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1 Introduction

Optimal stopping problems are a special case of Markovian decision problems where the system
evolves according to a discrete-time stochastic system equation, until an explicit stopping action is
taken. At each state, there are two choices: either to stop and incur a state-dependent stopping cost,
or to continue and move to a successor state according to some transition probabilities and incur a
state-dependent continuation cost. Once the stopping action is taken, no further costs are incurred.
The objective is to minimize the expected value of the total discounted cost. Examples are classical
problems, such as search, and sequential hypothesis testing, as well as recent applications in finance
and the pricing of derivative financial instruments (see Tsitsiklis and Van Roy [TV99], Barraquand
and Martineau [BM95], Longstaff and Schwartz [LS01]).

The problem can be solved in principle by dynamic programming (DP for short), but we are
interested in problems with large state spaces where the DP solution is practically infeasible. It
is then natural to consider approximate DP techniques where the optimal cost function or the Q-
factors of the problem are approximated with a function from a chosen parametric class. Generally,
cost function approximation methods are theoretically sound (i.e., are provably convergent) only for
the single-policy case, where the cost function of a fixed stationary policy is evaluated. However,
for the stopping problem of this paper, Tsitsiklis and Van Roy [TV99] introduced a linear function
approximation to the optimal Q-factors, which they prove to be the unique solution of a projected
form of Bellman’s equation. While in general this equation may not have a solution, this difficulty
does not occur in optimal stopping problems thanks to a critical fact: the mapping defining the
Q-factors is a contraction mapping with respect to the weighted Euclidean norm corresponding to
the steady-state distribution of the associated Markov chain. For textbook analyses, we refer to
Bertsekas and Tsitsiklis [BT96], Section 6.8, and Bertsekas [Ber07], Section 6.4.

The algorithm of Tsitsiklis and Van Roy is based on single trajectory simulation, and ideas re-
lated to the temporal differences method of Sutton [Sut88], and relies on the contraction property
just mentioned. We propose a new algorithm, which is also based on single trajectory simulation
and relies on the same contraction property, but uses different algorithmic ideas. It may be viewed
as a fixed point iteration for solving the projected Bellman equation, and it relates to the least
squares policy evaluation (LSPE) method first proposed by Bertsekas and Ioffe [BI96] and subse-
quently developed by Nedić and Bertsekas [NB03], Bertsekas, Borkar, and Nedić [NB03], and Yu
and Bertsekas [YB06] (see also the books [BT96] and [Ber07]). We prove the convergence of our
method for finite-state models, and we discuss some variants.

The paper is organized as follows. In Section 2, we introduce the optimal stopping problem, and
we derive the associated contraction properties of the mapping that defines Q-learning. In Section 3,
we describe our LSPE-like algorithm, and we prove its convergence. We also discuss the convergence
rate of the algorithm, and we provide a comparison with another algorithm that is related to the
least squares temporal differences (LSTD) method, proposed by Bradtke and Barto [BB96], and
further developed by Boyan [Boy99]. In Section 4, we describe some variants of the algorithm,
which involve a reduced computational overhead per iteration. In this section, we also discuss
the relation of our algorithms with the recent algorithm by Choi and Van Roy [CV06], which can
be used to solve the same optimal stopping problem. In Section 5, we prove the convergence of
some of the variants of Section 4. We give two alternative proofs, the first of which uses results
from the o.d.e. (ordinary differential equation) line of convergence analysis of stochastic iterative
algorithms, and the second of which is a “direct” proof reminiscent of the o.d.e. line of analysis. A
computational comparison of our methods with other algorithms for the optimal stopping problem
is beyond the scope of the present paper. However, our analysis and the available results using least
squares methods (Bradtke and Barto [BB96], Bertsekas and Ioffe [BI96], Boyan [Boy99], Bertsekas,
Borkar, and Nedić [BBN03], Choi and Van Roy [CV06]) clearly suggest a superior performance to
the algorithm of Tsitsiklis and Van Roy [TV99], and likely an improved convergence rate over the
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method of Choi and Van Roy [CV06], at the expense of some additional overhead per iteration.

2 Q-Learning for Optimal Stopping Problems

We are given a Markov chain with state space {1, . . . , n}, described by transition probabilities pij .
We assume that the states form a single recurrent class, so the chain has a steady-state distribution
vector π =

(
π(1), . . . , π(n)

)
with π(i) > 0 for all states i. Given the current state i, we assume that

we have two options: to stop and incur a cost c(i), or to continue and incur a cost g(i, j), where j is
the next state (there is no control to affect the corresponding transition probabilities). The problem
is to minimize the associated α-discounted infinite horizon cost, where α ∈ (0, 1).

For a given state i, we associate a Q-factor with each of the two possible decisions. The Q-factor
for the decision to stop is equal to c(i). The Q-factor for the decision to continue is denoted by
Q(i). The optimal Q-factor for the decision to continue, denoted by Q∗, relates to the optimal cost
function J∗ of the stopping problem by

Q∗(i) =
n∑

j=1

pij

(
g(i, j) + αJ∗(j)

)
, i = 1, . . . , n,

and
J∗(i) = min

{
c(i), Q∗(i)

}
, i = 1, . . . , n.

The value Q∗(i) is equal to the cost of choosing to continue at the initial state i and following an
optimal policy afterwards. The function Q∗ satisfies Bellman’s equation

Q∗(i) =
n∑

j=1

pij

(
g(i, j) + α min

{
c(j), Q∗(j)

})
, i = 1, . . . , n. (1)

Once the Q-factors Q∗(i) are calculated, an optimal policy can be implemented by stopping at state
i if and only if c(i) ≤ Q∗(i).

The Q-learning algorithm (Watkins [Wat89]) is

Q(i) := Q(i) + γ
(
g(i, j) + α min

{
c(j), Q(j)

}
−Q(i)

)
,

where i is the state at which we update the Q-factor, j is a successor state, generated randomly
according to the transition probabilities pij , and γ is a small positive stepsize, which diminishes to
0 over time. The convergence of this algorithm is addressed by the general theory of Q-learning (see
Watkins and Dayan [WD92], and Tsitsiklis [Tsi94]). However, for problems where the number of
states n is large, this algorithm is impractical.

Let us now consider the approximate evaluation of Q∗(i). We introduce the mapping F : <n 7→
<n given by

(FQ)(i) =
n∑

j=1

pij

(
g(i, j) + α min

{
c(j), Q(j)

})
, i = 1, . . . , n.

We denote by FQ or F (Q) the vector whose components are (FQ)(i), i = 1, . . . , n. By Eq. (1), the
optimal Q-factor for the choice to continue, Q∗, is a fixed point of F , and it is the unique fixed point
because F is a sup-norm contraction mapping.

For the approximation considered here, it turns out to be very important that F is also a
Euclidean contraction. Let ‖ · ‖π be the weighted Euclidean norm associated with the steady-state
probability vector π, i.e.,

‖v‖2
π =

n∑
i=1

π(i)
(
v(i)

)2
.
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It has been shown by Tsitsiklis and Van Roy [TV99] (see also Bertsekas and Tsitsiklis [BT96], Section
6.8.4) that F is a contraction with respect to this norm. For purposes of easy reference, we include
the proof.

Lemma 1. The mapping F is a contraction with respect to ‖ · ‖π, with modulus α.

Proof. For any two vectors Q and Q, we have

∣∣(FQ)(i)− (FQ)(i)
∣∣ ≤ α

n∑
j=1

pij

∣∣min
{
c(j), Q(j)

}
−min

{
c(j), Q(j)

}∣∣
≤ α

n∑
j=1

pij

∣∣Q(j)−Q(j)
∣∣,

or, in vector notation,
|FQ− FQ| ≤ αP |Q−Q|,

where |x| denotes a vector whose components are the absolute values of the components of x. Hence,

‖FQ− FQ‖π ≤ α
∥∥P |Q−Q|

∥∥
π
≤ α‖Q−Q‖π,

where the last inequality follows from the relation ‖PJ‖π ≤ ‖J‖π, which holds for every vector J
(see Tsitsiklis and Van Roy [TV97] or Bertsekas and Tsitsiklis [BT96], Lemma 6.4).

We consider Q-factor approximations using a linear approximation architecture

Q̃(i, r) = φ(i)′r,

where φ(i) is an s-dimensional feature vector associated with state i. (In our notation, all vectors
are viewed as column vectors, and prime denotes transposition.) We also write the vector

Q̃r =
(
Q̃(1, r), . . . , Q̃(n, r)

)′
in the compact form

Q̃r = Φr,

where Φ is the n× s matrix whose rows are φ(i)′, i = 1, . . . , n. We assume that Φ has rank s, and
we denote by Π the projection mapping with respect to ‖ · ‖π on the subspace

S = {Φr | r ∈ <s},

i.e., for all J ∈ <n,
ΠJ = arg min

Ĵ∈S

‖J − Ĵ‖π.

