Introduction ast Squares Q-Learning Variants with Reduced Computation
[e]
[e]

(oo}

Summary
[e]
[e]e]e}

000§

Q-learning Algorithms for Optimal Stopping Based on Least
Squares

H. Yul D.P Bertsekas?

1 Department of Computer Science
University of Helsinki

2Departmem of Electrical Engineering and Computer Science
Massachusetts Institute of Technology

European Control Conference, Kos, Greece, 2007

Introduction Least Squares Q-Learning

[e] [e]
[e]e]e} [e]
[e]

Introduction

Optimal Stopping Problems
Preliminaries

Least Squares Q-Learning
Algorithm
Convergence
Convergence Rate

Variants with Reduced Computation

Motivation
First Variant
Second Variant

Variants with Reduced Computation
[e]

[e]

(oo}

Outline

Summary

Introduction
o

Basic Problem and Bellman Equation

e Anirreducible Markov chain with n states and transition matrix P
Action: stop or continue
Cost at state i: c(i) if stop; g(i) if continue
Minimize the expected discounted total cost till stop

o Bellman equations in vector notation®
J* =min{c, g + aPJ*}, Q* =g+ aP min{c, Q*}
Optimal policy: stop as soon as the state hits the set

D ={ilc(i) <Q*(N}

o Applications:
search, sequential hypothesis testing, finance

o Focus of this paper: Q-learning with linear function approximation?

Lo discount factor, J*: optimal cost, Q*: Q-factor for the continuation action (the cost of continuing for the first
stage and using an optimal stopping policy in the remaining stages)

2Q-Iearning aims to find the Q-factor for each action-state pair, i.e., the vector Q* (the Q-factor vector for the stop
action is c).

Introduction Least Squares Q-Learning Variants with Reduced Computation Summary

00

Q-Learning with Function Approximation

Sub A . i 3 (Tsitsiklis and Van Roy 1999)
ubspace Approximation

lxs = | 6G) |, Q=or on QG.r)=e()r

Weighted Euclidean Projection

NnQ =argmin||Q — @r||x, == (x(1),...,n(n)) : invariant distribution of P
reRs

Key Fact: DP mapping F is || - || =-contraction and so is MF, where

FQ def g + aP min{c,Q}
Temporal Difference (TD) Learning solves Projected Bellman Equation:
&r* = MNF(er*)
Suboptimal policy : stop as soon as the state hits the set {i | c(i) < ¢(i)'r*}*

n

RO 2
;ﬂ-(l)(‘JM(I)_‘] (I)) S (1—0&)\/@”

3 Assume that & has linearly independent columns.
“Denote by J,, the cost of this policy.

nQ* — Q*|lx

Introduction

oeo

Basis of Least Squares Methods |

Projected Value Iteration

Simulation: (o, X1, . . .) unstopped state process; implicitly approximate MNF with
increasing accuracy

Projected Value Iteration and LSPE (Bertsekas and loffe 1996):°

&ryy g = MF(®r), Oriq = MiF(Or) = MF(Pr) +
Value lterate Value lterate
F(or) F(®ry)

|
Projection

IProjection
onS | _ons
|
Prisq
Prisq
ort 1t simulation error
0 0
S: Subspace spanned by basis functions S: Subspace spanned by basis functions
Projected Value lteration Least Squares Policy Evaluation (LSPE)

5Roughly speaking, ﬁft — MF, ¢ — 0ast — oo.

Introduction Least Squares Q-Learning Variants with Reduced Computation Summary

ooe

Basis of Least Squares Methods Il

Solving Approximate Projected Bellman Equation

LSTD (Bradtke and Barto 1996, Boyan 1999): find r;; solving an approximate
projected Bellman equation

¢|'H,1 = ﬁtﬁt(¢rl+l)
Not viable for optimal stopping because F is non-linear®

Comparison with Temporal Difference Learning Algorithm (Tsitsiklis and Van Roy
1999).7
Ma1 = e+ 7 d(%) (9 (%t Xer1) + amin{c(Xer1), ¢(Xer1) 1t} — d(X)'rt)

e TD: use each sample state only once; averaging through long time interval,
approximately perform the mapping NF

o Least squares (LS) methods: use effectively the past information; no need to store
the past (in policy evaluation context)

5In the case of policy evaluation, this is a linear equation and can be solved efficiently.

7Abusing notation, we denote by g(i, j) the one-stage cost of transiting from state i to j under the continuation
action.

Introduction Least Squares Q-Learning Variants with Reduced Computation Summary
o

Least Squares Q-Learning
The Algorithm

(X0, X1, - - .) unstopped state process, v € (0, H%) constant stepsize
fep1 = e+ y(fpa — 1) (1)

where f;; is the LS solution:
t

fii1 =arg gin > (¢>(xk)’r — 9 (%, Xk1) — amin {c(Xy41), ¢(Xk+1)'rt}>2 (2
reR® o

Can compute f;;; almost recursively:

t -1
fty1 = (Z d)(Xk)d)(Xk)') > o) <9(Xk»xk+1) + armin {c(Xc11), ¢(Xk+1)'ft})
k=0 k=0

except the calculation of min {c(ka) ¢(xk+1)’rt}, k < 't requires repartitioning past

states into stopping or continuation sets (a remedy will be discussed later)

Introduction Least Squares Q-Learning Variants with Reduced Computation Summary

°
Convergence Analysis

Express LS solution in matrix notation as®
¢ft+l = ﬁlﬁt(d)rl) = ﬁ1 (Q[+ Oéﬁ[min {C7 d)l't}) 3)

With probability 1 (w.p.1), for all t sufficiently large,
o MiFiis || - |l=-contraction with modulus & € (a, 1)
o (1 =)l +~TFis || - || x-contraction for v € (0, 12)

Proposition
2
Forall ye (0, ——), r—r*, ast — oo,w.p.1l.
1+«

Note: Unit stepsize is in the convergence range

8Here ﬁt, §; and P are increasingly accurate simulation-based approximations of M, g and P, respectively.

