adding a small positive multiple of
the identity to the matrix if it is not invertible.

S: Subspace spanned by basis functions
0

Value Iterate

Projection
on S

Φrk+1

Simulation error

S: Subspace spanned by basis functions

Φrk
0

Φrk+1

Value Iterate

Projection
on S

Projected Value Iteration Least Squares Policy Evaluation (LSPE)

Φrk

F(Φrk)F(Φrk)

Fig. 1. A conceptual view of projected value iteration and its simulation-based implementation.

those at which to stop and those at which to continue, based
on the current approximateQ-factorsΦrt . In Section IV, we
will discuss how to reduce this extra overhead.

We will prove that the sequence{Φrt} generated by
the least squaresQ-learning algorithm (3) asymptotically
converges to the unique fixed point ofΠF . The idea of
the proof is to show that the algorithm can be written as a
damped version of the iterationΦrt+1 = Π̂t F̂t(Φrt), whereΠ̂t

andF̂t approximateΠ andF , respectively, within simulation
error that asymptotically diminishes to 0 with probability 1.

B. Convergence Proof

The iteration (3) can be written equivalently as

r̂t+1 =

(
n

∑
i=1

π̂t(i)φ(i)φ(i)′
)−1

n

∑
i=1

π̂t(i)φ(i)

(
ĝt(i)+α

n

∑
j=1

π̂t(j|i)min
{

c(j),φ(j)′rt
})

,

whereπ̂t(i) andπ̂t(j|i) are the empirical frequencies defined
by

π̂t(i) =
∑t

k=0 δ (xk = i)
t +1

, π̂t(j|i) =
∑t

k=0 δ (xk = i,xk+1 = j)
∑t

k=0 δ (xk = i)
,

with δ (·) being the indicator function, and ˆgt is the empirical
mean of the per-stage costs:

ĝt(i) =
∑t

k=0g(xk,xk+1)δ (xk = i)
∑t

k=0 δ (xk = i)
.

[In the case where∑t
k=0 δ (xk = i) = 0, we define ˆgt(i) =

0, π̂t(j|i) = 0 by convention.] In a more compact notation,

Φr̂t+1 = Π̂t F̂t(Φrt), (6)

where the mappingŝΠt and F̂t are simulation-based approx-
imations toΠ andF , respectively:

Π̂t = Φ(Φ′D̂tΦ)−1Φ′D̂t , D̂t = diag(. . . , π̂t(i), . . .) ,

F̂tJ = ĝt +αP̃t min
{

c,J
}
, ∀J ∈ ℜn,

(
P̃t
)

i j = π̂t(j|i).

With a stepsizeγ, the least squaresQ-learning iteration (4)
is written as

Φrt+1 = (1− γ)Φrt + γΠ̂t F̂t(Φrt). (7)

By ergodicity of the Markov chain, we have

π̂t → π, P̃t → P, and ĝt → g,

with probability 1, whereg denotes the expected per-stage
cost vector with∑n

j=1 pi j g(i, j) as thei-th component.
For eacht, denote the invariant distribution of̃Pt by π̃t . We

now have three distributions,π, π̂t , π̃t , which define, respec-
tively, three weighted Euclidean norms,‖ · ‖π ,‖ · ‖π̂t ,‖ · ‖π̃t .
The mappings we consider are non-expansive or contraction
mappings with respect to one of these norms. In particular:

• the mappingΠ̂t is non-expansive with respect to‖ · ‖π̂t

(sinceΠ̂t is projection with respect to‖ · ‖π̂t), and
• the mappingF̂t is a contraction, with modulusα, with

respect to‖ ·‖π̃t (the proof of Lemma 1 can be used to
show this).

We have the following facts, each being a consequence of
the ones preceding it:

(i) π̂t , π̃t → π with probability 1.
(ii) For anyε > 0 and a sample trajectory with converging

sequenceŝπt , π̃t , there exists a timēt such that for all
t ≥ t̄ and all statesi

1
1+ ε

≤ π̂t(i)
π(i)

≤ 1+ ε,
1

1+ ε
≤ π̃t(i)

π(i)
≤ 1+ ε,

1
1+ ε

≤ π̃t(i)
π̂(i)

≤ 1+ ε.