Because F is a contraction with respect to ‖ · ‖π with modulus α, and Π is nonexpansive, the
mapping ΠF is a contraction with respect to ‖ · ‖π with modulus α. Therefore, the mapping ΠF
has a unique fixed point within the subspace S, which (in view of the rank assumption on Φ) can
be uniquely represented as Φr∗. Thus r∗ is the unique solution of the equation

Φr∗ = ΠF (Φr∗).

Tsitsiklis and Van Roy [TV99] show that the error of this Q-factor approximation can be bounded
by

‖Φr∗ −Q∗‖π ≤
1√

1− α2
‖ΠQ∗ −Q∗‖π.
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Figure 1: A conceptual view of projected value iteration and its simulation-based implementation.

Furthermore, if we implement a policy µ that stops at state i if and only if c(i) ≤ φ(i)′r∗, then the
cost of this policy, denoted by Jµ, satisfies

n∑
i=1

π(i)
(
Jµ(i)− J∗(i)

)
≤ 2

(1− α)
√

1− α2
‖ΠQ∗ −Q∗‖π.

These bounds indicate that if Q∗ is close to the subspace S spanned by the basis functions, then the
approximate Q-factor and its associated policy will also be close to the optimal.

The contraction property of ΠF suggests the fixed point iteration

Φrt+1 = ΠF (Φrt),

which in the related contexts of policy evaluation for discounted and average cost problems (see
[BBN03, YB06, Ber07]) is known as projected value iteration [to distinguish it from the value iteration
method, which is Qt+1 = F (Qt)]; see Fig. 1. This iteration converges to the unique fixed point Φr∗

of ΠF , but is not easily implemented because the dimension of the vector F (Φrt) is potentially very
large. In the policy evaluation context, a simulation-based implementation of the iteration has been
proposed, which does not suffer from this difficulty, because it uses simulation samples of the cost
of various states in a least-squares type of parametric approximation of the value iteration method.
This algorithm is known as least squares policy evaluation (LSPE), and can be conceptually viewed
as taking the form

Φrt+1 = ΠF (Φrt) + εt,

where εt is simulation noise which diminishes to 0 with probability 1 (w.p.1) as t →∞ (see Fig. 1).
The algorithm to be introduced in the next section admits a similar conceptual interpretation, and its
analysis has much in common with the analysis given in [BBN03, Ber07] for the case of single-policy
evaluation. In fact, if the stopping option was not available [or equivalently if c(i) is so high that
it is never optimal to stop], our Q-learning algorithm would coincide with the LSPE algorithm for
approximate evaluation of the discounted cost function of a fixed stationary policy. Let us also note
that LSPE (like the temporal differences method) is actually a family of methods parameterized by
a scalar λ ∈ [0, 1]. Our Q-learning algorithm of the next section corresponds to LSPE(0), the case
where λ = 0; we do not have a convenient Q-learning algorithm that parallels LSPE(λ) for λ > 0.
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3 A Least Squares Q-learning Algorithm

3.1 Algorithm

We generate a single1 infinitely long simulation trajectory (x0, x1, . . .) corresponding to an unstopped
system, i.e., using the transition probabilities pij . Our algorithm starts with an initial guess r0, and
generates a parameter vector sequence {rt}. Following the transition (xt, xt+1), we form the following
least squares problem at each time t,

min
r∈<s

t∑
k=0

(
φ(xk)′r − g(xk, xk+1)− α min

{
c(xk+1), φ(xk+1)′rt

})2

, (2)

whose solution is

r̂t+1 =

(
t∑

k=0

φ(xk)φ(xk)′
)−1 t∑

k=0

φ(xk)
(
g(xk, xk+1) + α min

{
c(xk+1), φ(xk+1)′rt

})
. (3)

Then we set
rt+1 = rt + γ(r̂t+1 − rt), (4)

where γ is some fixed constant stepsize, whose range will be given later.2

This algorithm is related to the LSPE(0) algorithm, which is used for the approximate evaluation
of a single stationary policy of a discounted Markovian decision problem, and is analyzed by Bertsekas
and Ioffe [BI96], Nedić and Bertsekas [NB03], Bertsekas, Borkar, and Nedić [BBN03], and Yu and
Bertsekas [YB06] (see also the recent book by Bertsekas [Ber07], Chapter 6). In particular, if
there were no stopping action (or equivalently if the stopping costs are so large that they are
inconsequential), then, for γ = 1, the algorithm (3) becomes

rt+1 =

(
t∑

k=0

φ(xk)φ(xk)′
)−1 t∑

k=0

φ(xk)
(
g(xk, xk+1) + αφ(xk+1)′rt

)
, (5)

and is identical to the LSPE(0) algorithm for evaluating the policy that never stops. On the other
hand, we note that the least squares Q-learning algorithm (3) has much higher computation overhead
than the LSPE(0) algorithm (5) for evaluating this policy. In the process of updating rt via Eq. (3),

we can compute the matrix
(

1
t+1

∑t
k=0 φ(xk)φ(xk)′

)−1

and the vector 1
t+1

∑t
k=0 φ(xk)g(xk, xk+1)

iteratively and efficiently as in Eq. (5). The terms min
{
c(xk+1), φ(xk+1)′rt

}
, however, need to be

recomputed for all the samples xk+1, k < t. Intuitively, this computation corresponds to reparti-
tioning the states into those at which to stop and those at which to continue, based on the current
approximate Q-factors Φrt. In Section 4, we will discuss how to reduce this extra overhead.

We will prove that the sequence {Φrt} generated by the least squares Q-learning algorithm (3)
asymptotically converges to the unique fixed point of ΠF . The idea of the proof is to show that the
algorithm can be written as the iteration Φrt+1 = Π̂tF̂t(Φrt) or its damped version, where Π̂t and
F̂t approximate Π and F , respectively, within simulation error that asymptotically diminishes to 0
w.p.1.

1Multiple independent infinitely long trajectories can also be used similarly.
2We ignore the issues associated with the invertibility of the matrix in Eq. (3). They can be handled, for example,

by adding a small positive multiple of the identity to the matrix if it is not invertible.
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3.2 Convergence Proof

The iteration (3) can be written equivalently as

r̂t+1 =

(
n∑

i=1

π̂t(i)φ(i)φ(i)′
)−1 n∑

i=1

π̂t(i)φ(i)

ĝt(i) + α
n∑

j=1

π̂t(j|i) min
{
c(j), φ(j)′rt

} ,

with π̂t(i) and π̂t(j|i) being the empirical frequencies defined by

π̂t(i) =
∑t

k=0 δ(xk = i)
t + 1

, π̂t(j|i) =
∑t

k=0 δ(xk = i, xk+1 = j)∑t
k=0 δ(xk = i)

,

where δ(·) is the indicator function, and ĝt is the empirical mean of the per-stage costs:

ĝt(i) =
∑t

k=0 g(xk, xk+1)δ(xk = i)∑t
k=0 δ(xk = i)

.

[In the case where
∑t

k=0 δ(xk = i) = 0, we define ĝt(i) = 0, π̂t(j|i) = 0 by convention.] In a more
compact notation,

Φr̂t+1 = Π̂tF̂t(Φrt), (6)

where the mappings Π̂t and F̂t are simulation-based approximations to Π and F , respectively:

Π̂t = Φ(Φ′D̂tΦ)−1Φ′D̂t, F̂tJ = ĝt + αP̃t min
{
c, J
}
, ∀J ∈ <n,

D̂t = diag (. . . , π̂t(i), . . .) ,
(
P̃t

)
ij

= π̂t(j|i).

With a stepsize γ, the least squares Q-learning iteration (4) is written as

Φrt+1 = (1− γ)Φrt + γΠ̂tF̂t(Φrt). (7)

By ergodicity of the Markov chain, we have w.p.1,

π̂t → π, P̃t → P, ĝt → g, as t →∞,

where g denotes the expected per-stage cost vector with
∑n

j=1 pijg(i, j) as the i-th component.

For each t, denote the invariant distribution of P̃t by π̃t. We now have three distributions,
π, π̂t, π̃t, which define, respectively, three weighted Euclidean norms, ‖ · ‖π, ‖ · ‖π̂t

, ‖ · ‖π̃t
. The

mappings we consider are non-expansive or contraction mappings with respect to one of these norms.
In particular:

• the mapping Π̂t is non-expansive with respect to ‖ · ‖π̂t
(since Π̂t is projection with respect to

‖ · ‖π̂t
), and

• the mapping F̂t is a contraction, with modulus α, with respect to ‖ ·‖π̃t
(the proof of Lemma 1

can be used to show this).