Least Squares Q-Learning

Comparison to an LSTD Analogue

LS Q-learning: Orig = (1 —v)or + fyﬁtft(dm) 4
LSTD analogue: Pf 1 = NPy (PFi) (5)

Eq. (4) is one single fixed point iteration for solving Eq. (5). Yet, the LS Q-learning
algorithm and the idealized LSTD algorithm have the same convergence rate [two-time

scale argument, similar to a comparison analysis of LSPE/LSTD (Yu and Bertsekas
2006)]:°

Proposition
2 o
Forall v € (0, 7) , t(or — o) < oo, w.p.l.
1+«

Implications: for all stepsize ~ in the convergence range
e empirical phenomenon: r; “tracks” f
e more precisely: r; — ft — 0 at the rate of O(t), faster than r;,f; — r* at the rate of

O(V1)

9A coarse explanation is as follows: fi+1 changes slowly at the rate of O(t) and can be viewed as if “frozen” for
iteration (4), which, being a contraction mapping, has geometric rate of convergence to the vicinity of the “fixed
point” i 5.

Introduction Least Squares Q-Learning Variants with Reduced Computation Summary

[e] [e] o
[e]e]e} [e] [e]
[e] (oo}

Variants with Reduced Computation

Motivation

LS solution

t -1
fry1 = (Z ¢(Xk)¢(xk)'> > b(x) <9(Xk,Xk+1) + amin {c(Xk41), ¢(Xk+1)'ft})
k=0 k=0
requires extra overhead/repartition per iteration:

min {C(Xk+1)7 ¢(Xk+l)/rt}) k <t

Introduce algorithms with limited repartition at the expense of likely worse asymptotic
convergence rate

Introduction Variants with Reduced Computation Summary
o

°

0o

[e]
[e]e]e}

First Variant: Forgo Repartition

With an Optimistic Policy Iteration Flavor
Set of past stopping decisions for state samples

K = {k | c(®41) < (Xc4+1)'rc }

Replace the terms min {c(Xx+1), ¢(Xk+1)'1t }, Kk < t by

~ _Je(41) ifk € K
A n) = {qﬁ(xkﬂ)'n i ¢ K

Algorithm

-1

t
Myl = (Z ¢(Xk)¢(xk)/> <Z B(X)9 (X, Xic+1)

k=0 k=0
+a Y sx)eOui) +a Y ¢(Xk)¢(Xk+1)'ft>
k<t ke K<t kgK

Can compute recursively; LSTD approach is also applicable®
But we have no proof of convergence at present!

107his is because the r.h.s. above is linear in r;.

11Note that if the algorithm converges, it converges to the correct solution r*.

Introduction Least Squares Q-Learning Variants with Reduced Computation Summary

@0

Second Variant: Repartition within a Finite Window

Repartition at most m times per state sample, m > 1: window size
Replace the terms min {c(Xk11), #(Xk+1)rt }, k < t by

min {c(x+1), o(k41) Ny }» ke =min{k +m—1,t}

Algorithm

t
fiea = argmin 3 (600)'T = 90, Xics1) = amin {e(xir), 05s1)n }) O
re k=0
Special cases
e m — oo: LS Q-learning algorithm
o m = 1: the fixed point Kalman filter (TD with scaling), (Choi and Van Roy 2006)

1 .
41 =r+ th*(p(xt)(g(xt,le) + amin{c(Xi41), ¢(xt1)r} — d(X)'1t)

Variants with Reduced Computation

oe

Second Variant: Convergence

Proposition
For allm > 1, r; defined by Eq. (6) convergesto r* ast — oo, w.p.1.
About Proof

o Two proofs are given in the extended report (Yu and Bertsekas 2006): a proof
based on o.d.e. analysis (Borkar 2006, Borkar and Meyn 2001), and an alternative
“direct” proof. (A weaker result w/ a boundedness assumption is mentioned in the
ECC paper.)

Convergence Rate Comparison
o A simple example illustrates that
for LS Q-learning : tE{|Ir —r*||>} < o0
forvariantwithm > 1: tE{||n —r*[?} = o

e Expect m > 1 to have practical (but not likely asymptotic) improvement of
convergence speed overm = 1

Introduction Least Squares Q-Learning

New Q-learning Algorithm for Optimal Stopping
e Based on projected value iteration and least squares
o Convergence/convergence rate analysis
o Variants with reduced computation overhead

Future Work
e Convergence analysis of the first variant
o Empirical studies

s with Reduced Computation

Summary

Summary

Introduction Least Squares Q-Learning Variants with Reduced Computation Summary

[e] [e] [e]
[e]e]e} [e] [e]
[e] (oo}

References

For a detailed presentation and analysis see:

@ H. Yu and D. P. Bertsekas.
A Least Squares Q-Learning Algorithm for Optimal Stopping Problems.
LIDS report 2731, MIT, 2006; revised 2007.

@ H. Yu and D. P. Bertsekas.
Q-learning Algorithms for Optimal Stopping Based on Least Squares.

European Control Conference, 2007.
Available from

e Janey's web site: http://cs.helsinki.fi/u/hyu/
o Dimitri's web site: http://web.mit.edu/dimitrib/www/home.html

	Introduction
	Optimal Stopping Problems
	Preliminaries

	Least Squares Q-Learning
	Algorithm
	Convergence
	Convergence Rate

	Variants with Reduced Computation
	Motivation
	First Variant
	Second Variant

	Summary

