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Basic Problem and Bellman Equation

• An irreducible Markov chain with n states and transition matrix P
Action: stop or continue
Cost at state i : c(i) if stop; g(i) if continue
Minimize the expected discounted total cost till stop

• Bellman equations in vector notation1

J∗ = min{c, g + αPJ∗}, Q∗ = g + αP min{c, Q∗}

Optimal policy: stop as soon as the state hits the set

D = {i | c(i) ≤ Q∗(i)}

• Applications:
search, sequential hypothesis testing, finance

• Focus of this paper: Q-learning with linear function approximation2

1α: discount factor, J∗ : optimal cost, Q∗ : Q-factor for the continuation action (the cost of continuing for the first
stage and using an optimal stopping policy in the remaining stages)

2Q-learning aims to find the Q-factor for each action-state pair, i.e., the vector Q∗ (the Q-factor vector for the stop
action is c).
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Q-Learning with Function Approximation
(Tsitsiklis and Van Roy 1999)

Subspace Approximation3

[Φ]n×s =

24 · · ·
φ(i)′

· · ·

35 , Q = Φr or, Q(i, r) = φ(i)′r

Weighted Euclidean Projection

ΠQ = arg min
r∈<s

‖Q − Φr‖π , π = (π(1), . . . , π(n)) : invariant distribution of P

Key Fact: DP mapping F is ‖ · ‖π-contraction and so is ΠF , where

FQ
def
= g + αP min{c, Q}

Temporal Difference (TD) Learning solves Projected Bellman Equation:

Φr∗ = ΠF (Φr∗)

Suboptimal policy µ: stop as soon as the state hits the set {i | c(i) ≤ φ(i)′r∗}4

nX
i=1

π(i)
`
Jµ(i)− J∗(i)

´
≤

2

(1− α)
p

1− α2
‖ΠQ∗ − Q∗‖π

3Assume that Φ has linearly independent columns.
4Denote by Jµ the cost of this policy.
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Basis of Least Squares Methods I
Projected Value Iteration

Simulation: (x0, x1, . . .) unstopped state process; implicitly approximate ΠF with
increasing accuracy

Projected Value Iteration and LSPE (Bertsekas and Ioffe 1996):5

Φrt+1 = ΠF (Φrt ), Φrt+1 = bΠt
bFt (Φrt ) = ΠF (Φrt ) + εt

S: Subspace spanned by basis functions
0

Value Iterate

Projection
on S

Φrt+1

Simulation error

S: Subspace spanned by basis functions

Φrt
0

Φrt+1

Value Iterate

Projection
on S

Projected Value Iteration Least Squares Policy Evaluation (LSPE)

Φrt

F(Φrt)F(Φrt)

5Roughly speaking, bΠt
bFt → ΠF , εt → 0 as t →∞.
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Basis of Least Squares Methods II
Solving Approximate Projected Bellman Equation

LSTD (Bradtke and Barto 1996, Boyan 1999): find rt+1 solving an approximate
projected Bellman equation

Φrt+1 = bΠt
bFt (Φrt+1)

Not viable for optimal stopping because F is non-linear6

Comparison with Temporal Difference Learning Algorithm (Tsitsiklis and Van Roy
1999):7

rt+1 = rt + γt φ(xt )
`
g(xt , xt+1) + α min{c(xt+1), φ(xt+1)

′rt} − φ(xt )
′rt
´

• TD: use each sample state only once; averaging through long time interval,
approximately perform the mapping ΠF

• Least squares (LS) methods: use effectively the past information; no need to store
the past (in policy evaluation context)

6In the case of policy evaluation, this is a linear equation and can be solved efficiently.
7Abusing notation, we denote by g(i, j) the one-stage cost of transiting from state i to j under the continuation

action.



Introduction Least Squares Q-Learning Variants with Reduced Computation Summary

Least Squares Q-Learning
The Algorithm

(x0, x1, . . .) unstopped state process, γ ∈ (0, 2
1+α

) constant stepsize

rt+1 = rt + γ(r̂t+1 − rt ) (1)

where r̂t+1 is the LS solution:

r̂t+1 = arg min
r∈<s

tX
k=0

“
φ(xk )′r − g(xk , xk+1)− α min

˘
c(xk+1), φ(xk+1)

′rt
¯”2

(2)