We have the following facts, each being a consequence of the ones preceding it:

(i) π̂t, π̃t → π w.p.1, as t →∞.

(ii) For any ε > 0 and a sample trajectory with converging sequences π̂t, π̃t, there exists a time t̄
such that for all t ≥ t̄ and all states i

1
1 + ε

≤ π̂t(i)
π(i)

≤ 1 + ε,
1

1 + ε
≤ π̃t(i)

π(i)
≤ 1 + ε,

1
1 + ε

≤ π̃t(i)
π̂(i)

≤ 1 + ε.
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(iii) Under the condition of (ii), for any J ∈ <n, we have

‖J‖π ≤ (1 + ε)‖J‖π̂t
, ‖J‖π̂t

≤ (1 + ε)‖J‖π̃t
, ‖J‖π̃t

≤ (1 + ε)‖J‖π,

for all t sufficiently large.

Fact (iii) implies the contraction of Π̂tF̂t with respect to ‖ · ‖π, as shown in the following lemma.

Lemma 2. Let α̂ ∈ (α, 1). Then, w.p.1, Π̂tF̂t is a ‖ · ‖π-contraction mapping with modulus α̂ for
all t sufficiently large.

Proof. Consider a simulation trajectory from the set of probability 1 for which P̃t → P and π̂t, π̃t →
π. Fix an ε > 0. For any functions J1 and J2, using fact (iii) above and the non-expansiveness and
contraction properties of Π̂t and F̂t, respectively, we have for t sufficiently large,

‖Π̂tF̂tJ1 − Π̂tF̂tJ2‖π ≤ (1 + ε)‖Π̂tF̂tJ1 − Π̂tF̂tJ2‖π̂t

≤ (1 + ε)‖F̂tJ1 − F̂tJ2‖π̂t

≤ (1 + ε)2‖F̂tJ1 − F̂tJ2‖π̃t

≤ (1 + ε)2α‖J1 − J2‖π̃t

≤ (1 + ε)3α‖J1 − J2‖π.

Thus, by letting ε be such that (1 + ε)3α < α̂ < 1, we see that Π̂tF̂t is a ‖ · ‖π-contraction mapping
with modulus α̂ for all t sufficiently large.

Proposition 1. For any constant stepsize γ ∈ (0, 2
1+α ), rt converges to r∗ w.p.1, as t →∞.

Proof. We choose t̄ such that for all t ≥ t̄, the contraction property of Lemma 2 applies. We have
for such t,

‖Φrt+1 − Φr∗‖π =
∥∥∥(1− γ) (Φrt − Φr∗) + γ

(
Π̂tF̂t(Φrt)−ΠF (Φr∗)

)∥∥∥
π

≤ |1− γ| ‖Φrt − Φr∗‖π + γ ‖Π̂tF̂t(Φrt)− Π̂tF̂t(Φr∗)‖π + γ ‖Π̂tF̂t(Φr∗)−ΠF (Φr∗)‖π

≤ (|1− γ|+ γα̂) ‖Φrt − Φr∗‖π + γεt, (8)

where εt = ‖Π̂tF̂t(Φr∗) − ΠF (Φr∗)‖π. Because ‖Π̂tF̂t(Φr∗) − ΠF (Φr∗)‖π → 0, we have εt → 0.
Thus, for γ ≤ 1, since

(1− γ + γα̂) < 1,

it follows that Φrt → Φr∗, or equivalently, rt → r∗, w.p.1. Similarly, based on Eq. (8), in order to
have ‖Φrt+1 − Φr∗‖π converge to 0 under a stepsize γ > 1, it is sufficient that γ − 1 + γα̂ < 1, or
equivalently,

γ <
2

1 + α̂
.

Hence Φrt converges to Φr∗ for the stepsize γ ∈ (0, 2
1+α ).

Note that the range of stepsizes for which convergence was shown includes γ = 1.

Remark 1. The convergence of rt implies that Φrt is bounded w.p.1. Using this fact, we can
interpret the iteration of the least squares Q-learning algorithm, with the unit stepsize, for instance,
as the deterministic fixed point iteration ΠF (Φrt) plus an asymptotically diminishing stochastic
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disturbance (see Fig. 1). In particular, the difference between ΠF (Φrt) and the simulation-based
fixed point iteration Φrt+1 = Π̂tF̂t(Φrt) is

Π̂tF̂t(Φrt)−ΠF (Φrt) = (Π̂tĝt −Πg) + α(Π̂tP̃t −ΠP ) min{c,Φrt},

and can be bounded by∥∥Π̂tF̂t(Φrt)−ΠF (Φrt)
∥∥ ≤ ‖Π̂t −Π‖ ‖ĝt‖+ ‖Π‖ ‖ĝt − g‖+ α‖Π̂tP̃t −ΠP‖

∥∥min{c,Φrt}
∥∥,

where ‖ · ‖ is any norm. Since Φrt is bounded w.p.1, the bound on the right-hand side (r.h.s.) can
be seen to asymptotically diminish to 0.

Remark 2. A slightly different proof of the convergence of rt, reminiscent of the argument used
later in Section 5, is to interpret the iteration Φrt+1 = Π̂tF̂t(Φrt) as ΠF (Φrt) plus a stochastic
disturbance whose magnitude is bounded by εt(1 + ‖Φrt‖), with εt asymptotically diminishing to
0. (This can be seen from the discussion in the preceding remark.) The convergence of rt can then
be established using the contraction property of ΠF . This will result in a shorter proof. However,
the line of proof based on Lemma 2 is more insightful and transparent. Furthermore, Lemma 2 is
of independent value, and in particular it will be used in the following convergence rate analysis.

3.3 Comparison to an LSTD Analogue

A natural alternative approach to finding r∗ that satisfies Φr∗ = ΠF (Φr∗) is to replace Π and F with
asymptotically convergent approximations. In particular, let r̃t+1 be the solution of Φr = Π̂tF̂t(Φr),
i.e.,

Φr̃t+1 = Π̂tF̂t(Φr̃t+1), t = 0, 1, . . . .

With probability 1 the solutions exist for t sufficiently large by Lemma 2. The conceptual algorithm
that generates the sequence {r̃t} may be viewed as the analogue of the LSTD method, proposed
by Bradtke and Barto [BB96], and further developed by Boyan [Boy99] (see also the text by Bert-
sekas [Ber07], Chapter 6). For the optimal stopping problem this is not a viable algorithm because
it involves solution of a nonlinear equation. It is introduced here as a vehicle for interpretation of
our least squares Q-learning algorithm (2)-(4).

In particular, we note that r̃t+1 is the solution of the equation

r̃t+1 = arg min
r∈<s

t∑
k=0

(
φ(xk)′r − g(xk, xk+1)− α min

{
c(xk+1), φ(xk+1)′r̃t+1

})2

, (9)

so it is the fixed point of the “arg min” mapping in the r.h.s. of the above equation. On the other
hand, the least squares Q-learning algorithm (2)-(4), with stepsize γ = 1, that generates rt+1 can
be viewed as a single iteration of a fixed point algorithm that aims to find r̃t+1, starting from rt.
This relation can be quantified further. Using an argument similar to the one used in [YB06] for
evaluating the optimal asymptotic convergence rate of LSPE, we will show that with any stepsize in
the range (0, 2

1+α ), the LSPE-like update Φrt converges to the LSTD-like update Φr̃t asymptotically
at the rate of O(t) [while we expect both to converge to Φr∗ at a slower rate O(

√
t)]. In particular,

t‖Φrt − Φr̃t‖ is bounded w.p.1, thus tβ(Φrt − Φr̃t) converges to zero w.p.1 for any β < 1. First we
prove the following lemma.

Lemma 3. (i) r̃t → r∗ w.p.1, as t →∞.

(ii) t‖r̃t+1 − r̃t‖ is bounded w.p.1.

9



Proof. (i) Let α̂ ∈ (α, 1). Similar to the proof of Prop. 1, using Lemma 2, we have that w.p.1, for
all t sufficiently large,

‖Φr̃t+1 − Φr∗‖π = ‖Π̂tF̂t(Φr̃t+1)− Π̂tF̂t(Φr∗) + Π̂tF̂t(Φr∗)−ΠF (Φr∗)‖π

≤ α̂‖Φr̃t+1 − Φr∗‖π + ‖Π̂tF̂t(Φr∗)−ΠF (Φr∗)‖π.

Thus, w.p.1,

‖Φr̃t+1 − Φr∗‖π ≤
1

1− α̂
‖Π̂tF̂t(Φr∗)−ΠF (Φr∗)‖π → 0,

as t →∞, implying that r̃t is bounded and r̃t → r∗ as t →∞.