(iii) Under the condition of (ii), for anyJ ∈ ℜn, we have

‖J‖π ≤ (1+ ε)‖J‖π̂t , ‖J‖π̂t ≤ (1+ ε)‖J‖π̃t ,

‖J‖π̃t ≤ (1+ ε)‖J‖π ,

for all t sufficiently large.

Fact (iii) implies the contraction of̂Πt F̂t with respect to
‖ · ‖π , as shown in the following lemma.

Lemma 2:Let α̂ ∈ (α,1). Then, with probability 1,̂Πt F̂t

is a ‖ · ‖π -contraction mapping with moduluŝα for all t
sufficiently large.

Proof: Consider a simulation trajectory from the set of
probability 1 for whichP̃t → P and π̂t , π̃t → π. Fix anε > 0.
For any functionsJ1 and J2, using fact (iii) above and the
non-expansiveness and contraction properties ofΠ̂t and F̂t ,
respectively, we have fort sufficiently large,

‖Π̂t F̂tJ1− Π̂t F̂tJ2‖π ≤ (1+ ε)‖Π̂t F̂tJ1− Π̂t F̂tJ2‖π̂t

≤ (1+ ε)‖F̂tJ1− F̂tJ2‖π̂t

≤ (1+ ε)2‖F̂tJ1− F̂tJ2‖π̃t

≤ (1+ ε)2
α‖J1−J2‖π̃t

≤ (1+ ε)3
α‖J1−J2‖π .

Thus, by lettingε be such that(1+ ε)3α < α̂ < 1, we see
that Π̂t F̂t is a‖·‖π -contraction mapping with moduluŝα for
all t sufficiently large.

Proposition 1: For any constant stepsizeγ ∈ (0, 2
1+α

), rt

converges tor∗ with probability 1, ast → ∞.
Proof: We choosēt such that for allt ≥ t̄, the contrac-

tion property of Lemma 2 applies. We have for sucht,

‖Φrt+1−Φr∗‖π =
∥∥∥(1− γ)(Φrt −Φr∗)

+ γ
(
Π̂t F̂t(Φrt)−ΠF(Φr∗)

)∥∥∥
π

≤ |1− γ|‖Φrt −Φr∗‖π

+ γ ‖Π̂t F̂t(Φrt)− Π̂t F̂t(Φr∗)‖π

+ γ ‖Π̂t F̂t(Φr∗)−ΠF(Φr∗)‖π

≤ (|1− γ|+ γα̂)‖Φrt −Φr∗‖π + γεt , (8)

where
εt = ‖Π̂t F̂t(Φr∗)−ΠF(Φr∗)‖π .

Because‖Π̂t F̂t(Φr∗)−ΠF(Φr∗)‖π → 0, we haveεt → 0.
Thus, forγ ≤ 1, since

(1− γ + γα̂) < 1,

it follows that Φrt → Φr∗, or equivalently,rt → r∗, with
probability 1. Similarly, based on (8), in order that‖Φrt+1−
Φr∗‖π converges to 0 under a stepsizeγ > 1, it is sufficient
that γ −1+ γα̂ < 1, or equivalently,

γ <
2

1+ α̂
.

HenceΦrt converges toΦr∗ for the stepsizeγ ∈ (0, 2
1+α

).
Note that the range of stepsizes for which convergence

was shown includesγ = 1.