(ii) By applying Lemma 2, we have that w.p.1, for all t sufficiently large,

‖Φr̃t+1 − Φr̃t‖π = ‖Π̂tF̂t(Φr̃t+1)− Π̂tF̂t(Φr̃t) + Π̂tF̂t(Φr̃t)− Π̂t−1F̂t−1(Φr̃t)‖π

≤ α̂‖Φr̃t+1 − Φr̃t‖π + ‖Π̂tF̂t(Φr̃t)− Π̂t−1F̂t−1(Φr̃t)‖π,

which implies, by the definition of F̂t and F̂t−1, that

‖Φr̃t+1 − Φr̃t‖π ≤
1

1− α̂

(
‖Π̂tĝt − Π̂t−1ĝt−1‖π + ‖Π̂tP̃t − Π̂t−1P̃t−1‖π‖min{c,Φr̃t}‖π

)
.

Evidently (as shown in [YB06]), ‖Π̂tĝt − Π̂t−1ĝt−1‖π and ‖Π̂tP̃t − Π̂t−1P̃t−1‖π are bounded by C/t
for some constant C and all t sufficiently large. By the first part of our proof, Φr̃t is bounded.
Hence, w.p.1, there exists some sample path-dependent constant C such that for all t sufficiently
large,

‖Φr̃t+1 − Φr̃t‖π ≤
C

t
.

Proposition 2. For any constant stepsize γ ∈ (0, 2
1+α ), t(Φrt − Φr̃t) is bounded w.p.1.

Proof. The proof is similar to that in [YB06]. With the chosen stepsize, by Lemma 2,

‖Φrt+1 − Φr̃t+1‖π =
∥∥(1− γ)(Φrt − Φr̃t+1) + γ

(
Π̂tF̂t(Φrt)− Π̂tF̂t(Φr̃t+1)

)∥∥
π

≤ ᾱ‖Φrt − Φr̃t+1‖π

≤ ᾱ‖Φrt − Φr̃t‖π + ᾱ‖Φr̃t+1 − Φr̃t‖π,

for some ᾱ < 1 and all t sufficiently large. Multiplying both sides by (t + 1), using Lemma 3 (ii),
and defining ζt = t‖Φrt − Φr̃t‖π, we have that w.p.1 for some constant C ′, β < 1 and time t̄,

ζt+1 ≤ β ζt + C ′, ∀ t ≥ t̄,

which implies that

ζt ≤ βt−t̄ζt̄ +
C ′

1− β
, ∀ t ≥ t̄.

Hence t‖Φrt − Φr̃t‖π is bounded w.p.1.

4 Variants with Reduced Overhead per Iteration

At each iteration of the least squares Q-learning algorithm (3), (4), while updating rt, it is necessary
to recompute the terms min

{
c(xk+1), φ(xk+1)′rt

}
for all the samples xk+1, k < t. Intuitively, this

corresponds to repartitioning the sampled states into those at which to stop and those at which
to continue based on the most recent approximate Q-factors Φrt. In this section we discuss some
variants of the algorithm that aim to reduce this computation.
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4.1 First Variant

A simple way to reduce the overhead in iteration (3) is to forgo the repartitioning just mentioned.
Thus, in this variant we replace the terms min

{
c(xk+1), φ(xk+1)′rt

}
by q̃(xk+1, rt), given by

q̃(xk+1, rt) =

{
c(xk+1) if k ∈ K,

φ(xk+1)′rt if k /∈ K,

where K =
{
k | c(xk+1) ≤ φ(xk+1)′rk

}
is the set of states to stop based on the (earlier) approximate

Q-factors Φrk, rather than the (most recent) approximate Q-factors Φrt. In particular, we replace
the term

t∑
k=0

φ(xk) min
{
c(xk+1), φ(xk+1)′rt

}
in Eq. (3) with

t∑
k=0

φ(xk)q̃(xk+1, rt) =
∑

k≤t, k∈K

φ(xk)c(xk+1) +
∑

k≤t, k/∈K

φ(xk)φ(xk+1)′rt,

which can be efficiently updated at each time t.
Some other similar variants are possible, which employ a limited form of repartitioning the states

into those to stop and those to continue. For example, one may repartition only the sampled states
within a time window of the m most recent time periods. In particular, in the preceding calculation,
instead of the set K, we may use at time t the set

Kt = {k | k ∈ Kt−1, k < t−m} ∪
{
k | t−m ≤ k ≤ t, c(xk+1) ≤ φ(xk+1)′rt

}
,

starting with K0 = {0}. Here m = ∞ corresponds to the algorithm of the preceding section, while
m = 1 corresponds to the algorithm of the preceding paragraph. Thus the overhead for repartitioning
per iteration is proportional to m, and remains bounded.

An important observation is that in the preceding variations, if rt converges, then asymptotically
the terms min

{
c(xk+1), φ(xk+1)′rt

}
and q̃(xk+1, rt) coincide, and it can be seen that the limit of rt

must satisfy the equation Φr = ΠF (Φr), so it must be equal to the unique solution r∗. However, at
present we have no proof of convergence of rt.

4.2 Second Variant

Let us consider another variant, whereby we simply replace the terms min{c(xk+1), φ(xk+1)′rt} in
the least squares problem (2) with min{c(xk+1), φ(xk+1)′rk}. The idea is that for large k and t,
these two terms may be close enough to each other, so that convergence may still be maintained.
Thus we consider the iteration

rt+1 = arg min
r∈<s

t∑
k=0

(
φ(xk)′r − g(xk, xk+1)− α min

{
c(xk+1), φ(xk+1)′rk

})2

. (10)

This is a special case of an algorithm due to Choi and Van Roy [CV06], as we will discuss shortly.
By carrying out the minimization over r, we can equivalently write Eq. (10) as

rt+1 = B−1
t+1

1
t + 1

t∑
k=0

φ(xk)
(
g(xk, xk+1) + α min

{
c(xk+1), φ(xk+1)′rk

})
, (11)

11



where we denote

Bt =
1
t

t−1∑
k=0

φ(xk)φ(xk)′.

To gain some insight into this iteration, let us rewrite it as follows:

rt+1 =
1

t + 1
B−1

t+1

t−1∑
k=0

φ(xk)
(
g(xk, xk+1) + α min

{
c(xk+1), φ(xk+1)′rk

})
+

1
t + 1

B−1
t+1φ(xt)

(
g(xt, xt+1) + α min

{
c(xt+1), φ(xt+1)′rt

})
=

1
t + 1

B−1
t+1(tBt)rt +

1
t + 1

B−1
t+1φ(xt)

(
g(xt, xt+1) + α min

{
c(xt+1), φ(xt+1)′rt

})
=

1
t + 1

B−1
t+1 (tBt + φ(xt)φ(xt)′) rt

+
1

t + 1
B−1

t+1φ(xt)
(
g(xt, xt+1) + α min

{
c(xt+1), φ(xt+1)′rt

}
− φ(xt)′rt

)
,

and finally

rt+1 = rt +
1

t + 1
B−1

t+1φ(xt)
(
g(xt, xt+1) + α min

{
c(xt+1), φ(xt+1)′rt

}
− φ(xt)′rt

)
. (12)

This iteration can be shown to converge to r∗. However, we will show by example that its rate of
convergence can be inferior to the least squares Q-learning algorithm [cf. Eqs. (3)-(4)].

Accordingly, we consider another variant that aims to improve the practical (if not the theoretical)
rate of convergence of iteration (10) [or equivalently (12)], and is new to our knowledge. In particular,
we introduce a time window of size m, and we replace the terms min

{
c(xk+1), φ(xk+1)′rt

}
in the

least squares problem (2) with min
{
c(xk+1), φ(xk+1)′rlk,t

}
, where

lk,t = min{k + m− 1, t}.

In other words, we consider the algorithm

rt+1 = arg min
r∈<s

t∑
k=0

(
φ(xk)′r − g(xk, xk+1)− α min

{
c(xk+1), φ(xk+1)′rlk,t

})2

. (13)

Thus, at time t, the last m terms in the least squares sum are identical to the ones in the correspond-
ing sum for the least squares Q-learning algorithm [cf. Eq. (2)]. The terms min

{
c(xk+1), φ(xk+1)′rlk,t

}
remain constant after m updates (when lk,t reaches the value k + m− 1), so they do not need to be
updated further.

Note that in the first m iterations, this iteration is identical to the least squares Q-learning
algorithm of Section 3 with unit stepsize. An important issue is the size of m. For large m, the
algorithm approaches the least squares Q-learning algorithm, while for m = 1, it is identical to the
earlier variant (10).