Remark 1:We can interpret the iteration of the least
squaresQ-learning algorithm, with the unit stepsize, for
instance, as the deterministic fixed point iterationΠF(Φrt)
plus an asymptotically diminishing stochastic disturbance
(see Fig. 1). In particular,

Π̂t F̂t(Φrt)−ΠF(Φrt)

= (Π̂t ĝt −Πg)+α(Π̂t P̃t −ΠP)min{c,Φrt},

so∥∥Π̂t F̂t(Φrt)−ΠF(Φrt)
∥∥≤ ‖Π̂t −Π‖‖ĝt‖+‖Π‖‖ĝt −g‖

+α‖Π̂t P̃t −ΠP‖
∥∥min{c,Φrt}

∥∥,
where ‖ · ‖ is any norm. SinceΦrt is bounded with prob-
ability 1, the bound on the right-hand side can be seen to
asymptotically diminish to 0.

C. Comparison to an LSTD Analogue

A natural alternative approach to findingr∗ that satisfies
Φr∗ = ΠF(Φr∗) is to replaceΠ and F with asymptotically
convergent approximations. In particular, let ˜rt+1 be the
solution ofΦr = Π̂t F̂t(Φr), i.e.,

Φr̃t+1 = Π̂t F̂t(Φr̃t+1), t = 0,1,

With probability 1 the solutions exist fort sufficiently large
by Lemma 2. The conceptual algorithm that generates the
sequence{r̃t} may be viewed as the analogue of the LSTD
method, proposed by Bradtke and Barto [11], and further
developed by Boyan [12] (see also the text by Bertsekas [5],
Chapter 6). For the optimal stopping problem this is not a
viable algorithm because it involves solution of a nonlinear
equation. It is introduced here as a vehicle for interpretation
of our least squaresQ-learning algorithm (2)-(4).

In particular, we note that ˜rt+1 is the solution of the
equation

r̃t+1 = argmin
r∈ℜs

t

∑
k=0

(
φ(xk)′r−g(xk,xk+1)

−α min
{

c(xk+1),φ(xk+1)′ r̃t+1
})2

, (9)

so it is the fixed point of the “argmin” mapping in the right-
hand side of the above equation. On the other hand, the least
squaresQ-learning algorithm (2)-(4), with stepsizeγ = 1,
that generatesrt+1 can be viewed as a single iteration of a
fixed point algorithm that aims to find ˜rt+1, starting fromrt .
This relation can be quantified further. Using an argument
similar to the one used in [9] for evaluating the optimal
asymptotic convergence rate of LSPE, it can be shown that
with any stepsize in the range(0, 2

1+α
), the LSPE-like update

Φrt converges to the LSTD-like updateΦr̃t asymptotically
at the rate ofO(t) [while we expect both to converge to
Φr∗ at a slower rateO(

√
t)]. We state this in the following

proposition, the proof of which can be found in [10].

Proposition 2: For any constant stepsizeγ ∈ (0, 2
1+α

),
t(Φrt −Φr̃t) is bounded with probability 1.

IV. VARIANTS WITH REDUCED OVERHEAD PER
ITERATION

At each iteration of the least squares Q-learning algo-
rithm (3), (4), while updatingrt , it is necessary to recompute
the terms min

{
c(xk+1),φ(xk+1)′rt

}
for all the samplesxk+1,

k < t. Intuitively, this corresponds to repartitioning the sam-
pled states into those at which to stop and those at which
to continue based on the most recent approximateQ-factors
Φrt . In this section we discuss some variants of the algorithm
that aim to reduce this computation.

A. First Variant

A simple way to reduce the overhead in iteration (3)
is to forgo the repartitioning just mentioned. Thus, in this
variant we replace the terms min

{
c(xk+1),φ(xk+1)′rt

}
by

q̃(xk+1, rt), given by

q̃(xk+1, rt) =

{
c(xk+1) if k∈ K,

φ(xk+1)′rt if k /∈ K,

where K =
{

k | c(xk+1) ≤ φ(xk+1)′rk
}

is the set of states
to stop based on the (earlier) approximateQ-factors Φrk,
rather than the (most recent) approximateQ-factorsΦrt . In
particular, we replace the term

t

∑
k=0

φ(xk)min
{

c(xk+1),φ(xk+1)′rt
}

in (3) with
t

∑
k=0

φ(xk)q̃(xk+1, rt)

= ∑
k≤t,k∈K

φ(xk)c(xk+1)+ ∑
k≤t,k/∈K

φ(xk)φ(xk+1)′rt ,

which can be efficiently updated at each timet.
Some other similar variants are possible, which employ a

limited form of repartitioning the states into those to stop
and those to continue. For example, one may repartition
only the sampled states within a time window of them
most recent time periods. In particular, in the preceding
calculation, instead of the setK, we may use at timet the
set

Kt ={k | k∈ Kt−1, k < t−m}
∪
{

k | t−m≤ k≤ t, c(xk+1)≤ φ(xk+1)′rt
}
,

starting with K0 = {0}. Here m = ∞ corresponds to the
algorithm of the preceding section, whilem= 1 corresponds
to the algorithm of the preceding paragraph. Thus the over-
head for repartitioning per iteration is proportional tom, and
remains bounded.

An important observation is that in the preceding vari-
ations, if rt converges, then asymptotically the terms
min

{
c(xk+1),φ(xk+1)′rt

}
and q̃(xk+1, rt) coincide, and it

can be seen that the limit ofrt must satisfy the equation
Φr = ΠF(Φr), so it must be equal to the unique solutionr∗.
However, at present we have no proof of convergence ofrt .

B. Second Variant

Let us consider another variant, whereby we simply re-
place the terms min{c(xk+1),φ(xk+1)′rt} in the least squares
problem (2) with min{c(xk+1),φ(xk+1)′rk}. The idea is that
for large k and t, these two terms may be close enough to
each other, so that convergence may still be maintained. Thus
we consider the iteration

rt+1 = argmin
r∈ℜs

t

∑
k=0

(
φ(xk)′r−g(xk,xk+1)

−α min
{

c(xk+1),φ(xk+1)′rk
})2

. (10)

This is a special case of an algorithm due to Choi and Van
Roy [13], as we will discuss shortly. By carrying out the
minimization overr, we can equivalently write (10) as

rt+1 =
B−1

t+1

t +1

t

∑
k=0

φ(xk)
(

g(xk,xk+1)

+α min
{

c(xk+1),φ(xk+1)′rk
})

,

where we denote

Bt =
1
t

t−1

∑
k=0

φ(xk)φ(xk)′.

To gain some insight into this iteration, let us rewrite it,
using the definition ofrt and the relation

Bt+1 =
1

t +1

(
tBt +φ(xt)φ(xt)′

)
,

as follows:

rt+1 = rt +
B−1

t+1

t +1
φ(xt)

(
−φ(xt)′rt +g(xt ,xt+1)

+α min
{

c(xt+1),φ(xt+1)′rt
})

.

(11)

The convergence of this iteration tor∗ follows from a general
convergence theorem of Choi and Van Roy [13]. However,
we will show by example that its rate of convergence can be
inferior to the least squaresQ-learning algorithm [cf. (3)-(4)].

Accordingly, we consider another variant that aims to im-
prove the practical (if not the theoretical) rate of convergence
of iteration (10) [or equivalently (11)], and is new to our
knowledge. In particular, we introduce a time window of size
m, and we replace the terms min

{
c(xk+1),φ(xk+1)′rt

}
in the

least squares problem (2) with min
{

c(xk+1),φ(xk+1)′r lk,t

}
,

where

lk,t = min{k+m−1, t}.

In other words, we consider the algorithm

rt+1 = argmin
r∈ℜs

t

∑
k=0

(
φ(xk)′r−g(xk,xk+1)

−α min
{

c(xk+1),φ(xk+1)′r lk,t

})2
.

(12)

Thus, at timet, the lastm terms in the least squares sum
are identical to the ones in the corresponding sum for
the least squaresQ-learning algorithm [cf. (2)]. The terms
min

{
c(xk+1),φ(xk+1)′r lk,t

}
remain constant afterm updates

(when lk,t reaches the valuek+m−1), so they do not need
to be updated further.