4.3 Comparison with Other Algorithms

Let us now consider an algorithm, due to Choi and Van Roy [CV06], and referred to as the fixed point
Kalman filter. It applies to more general problems, but when specialized to the optimal stopping
problem, it takes the form

rt+1 = rt + γtB
−1
t+1φ(xt)

(
g(xt, xt+1) + α min

{
c(xt+1), φ(xt+1)′rt

}
− φ(xt)′rt

)
, (14)
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where γt is a diminishing stepsize. The algorithm is motivated by Kalman filtering ideas and the
recursive least squares method in particular. It can also be viewed as a scaled version (with scaling
matrix B−1

t+1) of the method by Tsitsiklis and Van Roy [TV99], which has the form

rt+1 = rt + γtφ(xt)
(
g(xt, xt+1) + α min{c(xt+1), φ(xt+1)′rt} − φ(xt)′rt

)
. (15)

Scaling is believed to be instrumental for enhancing the rate of convergence.
It can be seen that when γt = 1/(t + 1), the iterations (12) and (14) coincide. However, the

iterations (13) and (14) are different for a window size m > 1. As far as we know, the convergence
proofs of [TV99] and [CV06] do not extend to iteration (13) or its modification that we will introduce
in the next section (in part because of the dependence of rt+1 on as many as t − m past iterates
through the time window). The following example provides some insight into the behavior of the
various algorithms discussed in this paper.

Example 1. This is a somewhat unusual example, which can be viewed as a simple DP model
to estimate the mean of a random variable using a sequence of independent samples. It involves a
Markov chain with a single state. At each time period, the cost produced at this state is a random
variable taking one of n possible values with equal probability.3 Let gk be the cost generated at
the kth transition. The “stopping cost” is taken to be very high so that the stopping option does
not affect the algorithms. We assume that the costs gk are independent and have zero mean and
variance σ2. The matrix Φ is taken to be the scalar 1, so r∗ is equal to the true cost and r∗ = 0.

Then, the least squares Q-learning algorithm of Section 3 with unit stepsize [cf. Eqs. (3) and (4)]
takes the form

rt+1 =
g0 + · · ·+ gt

t + 1
+ αrt. (16)

The first variant (Section 4.1) also takes this form, regardless of the method used for repartitioning,
since the stopping cost is so high that it does not materially affect the calculations. Since itera-
tion (16) coincides with the LSPE(0) method for this example, the corresponding rate of convergence
results apply (see Yu and Bertsekas [YB06]). In particular, as t →∞,

√
t rt converges in distribution

to a Gaussian distribution with mean zero and variance σ2/(1− α)2, so that E{r2
t } converges to 0

at the rate 1/t, i.e., there is a constant C such that

tE{r2
t } ≤ C, ∀ t = 0, 1, . . . .

The second variant [Section 4.2, with time window m = 1; cf. Eq. (12)], takes the form

rt+1 =
gt

t + 1
+

t + α

t + 1
rt. (17)

The fixed point Kalman filter algorithm [cf. Eq. (14)], and the Tsitsiklis and Van Roy algorithm [cf.
Eq. (15)] are identical because the scaling matrix Bt+1 is the scalar 1 in this example. They take
the form

rt+1 = rt + γt(gt + αrt − rt).

For a stepsize γt = 1/(t + 1), they are identical to the second variant (17).
We claim that iteration (17) converges more slowly than iteration (16), and that tE{r2

t } → ∞.
To this end, we write

E{r2
t+1} =

(
t + α

t + 1

)2

E{r2
t }+

σ2

(t + 1)2
.

3A more conventional but equivalent example can be obtained by introducing states 1, . . . , n, one for each possible
value of the cost per stage, and transition probabilities pij = 1/n for all i, j = 1, . . . , n.
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Let ζt = tE{r2
t }. Then

ζt+1 =
(t + α)2

t(t + 1)
ζt +

σ2

t + 1
.

From this equation (for α > 1/2), we have

ζt+1 ≥ ζt +
σ2

t + 1
,

so ζt tends to ∞.
Finally, the variant of Section 4.2 with time window m > 1 [cf. Eq. (13)], for t ≥ m takes the

form
rt+1 =

g0 + · · ·+ gt

t + 1
+ α

rm−1 + rm + · · ·+ rt−1 + mrt

t + 1
, t ≥ m. (18)

For t < m, it takes the form

rt+1 =
g0 + · · ·+ gt

t + 1
+ αrt, t < m.

We may write iteration (18) as

rt+1 =
gt

t + 1
+

t + α

t + 1
rt + α

(m− 1)(rt − rt−1)
t + 1

, t ≥ m,

and it can be shown again that t E{r2
t } → ∞, similar to iteration (17). This suggests that the use

of m > 1 may affect the practical convegence rate of the algorithm, but is unlikely to affect the
theoretical convergence rate.

5 Convergence Analysis for Some Variants

In this section, we prove the convergence of the second variant, iteration (13), with a window-size
m ≥ 1. To simplify notation, we define function h by

h(x, r) = min
{
c(x), φ(x)′r

}
,

and we write iteration (13) equivalently as

rt+1 = B−1
t+1

1
t + 1

t∑
k=0

φ(xk)
(
g(xk, xk+1) + αh

(
xk+1, rlk,t

))
, (19)

where lk,t = min{k + m− 1, t}.

Proposition 3. Let rt be defined by Eq. (19). Then w.p.1, rt → r∗ as t →∞.

In the remainder of this section we provide two alternative proofs. The first proof is based on the
o.d.e. (ordinary differential equation) techniques for analyzing stochastic approximation algorithms,
and makes use of theorems by Borkar [Bor06] and Borkar and Meyn [BM00], which are also given in
the yet unpublished book by Borkar [Bor07] (Chapters 2, 3, and 6). We have adapted the theorems
in these sources for our purposes (the subsequent Prop. 4) with the assistance of V. Borkar. This
proof is relatively short, but requires familiarity with the intricate methodology of the o.d.e. line of
analysis. We have also provided a “direct,” somewhat longer proof, which does not rely on references
to o.d.e.-related sources, although it is in the same spirit as the o.d.e.-based proof. In an earlier
version of this report, we have used the line of argument of the “direct” proof to show the result
of Prop. 3 with an additional assumption that guaranteed boundedness of the iterates rt. We are
indebted to V. Borkar who gave us the idea and several suggestions regarding the first proof. These
suggestions in turn motivated our modification of the second proof to weaken our boundedness
assumption.
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5.1 A Proof of Proposition 3 Based on O.D.E. Methods

First, we notice that Eq. (19) implies the following relation,

(t + 1)Bt+1rt+1 = tBtrt + φ(xt)
(
g(xt, xt+1) + αh(xt+1, rt)

)
+

t−1∑
k=0

αφ(xk)
(
h(xk+1, rlk,t

)− h(xk+1, rlk,t−1)
)

=
(
tBt + φ(xt)φ(xt)′

)
rt + φ(xt)

(
g(xt, xt+1) + αh(xt+1, rt)− φ(xt)′rt

)
+

t−1∑
k=0

αφ(xk)
(
h(xk+1, rlk,t

)− h(xk+1, rlk,t−1)
)
.

Thus iteration (19) is equivalent to

rt+1 =rt +
1

t + 1
B−1

t+1φ(xt)
(
g(xt, xt+1) + αh

(
xt+1, rt

)
− φ(xt)′rt

)
+

1
t + 1

B−1
t+1

t−1∑
k=0

αφ(xk)
(
h(xk+1, rlk,t

)− h(xk+1, rlk,t−1)
)
. (20)

The idea is to reduce iteration (20) to the following form and study its convergence:

rt+1 = rt +
1

t + 1
B−1φ(xt)

(
g(xt, xt+1) + αh

(
xt+1, rt

)
− φ(xt)′rt

)
+

1
t + 1

∆t, (21)

where B−1 = limt→∞B−1
t , and ∆t is a noise sequence. It is worth to point out that the effect of

window size m > 1 will be neglected in our convergence analysis, and this does not contradict our
favoring m > 1 to m = 1, because in general the asymptotic convergence rate of the iterations with
and without the noise term can differ from each other.

We need the following result from the o.d.e. analysis of stochastic approximation, which only
requires a rather weak assumption on the noise term.

A General Convergence Result

Consider the iteration
rt+1 = rt + γt

(
H(yt, rt) + ∆t

)
, (22)

where γt is the stepsize (deterministic or random); {yt} is the state sequence of a Markov process;
H(y, r) is a function of (y, r); and ∆t is the noise sequence. Let the norm of <s be any norm. We
assume the following.

Assumption 1. The function H(y, r) is Lipschitz continuous in r for all y with the same Lipschitz
constant. The stepsize γt satisfies w.p.1,

∑∞
t=0 γt = ∞,

∑∞
t=0 γ2

t < ∞, and γt ≤ γt−1 for all t
sufficiently large. The noise ∆t satisfies

‖∆t‖ ≤ εt(1 + ‖rt‖), w.p.1, (23)

where εt is a scalar sequence that converges to 0 w.p.1, as t →∞.