Note that in the firstm iterations, this iteration is identical
to the least squaresQ-learning algorithm of Section III with
unit stepsize. An important issue is the size ofm. For large
m, the algorithm approaches the least squaresQ-learning
algorithm, while for m = 1, it is identical to the earlier
variant (10).

C. Comparison with Other Algorithms

Let us now consider an algorithm, due to Choi and Van
Roy [13], and referred to as thefixed point Kalman filter. It
applies to more general problems, but when specialized to
the optimal stopping problem, it takes the form

rt+1 = rt + γtB
−1
t+1φ(xt)

(
−φ(xt)′rt +g(xt ,xt+1)

+α min
{

c(xt+1),φ(xt+1)′rt
})

,

(13)

where γt is a diminishing stepsize. The algorithm is mo-
tivated by Kalman filtering ideas and the recursive least
squares method in particular. It can also be viewed as a
scaled version (with scaling matrixB−1

t+1) of the method by
Tsitsiklis and Van Roy [1], which has the form

rt+1 = rt + γtφ(xt)
(
−φ(xt)′rt +g(xt ,xt+1)

+α min{c(xt+1),φ(xt+1)′rt}
)
. (14)

Scaling is believed to be instrumental for enhancing the rate
of convergence.

It can be seen that whenγt = 1/(t +1), the iterations (11)
and (13) coincide. However, the iterations (12) and (13) are
different for a window sizem> 1. As far as we know, the
convergence proofs of [1] and [13] do not extend to iteration
(12) or its modification that we will introduce in the next
section (in part because of the dependence ofrt+1 on as
many ast −m past iterates through the time window). The
following example provides some insight into the behavior
of the various algorithms discussed in this paper.

Example 1:This is a somewhat unusual example, which
can be viewed as a simple DP model to estimate the mean of
a random variable using a sequence of independent samples.
It involves a Markov chain with a single state. At each time
period, the cost produced at this state is a random variable
taking one ofn possible values with equal probability.3 Let
gk be the cost generated at thekth transition. The “stopping
cost” is taken to be very high so that the stopping option
does not affect the algorithms. We assume that the costsgk

are independent and have zero mean and varianceσ2. The
matrix Φ is taken to be the scalar 1, sor∗ is equal to the
true cost andr∗ = 0.

Then, the least squaresQ-learning algorithm of Section III
with unit stepsize [cf. (3) and (4)] takes the form

rt+1 =
g0 + · · ·+gt

t +1
+αrt . (15)

The first variant (Section IV-A) also takes this form, re-
gardless of the method used for repartitioning, since the
stopping cost is so high that it does not materially affect the
calculations. Since iteration (15) coincides with the LSPE(0)
method for this example, the corresponding rate of conver-
gence results apply (see Yu and Bertsekas [9]). In particular,

3A more conventional but equivalent example can be obtained by intro-
ducing states 1, . . . ,n, one for each possible value of the cost per stage, and
transition probabilitiespi j = 1/n for all i, j = 1, . . . ,n.

as t → ∞,
√

t rt converges in distribution to a Gaussian
distribution with mean zero and varianceσ2/(1−α)2, so
that E{r2

t } converges to 0 at the rate 1/t, i.e., there is a
constantC such that

tE{r2
t } ≤C, ∀ t = 0,1,

The second variant [Section IV-B, with time windowm=
1; cf. (11)], takes the form

rt+1 =
gt

t +1
+

t +α

t +1
rt . (16)

The fixed point Kalman filter algorithm [cf. (13)], and the
Tsitsiklis and Van Roy algorithm [cf. (14)] are identical
because the scaling matrixBt+1 is the scalar 1 in this
example. They take the form

rt+1 = rt + γt(gt +αrt − rt).

For a stepsizeγt = 1/(t +1), they become

rt+1 =
gt

t +1
+

t +α

t +1
rt , (17)

verifying that they are identical to the second variant (16).
We claim that iteration (17) converges more slowly than

iteration (15), and thattE{r2
t }→ ∞. To this end, we write

E{r2
t+1}=

(
t +α

t +1

)2

E{r2
t }+

σ2

(t +1)2 .