The convergence of iteration (22) under Assumption 1 can be analyzed based on the analysis in
Borkar [Bor06] on averaging of “Markov noise,” and the stability analysis in Borkar and Meyn [BM00]
through the scaling limit o.d.e.

We assume that yt is the state of a finite-state Markov chain. (The analysis of [BM00, Bor06,
Bor07] applies to a much more general setting.) For a function f(y), we denote by E0{f(Y )} the
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expectation over Y with respect to the invariant distribution of the Markov chain yt. For a positive
scalar b, define

Hb(y, r) =
H(y, b r)

b
, H∞(y, r) = lim

b→∞

H(y, b r)
b

,

where the existence of the limit defining H∞(y, r) for every (y, r) will be part of our assumption.
We refer to

ṙ = E0{H(Y, r)} (24)

as our “basic” o.d.e. We consider also the scaled version of our basic o.d.e.,

ṙ = E0{Hb(Y, r)}, (25)

and the scaling limit o.d.e.,
ṙ = E0{H∞(Y, r)}. (26)

Proposition 4. Suppose that H∞ exists, and the origin is an asymptotically stable equilibrium point
of the scaling limit o.d.e. (26), and the basic o.d.e. (24) has a unique globally asymptotically stable
equilibrium point r∗. Suppose also that Assumption 1 holds. Then iteration (22) converges to r∗

w.p.1.

Proof. Assume first that supt ‖rt‖ < ∞ w.p.1. Then the noise sequence ∆t satisfies limt→∞∆t = 0
w.p.1. Applying the averaging result in [Bor06] (Corollary 3.1 and its preceding remark on noise,
p. 144), we have that rt converges to r∗, the unique stable equilibrium of the basic o.d.e. ṙ =
E0{H(Y, r)}.

To establish the boundedness of ‖rt‖, we use the scaled o.d.e. (25) and the limit o.d.e. (26)
together with the averaging argument of [Bor06]. The proof proceeds in three steps.

(i) For any given positive number T , we define time intervals [t, kt], where kt = min{k | k >

t,
∑k

j=t γj ≥ T}. For every such interval, we consider the scaled sequence

r̂
(t)
j =

rj

bt
, j ∈ [t, kt], where bt = max{‖rt‖, 1}.

Then for j ∈ [t, kt),
r̂
(t)
j+1 = r̂

(t)
j + γj

(
Hbt

(yj , r̂
(t)
j ) + ∆̂(t)

j

)
where ∆̂(t)

j = ∆j

bt
is the scaled noise and satisfies

‖∆̂(t)
j ‖ ≤ εj(1 + ‖r̂(t)

j ‖).

Using the Lipschitz continuity of H(y, ·) and the discrete Gronwall inequality (Lemma 4.3 of [BM00]),
we have that r̂

(t)
j is bounded on [t, kt] with the bound independent of t. Also, as a consequence,

the noise satisfies ‖∆̂(t)
j ‖ ≤ εjCT with CT being some constant independent of t. These allow us to

apply again the averaging analysis in [Bor06] to r̂
(t)
j , j ∈ [t, kt] and obtain our convergence result, as

we show next.
(ii) Let x(t)(u) be the solution of the scaled o.d.e. ṙ = E0{Hbt(Y, r)} at time u with initial

condition x(0) = r̂
(t)
t . (Note that x(t)(·) is a curve on <s whose argument is the natural continuous

time.) By applying the analysis in [Bor06] (the proof of Lemma 2.2, Lemma 2.3 itself, and the proof
of Lemma 3.1, p. 142-143), we have in particular that

lim
t→∞

‖r̂(t)
kt
− x(t)(ut)‖ = 0, w.p.1, (27)

where ut =
∑kt

j=t γj and ut ∈ [T, T + 1) for t sufficiently large.
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(iii) Notice that x(0) = r̂
(t)
t is within the unit ball. Hence, by Lemma 4.4 of [BM00], for suitably

chosen T , x(t)(ut) would be close to the origin 0, had bt been sufficiently large, because the origin 0
is the globally asymptotically stable equilibrium point of the scaling limit o.d.e. (26). Thus, using
Eq. (27) and applying the analysis of [BM00] (Theorem 2.1(i) and its proof in Section 4.1, with
Lemma 4.1-4.4 and Lemma 4.6, p. 460-464), we can establish that rt is bounded w.p.1.

Expressing the 2nd Variant as Iteration (22)

We will show that our iteration (19), equivalently (20), can be written in the form (21) with the
noise ∆t satisfying Eq. (23). Iteration (21) is a special case of iteration (22) with the following
identifications. Let yt be the pair of states (xt, xt+1). For y = (y1, y2), let H(y, r) be the mapping
from <s to <s defined by

H(y, r) = B−1φ(y1)
(
g(y1, y2) + αh

(
y2, r

)
− φ(y1)′r

)
.

Clearly, H(y, r) is Lipschitz continuous in r uniformly for all y. Let the stepsize γt be 1
t+1 .

We consider the associated o.d.e. and verify that they satisfy the corresponding assumptions
of Prop. 4. For a function f(y), E0{f(Y )} =

∑
i,j π(i)pijf

(
(i, j)

)
. Consider our “basic” o.d.e.

ṙ = E0{H(Y, r)} and the mapping associated with its r.h.s.,

ΦE0{H(Y, r)} = ΠF (Φr)− Φr.

Since ΠF (Φr) is a contraction mapping, its fixed point r∗ is the globally asymptotically stable
equilibrium point of the basic o.d.e. Consider the scaled o.d.e. ṙ = E0{Hb(Y, r)}, and the scaling
limit o.d.e., ṙ = E0{H∞(Y, r)}. It is easy to see that H∞ exists, and

ΦE0{Hb(Y, r)} = Π
(
g/b + αP min

{
c/b,Φr

})
− Φr,

ΦE0{H∞(Y, r)} = αΠP min{0,Φr} − Φr,

where g denotes the vector of per-stage costs whose components are defined by g(i) =
∑

j pijg(i, j).
Since by Lemma 1, the mappings Π

(
g/b + αP min

{
c/b,Φr

})
and αΠP min{0,Φr} are contractions

with modulus α, the scaled o.d.e. (25) and the scaling limit (26) have globally asymptotically stable
equilibrium points, which we denote by rb and r∞, respectively. We have in particular, rb = r∗ for
b = 1; r∞ = 0, the original of <s; and rb converges to r∞ as b →∞.

We now show that the the noise term ∆t satisfies Eq. (23), when we reduce iteration (20), i.e.,

rt+1 =rt +
1

t + 1
B−1

t+1φ(xt)
(
g(xt, xt+1) + αh

(
xt+1, rt

)
− φ(xt)′rt

)
+

1
t + 1

B−1
t+1

t−1∑
k=0

αφ(xk)
(
h(xk+1, rlk,t

)− h(xk+1, rlk,t−1)
)
,

to iteration (21), i.e.,

rt+1 = rt +
1

t + 1
B−1φ(xt)

(
g(xt, xt+1) + αh

(
xt+1, rt

)
− φ(xt)′rt

)
+

1
t + 1

∆t.

To simplify the notation, in the proofs and discussions we will use o(1) to denote a scalar sequence
that converges to 0 w.p.1; we can write Eq. (23), for instance, as ‖∆t‖ = o(1)(1 + ‖rt‖) for short.

Since B−1
t+1 → B−1 w.p.1, as t → ∞, replacing B−1

t+1 by B−1 in the third term of the r.h.s. of
Eq. (20) will only introduce a noise term of magnitude o(1)(1 + ‖rt‖). We aim to show that the
second term of the r.h.s. of Eq. (20) can also be treated as a noise term of magnitude o(1)(1+ ‖rt‖).
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Since rlk,t
and rlk,t−1 differ for only the last m values of k, for which rlk,t

= rt and rlk,t−1 = rt−1, it
can be seen that for all t sufficiently large,

1
t + 1

∥∥∥B−1
t+1

t−1∑
k=0

αφ(xk)
(
h(xk+1, rlk,t

)− h(xk+1, rlk,t−1)
)∥∥∥ ≤ C1

t + 1
‖rt − rt−1‖ (28)

for some constant C1. Therefore it is sufficient to show that ‖rt − rt−1‖ = o(1)(1 + ‖rt‖). This is
indicated in the following.

Lemma 4. For all t sufficiently large and some (path-dependent) constant C,

‖rt+1 − rt‖ ≤
C

t + 1
(1 + ‖rt‖), ‖rt+1 − rt‖ ≤

C

t + 1
(1 + ‖rt+1‖), w.p.1.