Then

ζt+1 =
(t +α)2

t(t +1)
ζt +

σ2

t +1
.

From this equation (forα > 1/2), we have

ζt+1 ≥ ζt +
σ2

t +1
,

so ζt tends to∞.
Finally, the variant of Section IV-B with time windowm>

1 [cf. (12)], for t ≥ m takes the form

rt+1 =
g0 + · · ·+gt

t +1
+α

rm−1 + rm+ · · ·+ rt−1 +mrt
t +1

, t ≥m.

(18)
For t < m, it takes the form

rt+1 =
g0 + · · ·+gt

t +1
+αrt , t < m.

We may write iteration (18) as

rt+1 =
gt

t +1
+

t +α

t +1
rt +α

(m−1)(rt − rt−1)
t +1

, t ≥ m,

and it can be shown again thatt E{r2
t } → ∞, similar to

iteration (17).

D. Convergence Analysis

We can show the convergence of a slightly modified
version of iteration (12), the variant of Section IV-B with
time window m > 1. Our proof is different in style from
the one of Choi and Van Roy [13], which applies to the
casem = 1; it is based on a time scaling argument that
is typical of the ODE approach. Generally, in the ODE
approach, boundedness of the iterates must either be proved
independently or assumed. In our case, we choose to modify
the updates using a projection ofφ(i)′rt onto an appropriate
lower bound, so thatrt is bounded with probability 1. It may
be possible to remove this boundedness assumption through
a more sophisticated analysis, but we have not been able to
do so.

We first note thatφ(i)′rt is bounded from above for all
statesi. To ensure thatφ(i)′rt is also bounded from below,
we introduce a scalarL satisfying

φ(i)′r∗ > L, i = 1, . . . ,n,

and we replace the terms min
{

c(xk+1),φ(xk+1)′r lk,t

}
in iter-

ation (12) with

min
{

c(xk+1),max{φ(xk+1)′r lk,t ,L}
}
.

In other words, defining functionsf andh by

f (y) = max{y,L}, h(x, r) = min
{

c(x), f (φ(x)′r)
}
,

we consider the iteration

rt+1 = B−1
t+1

1
t +1

t

∑
k=0

φ(xk)
(

g(xk,xk+1)+αh
(
xk+1, r lk,t

))
(19)

[cf. (12)]. Thus by constructionrt is bounded with proba-
bility 1. SinceΠF is a contraction mapping, the solution of
the equationf (Φr) = ΠF f (Φr), where f is applied to each
component, must still beΦr∗. We now state our convergence
result.

Proposition 3: Let rt be defined by (19). Then with prob-
ability 1, rt → r∗, ast → ∞.

The proof of Prop. 3 can be found in [10]. Furthermore,
the damped version of iteration (19) converges as well, i.e.,
the iteration

rt+1 = (1− γ)rt + γ r̂t+1

converges tor∗ with probability 1, where a constant stepsize
γ < 1 is used to interpolate betweenrt and the least squares
solution (19), now denoted by ˆrt+1. We refer readers to [10]
for a detailed analysis.

V. CONCLUSIONS

In this paper, we have proposed newQ-learning algorithms
for the approximate cost evaluation of optimal stopping
problems, using least squares ideas that are central in the
LSPE method for policy cost evaluation with linear function
approximation. We have aimed to provide alternative, faster
algorithms than those of Tsitsiklis and Van Roy [1], and
Choi and Van Roy [13]. The distinctive feature of optimal
stopping problems is the underlying mappingF , which is

a contraction with respect to the projection norm‖ · ‖π (cf.
Lemma 1). Our convergence proofs made strong use of this
property.