Proof. From Eqs. (20) and (28), it can be seen that for all t ≥ t0,

‖rt+1 − rt‖ ≤
1

t + 1
(
C1‖rt − rt−1‖+ C2(1 + ‖rt‖)

)
(29)

for some sufficiently large t0 and suitably chosen positive constants C1 and C2. Define K1 = C1 +C2

and a(t, K1) = 1

1− K1
t+1

. Choose t̄ ≥ t0 such that for all t ≥ t̄, a(t, K1) are positive and

a(t, K1) K1
t+1 ≤ 1, a(t,K1) C1

t+1 ≤
1
2 . (30)

This is possible, since a(t, K1) tends to 1 and the expressions of the l.h.s. are decreasing to 0 as t
increases. For t̄, Eq. (29) can be written as, using ‖rt̄ − rt̄−1‖ ≤ ‖rt̄‖+ ‖rt̄−1‖,

‖rt̄+1 − rt̄‖ ≤
1

t̄ + 1
(K1‖rt̄‖+ C1‖rt̄−1‖+ C2)

≤ 1
t̄ + 1

(K1‖rt̄‖+ K2) (31)

where K2 is defined, together with some scalar ∆, such that

K2 = C1‖rt̄−1‖+ C2 + ∆, ∆
K2

≥ 1
2 .

Note that in the following argument, K1 and K2 are fixed scalars (do not depend on t).
We will show by induction that Eq. (31) holds with t̄ replaced by t for all t ≥ t̄. This will imply

the first relation in the lemma with C = max{K1,K2}. It is sufficient to verify Eq. (31) for t = t̄+1,
which we now set to do. From Eq. (31) we have

‖rt̄+1 − rt̄‖ ≤ K1
t̄+1

(
‖rt̄ − rt̄+1‖+ ‖rt̄+1‖

)
+ K2

t̄+1 .

Subtracting K1
t̄+1‖rt̄−rt̄+1‖ from both sides and multiplying by a(t̄, K1), we obtain using the definition

of a(t̄, K1),

‖rt̄+1 − rt̄‖ ≤ a(t̄, K1) K1
t̄+1‖rt̄+1‖+ a(t̄, K1) K2

t̄+1 (32)

≤ ‖rt̄+1‖+ 1
2

K2
C1

,

where the last inequality follows from relations in (30). Substituting into the r.h.s. of (29) for
t = t̄ + 1, we have

‖rt̄+2 − rt̄+1‖ ≤
1

t̄ + 2
(
C1‖rt̄+1 − rt̄‖+ C2(1 + ‖rt̄+1‖)

)
≤ 1

t̄ + 2
(
C1‖rt̄+1‖+ 1

2K2 + C2(1 + ‖rt̄+1‖)
)

≤ 1
t̄ + 2

(
K1‖rt̄+1‖+ 1

2K2 + C2

)
≤ 1

t̄ + 2
(
K1‖rt̄+1‖+ K2

)
,
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where the last inequality follows from 1
2K2 + C2 ≤ ∆ + C2 ≤ K2 by our definitions of K2 and ∆.

This completes our induction showing the first claim.
The second relation of the lemma follows from the same induction: we have that for all t ≥ t̄,

Eq. (32) holds with t̄ replaced by t, i.e.,

‖rt+1 − rt‖ ≤ a(t,K1) K1
t+1‖rt+1‖+ a(t, K1) K2

t+1 , ∀t ≥ t̄;

and since a(t,K1) → 1 as t →∞, the claim follows.

This completes the proof of Prop. 3.

5.2 An Alternative “Direct” Proof of Proposition 3

The method of proof uses a device that is typical of the o.d.e. approach: we define a sequence of
times kj , where the length of the interval [kj , kj+1] is increasing with j at the rate of a geometric
progression. We then analyze the progress of the algorithm using a “different clock” under which
the interval [kj , kj+1] is treated as a unit time that is “long” enough for the contraction property
of the algorithm to manifest itself and to allow a convergence proof. In particular, we will argue,
roughly speaking, that rt changes slowly so that during a “considerable” amount of time after t,
namely [t, t + δ t] for some small scalar δ, the terms h

(
xk+1, rlk,t

)
are close to h

(
xk+1, rt

)
. This

will allow us to view Φrt+δt as the result of a contracting fixed point iteration applied on Φrt, plus
stochastic noise. Based on this interpretation, we will first show that the subsequence rk at times
k = (1 + δ)t, (1 + δ)2t, . . . comes close to r∗ (within a distance that is a decreasing function of δ),
and we will then show the convergence of the entire sequence.

To be properly viewed as time indices, the real numbers δ t and (1 + δ)t need to be rounded to
the closest integers, but to be concise we will skip this step and treat them as if they were integers
(The error introduced can be absorbed in the o(1) factor). Also, in various estimates we will simply
denote by ‖ · ‖ the Euclidean norm ‖ · ‖π on <n, except where noted. For convenience, we define the
norm on the space of r by ‖r‖ = ‖Φr‖π. Thus ‖r‖ = ‖Φr‖ in our notation.

An Ergodicity Property

In our convergence proof, we will argue that for a sample trajectory, the empirical state frequencies
on the segments [t, t + δt) approach the steady-state probabilities, as t increases to ∞. This is fairly
evident, but for completeness we include the proof.

Lemma 5. Let δ be a positive number, let i and j be two states such that pij > 0, and let nδ,t(i, j)
be the empirical frequency of a transition (i, j) in the time interval [t, t + δ t). For any t̄ > 0, let

tk = (1 + δ)k t̄, k = 0, 1, . . .

Then
lim

k→∞
nδ,tk

(i, j) = π(i) pij , w.p.1.

Proof. Fix the transition (i, j). By renewal theory and the central limit theorem, for some constant
C1,

E
{
|nδ,tk

(i, j)− π(i) pij |2
}
≤ C1

δ tk
.

By Chebyshev’s inequality,

P
{
|nδ,tk

(i, j)− π(i) pij | ≥ εk

}
≤ C1

ε2kδ tk
.
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Let εk = t
−β/2
k for some β ∈ (0, 1). Thus

lim
k→∞

εk = 0, ε2k tk = t1−β
k .

Define the events Ak by
Ak =

{
|nδ,tk

(i, j)− π(i) pij | ≥ εk

}
.

Then for some constants C2, C3,

∞∑
k=1

P{Ak} ≤ C2

∞∑
k=1

t
−(1−β)
k = C3

∞∑
k=1

(1 + δ)−k(1−β) < ∞,

so by the Borel-Cantelli Lemma, w.p.1, only finitely many events Ak occur, which proves our claim.

Note that although Lemma 5 is stated for one fixed δ and one fixed t̄, the conclusion holds for a
countable number of δ and t̄ simultaneously. Thus it is valid to choose in the following proof any t̄,
and any δ arbitrarily small, say, from the sequence 2−j . For conciseness, we will not mention this
explicitly again.

Estimates Within Trajectory Segments of the Form [t, t + δ t]

Consider a sample trajectory from a set of probability 1 for which the assertions in Lemmas 4 and 5
(for a countable number of δ) hold. We can thus omit the statement “w.p.1” in the following analysis.
Fix δ, which can be an arbitrarily small positive scalar.

Lemma 6. For t sufficiently large and k ∈ [t, t + δ t]

|φ(i)′rk − φ(i)′rt| ≤ θδ(1 + ‖rt‖), i = 1, . . . , n, (33)

where θδ is a scalar independent of t, and θδ → 0 as δ → 0.

Proof. For m ≥ 1, using rt+m = rt +
∑m

j=1(rt+j − rt+j−1) and using Lemma 4 to bound ‖rt+j −
rt+j−1‖, we can bound rt+m − rt for t sufficiently large by

‖rt+m − rt‖ ≤
m∑

j=1

C
t+j (1 + ‖rt+j−1‖)

≤
m∑

j=1

C
t+j (1 + ‖rt‖+ ‖rt+j−1 − rt‖)

=

 m∑
j=1

C
t+j

 (1 + ‖rt‖) +
m∑

j=1

C
t+j ‖rt+j−1 − rt‖

for some constant C, where the second inequality follows from the triangle inequality. By using the
version of the discrete Gronwall inequality given as Lemma 4.3(i) of [BM00], we have for m ≤ δ t,

‖rt+m − rt‖ ≤ mC
t (1 + ‖rt‖)e

Pm
j=1

C
t+j ≤ δCeδC(1 + ‖rt‖).

By the equivalence of norms, there exists C ′ > 0 such that for all r, ‖Φr‖∞ ≤ C ′‖Φr‖π = C ′‖r‖.
The claim then follows by choosing θδ = C ′δCeδC , which converges to 0 as δ → 0.
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Since lk,t+δt−1 ∈ [t, t + δ t) for k ∈ [t, t + δ t), inequality (33) implies that for all k ∈ [t, t + δ t),∣∣h(xk+1, rlk,t+δt−1

)
− h
(
xk+1, rt

)∣∣ ≤ θδ(1 + ‖rt‖). (34)

Using this, we now write Φrt+δt in terms of Φrt, ΠF (Φrt), and residual terms.