It is possible to consider the extension of our algorithms to
general finite-spaces discounted problems. An essential re-
quirement for the validity of such extended algorithms is that
the associated mapping is a contraction with respect to some
Euclidean norm. Under this quite restrictive assumption, it
is possible to show certain convergence results. In particular,
Choi and Van Roy [13] have shown the convergence of an
algorithm that generalizes the second variant of Section IV
for the casem= 1. It is also possible to extend this variant for
the case wherem> 1 and prove a corresponding convergence
result by using our line of proof.

VI. ACKNOWLEDGMENTS

We thank Prof. Ben Van Roy for helpful comments.

REFERENCES

[1] J. N. Tsitsiklis and B. Van Roy, “Optimal stopping of Markov
processes: Hilbert space theory, approximation algorithms, and an
application to pricing financial derivatives,”IEEE Trans. Automat.
Contr., vol. 44, pp. 1840–1851, 1999.

[2] J. Barraquand and D. Martineau, “Numerical valuation of high di-
mensional multivariate American securities,”Journal of Financial and
Quantitative Analysis, vol. 30, pp. 383–405, 1995.

[3] F. A. Longstaff and E. S. Schwartz, “Valuing American options by
simulation: A simple least-squares approach,”Review of Financial
Studies, vol. 14, pp. 113–147, 2001.

[4] D. P. Bertsekas and J. N. Tsitsiklis,Neuro-Dynamic Programming.
Belmont, MA: Athena Scientific, 1996.

[5] D. P. Bertsekas,Dynamic Programming and Optimal Control, Vol. II,
3rd ed. Belmont, MA: Athena Scientific, 2007.

[6] R. S. Sutton, “Learning to predict by the methods of temporal
differences,”Machine Learning, vol. 3, pp. 9–44, 1988.

[7] D. P. Bertsekas and S. Ioffe, “Temporal differences-based policy
iteration and applications in neuro-dynamic programming,” MIT, LIDS
Tech. Report LIDS-P-2349, 1996.

[8] A. Nedić and D. P. Bertsekas, “Least squares policy evaluation
algorithms with linear function approximation,”Discrete Event Dyn.
Syst., vol. 13, pp. 79–110, 2003.

[9] H. Yu and D. P. Bertsekas, “Convergence results for some temporal
difference methods based on least squares,” MIT, LIDS Tech. Report
2697, 2006.

[10] ——, “A least squares Q-learning algorithm for optimal stopping
problems,” MIT, LIDS Tech. Report 2731, 2006.

[11] S. J. Bradtke and A. G. Barto, “Linear least-squares algorithms for
temporal difference learning,”Machine Learning, vol. 22, no. 2, pp.
33–57, 1996.

[12] J. A. Boyan, “Least-squares temporal difference learning,” inProc.
The 16th Int. Conf. Machine Learning, 1999.

[13] D. S. Choi and B. Van Roy, “A generalized Kalman filter for
fixed point approximation and efficient temporal-difference learning,”
Discrete Event Dyn. Syst., vol. 16, no. 2, pp. 207–239, 2006.

[14] D. P. Bertsekas, V. S. Borkar, and A. Nedić, “Improved temporal
difference methods with linear function approximation,” MIT, LIDS
Tech. Report 2573, 2003, also appears in “Learning and Approximate
Dynamic Programming,” by A. Barto, W. Powell, J. Si, (Eds.), IEEE
Press, 2004.

[15] C. J. C. H. Watkins, “Learning from delayed rewards,” Doctoral
dissertation, University of Cambridge, Cambridge, United Kingdom,
1989.

[16] C. J. C. H. Watkins and P. Dayan, “Q-learning,”Machine Learning,
vol. 8, pp. 279–292, 1992.

[17] J. N. Tsitsiklis, “Asynchronous stochastic approximation and Q-
learning,” Machine Learning, vol. 16, pp. 185–202, 1994.

[18] J. N. Tsitsiklis and B. Van Roy, “An analysis of temporal-difference
learning with function approximation,”IEEE Trans. Automat. Contr.,
vol. 42, no. 5, pp. 674–690, 1997.