Lemma 7. For t sufficiently large,

Φrt+δt =
1

1 + δ
Φrt +

δ

1 + δ
ΠF (Φrt) + ∆δ,t, (35)

where ∆δ,t satisfies

‖∆δ,t‖ ≤
(

δθδ

1 + δ
+ εt

)
(1 + ‖Φrt‖),

where θδ is a scalar independent of t such that θδ → 0 as δ → 0, and εt is a scalar sequence that
converges to 0 as t →∞.

Proof. Assume t is sufficiently large so that δt > m. We have by definition

Φrt+δt = ΦB−1
t+δt

1
t + δ t

t−1∑
k=0

φ(xk)
(
g(xk, xk+1) + αh(xk+1, rk+m−1)

)
+ ΦB−1

t+δt

1
t + δ t

t+δt−1∑
k=t

φ(xk)
(
g(xk, xk+1) + αh(xk+1, rlk,t+δt−1)

)
. (36)

We approximate separately the two terms on the r.h.s. Using an expression of rt similar to Eq. (19),
we write the first term as

ΦB−1
t+δt

1
t + δ t

(tBtrt) +
1

t + δ t
∆ =

1
1 + δ

Φrt + ε1δ,t, (37)

where ∆ accounts for replacing rlk,t+δt
= rk+m−1 with rlk,t−1 :

∆ = ΦB−1
t+δt

t−1∑
k=0

αφ(xk)
(
h(xk+1, rk+m−1)− h(xk+1, rlk,t−1)

)
,

and
ε1δ,t =

1
1 + δ

Φ
(
B−1

t+δtBt − I
)
rt +

1
t + δ t

∆.

As t → ∞, the differences ‖rk+m−1 − rt−1‖, k ∈ [t − m + 1, t − 1] are bounded by a multiple of
(1 + ‖rt‖) that diminishes to 0 (by Lemma 4 and the proof of Lemma 6), hence ‖∆‖ ≤ C(1 + ‖rt‖),
for some constant C and t sufficiently large. Also, B−1

t+δtBt → I, as t → ∞ (by Lemma 5). Hence,
we have

‖ε1δ,t‖ = o(1)(1 + ‖rt‖). (38)

We write the second term of Eq. (36) as

δ t

(1 + δ) t
ΦB−1

t+δtB̃δtB̃
−1
δt

1
δ t

t+δt−1∑
k=t

φ(xk)
(
g(xk, xk+1) + αh(xk+1, rt)

)
+ ε2δ,t, (39)

where

B̃δt =
1
δ t

t+δt−1∑
k=t

φ(xk)φ(xk)′,
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and ε2δ,t accounts for the residual in substituting rt for rlk,t+δt−1 in h(xk+1, rlk,t+δt−1) for k ∈ [t, t+δ t).
Thus ε2δ,t satisfies, by Eq. (34),

‖ε2δ,t‖ ≤ δ
1+δ θδ(1 + ‖rt‖), (40)

for some positive scalar θδ (independent of t) converges to 0 as δ → 0.
We further approximate the first term of Eq. (39) as follows. Using Lemma 5, we have that as

t →∞, within the segment [t, t + δt), the term

ΦB̃−1
δt

1
δ t

t+δt−1∑
k=t

φ(xk)
(
g(xk, xk+1) + αh(xk+1, rt)

)
converges to ΠF (Φrt). Using Lemma 5, we also have that B−1

t+δtB̃δt → I as t → ∞. Thus we can
write the first term of Eq. (39) as

δ

1 + δ
ΠF (Φrt) + ε3δ,t, (41)

where ε3δ,t accounts for the residual in this approximation, and

‖ε3δ,t‖ = o(1)(1 + ‖rt‖). (42)

Putting Eqs. (37)-(42) together, we can write Φrt+δt as

Φrt+δt =
1

1 + δ
Φrt +

δ

1 + δ
ΠF (Φrt) +

(
ε1δ,t + ε2δ,t + ε3δ,t

)
(43)

where

‖ε1δ,t + ε2δ,t + ε3δ,t‖ ≤
(

δθδ

1 + δ
+ o(1)

)
(1 + ‖Φrt‖).

The claim thus follows.

A Contraction Argument

Fix a scalar ᾱ ∈ (α, 1). Let θδ and εt be as in the preceding lemma. Let δ be such that α + θδ < ᾱ,
and choose βδ such that

1
1 + δ

+ (α + θδ)
δ

1 + δ
< βδ <

1
1 + δ

+ ᾱ
δ

1 + δ
.

Using the contraction property ‖ΠF (Φrt) − Φr∗‖ ≤ α‖Φrt − Φr∗‖, the preceding lemma, and the
triangle inequality ‖Φrt‖ ≤ ‖Φrt − Φr∗‖+ ‖Φr∗‖, we have

‖Φrt+δt − Φr∗‖ ≤
(

1
1 + δ

+ α
δ

1 + δ

)
‖Φrt − Φr∗‖+

(
θδ

δ

1 + δ
+ εt

)
(1 + ‖Φrt‖)

≤
(

1
1 + δ

+ (α + θδ)
δ

1 + δ
+ εt

)
‖Φrt − Φr∗‖+

(
θδ

δ

1 + δ
+ εt

)
(1 + ‖Φr∗‖).

(44)

For any arbitrarily small positive scalar ε, we have εt(‖Φr∗‖ + 1) < ε and α + θδ + εt < ᾱ for t
sufficiently large (since εt = o(1)). Hence, inequality (44) implies that for any ε, and for some fixed
t̄ independent of ε, the sequence

{
Φrkj

| kj = (1 + δ)j t̄
}

satisfies

lim sup
j→∞

‖Φrkj
− Φr∗‖ ≤ ε

1− βδ
+

δ
1+δ θδ

1− βδ
(1 + ‖Φr∗‖). (45)
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Since 1− βδ > (1− ᾱ) δ
1+δ , we have

δ
1+δ

1− βδ
≤ 1

1− ᾱ
,

and hence
lim sup

j→∞
‖Φrkj

− Φr∗‖ ≤ ε

1− βδ
+

θδ

1− ᾱ
(1 + ‖Φr∗‖). (46)

Since ε is arbitrary, letting θ′δ = θδ

1−ᾱ , we have

lim sup
j→∞

‖Φrkj
− Φr∗‖ ≤ θ′δ(1 + ‖Φr∗‖). (47)

In other words, for all δ sufficiently small, there exists a corresponding subsequence of Φrt “converg-
ing” to the θ′δ(1 + ‖Φr∗‖)-sphere centered at Φr∗.

We will now establish the convergence of the entire sequence rt. When j is sufficiently large,
for t ∈ [kj , kj+1), the difference ‖Φrt − Φrkj

‖ is at most θ̄δ(1 + ‖rkj
‖) for some positive θ̄δ that

diminishes to 0 as δ → 0 (the proof of Lemma 6). Combining this with Eq. (47), we obtain

lim sup
t→∞

‖Φrt − Φr∗‖ ≤ lim sup
j→∞

θ̄δ(1 + ‖Φrkj
‖) + lim sup

j→∞
‖Φrkj

− Φr∗‖

≤ lim sup
j→∞

θ̄δ(1 + ‖Φrkj
− Φr∗‖+ ‖Φr∗‖) + θ′δ(1 + ‖Φr∗‖)

≤ (θ̄δ + θ̄δθ
′
δ + θ′δ)(1 + ‖Φr∗‖).

Since δ, and consequently θ̄δ and θ′δ, can be chosen arbitrarily small, we conclude that the sequence
rt converges to r∗. This completes the proof of Prop. 3.

6 Conclusions

In this paper, we have proposed new Q-learning algorithms for the approximate cost evaluation
of optimal stopping problems, using least squares ideas that are central in the LSPE method for
policy cost evaluation with linear function approximation. We have aimed to provide alternative,
faster algorithms than those of Tsitsiklis and Van Roy [TV99], and Choi and Van Roy [CV06]. The
distinctive feature of optimal stopping problems is the underlying mapping F , which is a contraction
with respect to the projection norm ‖ · ‖π (cf. Lemma 1). Our convergence proofs made strong use
of this property.

It is possible to consider the extension of our algorithms to general finite-spaces discounted prob-
lems. An essential requirement for the validity of such extended algorithms is that the associated
mapping is a contraction with respect to some Euclidean norm. Under this quite restrictive assump-
tion, it is possible to show certain convergence results. In particular, Choi and Van Roy [CV06] have
shown the convergence of an algorithm that generalizes the second variant of Section 4 for the case
m = 1. It is also possible to extend this variant for the case where m > 1 and prove a corresponding
convergence result.
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