Can compute r̂t+1 almost recursively:

r̂t+1 =

 
tX

k=0

φ(xk )φ(xk )′

!−1 tX
k=0

φ(xk )
“

g(xk , xk+1) + α min
˘

c(xk+1), φ(xk+1)
′rt
¯”

except the calculation of min
˘

c(xk+1), φ(xk+1)
′rt
¯
, k ≤ t requires repartitioning past

states into stopping or continuation sets (a remedy will be discussed later)
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Convergence Analysis

Express LS solution in matrix notation as8

Φr̂t+1 = bΠt
bFt (Φrt ) = bΠt

“
ĝt + αP̃t min

˘
c, Φrt

¯”
(3)

With probability 1 (w.p.1), for all t sufficiently large,

• bΠt
bFt is ‖ · ‖π-contraction with modulus α̂ ∈ (α, 1)

• (1− γ)I + γbΠt
bFt is ‖ · ‖π-contraction for γ ∈ (0, 2

1+α
)

Proposition

For all γ ∈
„

0 ,
2

1 + α

«
, rt → r∗, as t →∞, w .p.1.

Note: Unit stepsize is in the convergence range

8Here bΠt , ĝt and P̃t are increasingly accurate simulation-based approximations of Π, g and P, respectively.
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Comparison to an LSTD Analogue

LS Q-learning: Φrt+1 = (1− γ)Φrt + γbΠt
bFt (Φrt ) (4)

LSTD analogue: Φr̃t+1 = bΠt
bFt (Φr̃t+1) (5)

Eq. (4) is one single fixed point iteration for solving Eq. (5). Yet, the LS Q-learning
algorithm and the idealized LSTD algorithm have the same convergence rate [two-time
scale argument, similar to a comparison analysis of LSPE/LSTD (Yu and Bertsekas
2006)]:9

Proposition

For all γ ∈
„

0 ,
2

1 + α

«
, t(Φrt − Φr̃t ) < ∞, w .p.1.

Implications: for all stepsize γ in the convergence range

• empirical phenomenon: rt “tracks” r̃t

• more precisely: rt − r̃t → 0 at the rate of O(t), faster than rt , r̃t → r∗ at the rate of
O(
√

t)

9A coarse explanation is as follows: r̃t+1 changes slowly at the rate of O(t) and can be viewed as if “frozen” for
iteration (4), which, being a contraction mapping, has geometric rate of convergence to the vicinity of the “fixed
point” r̃t+1.
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Variants with Reduced Computation
Motivation

LS solution

r̂t+1 =

 
tX

k=0

φ(xk )φ(xk )′

!−1 tX
k=0

φ(xk )
“

g(xk , xk+1) + α min
˘

c(xk+1), φ(xk+1)
′rt
¯”

requires extra overhead/repartition per iteration:

min
˘

c(xk+1), φ(xk+1)
′rt
¯
, k ≤ t

Introduce algorithms with limited repartition at the expense of likely worse asymptotic
convergence rate
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First Variant: Forgo Repartition
With an Optimistic Policy Iteration Flavor

Set of past stopping decisions for state samples

K =
˘

k | c(xk+1) ≤ φ(xk+1)
′rk
¯

Replace the terms min
˘

c(xk+1), φ(xk+1)
′rt
¯
, k ≤ t by

q̃(xk+1, rt ) =

(
c(xk+1) if k ∈ K
φ(xk+1)

′rt if k /∈ K

Algorithm

rt+1 =

 
tX

k=0

φ(xk )φ(xk )′

!−1 tX
k=0

φ(xk )g(xk , xk+1)

+ α
X

k≤t, k∈K

φ(xk )c(xk+1) + α
X

k≤t, k /∈K

φ(xk )φ(xk+1)
′rt

!

Can compute recursively; LSTD approach is also applicable10

But we have no proof of convergence at present11

10This is because the r.h.s. above is linear in rt .
11Note that if the algorithm converges, it converges to the correct solution r∗ .
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Second Variant: Repartition within a Finite Window

Repartition at most m times per state sample, m ≥ 1: window size
Replace the terms min

˘
c(xk+1), φ(xk+1)

′rt
¯
, k ≤ t by

min
˘

c(xk+1), φ(xk+1)
′rlk,t

¯
, lk,t = min{k + m − 1, t}

Algorithm

rt+1 = arg min
r∈<s

tX
k=0

“
φ(xk )′r − g(xk , xk+1)− α min

˘
c(xk+1), φ(xk+1)

′rlk,t

¯”2
(6)

Special cases

• m →∞: LS Q-learning algorithm

• m = 1: the fixed point Kalman filter (TD with scaling), (Choi and Van Roy 2006)

rt+1 = rt +
1

t + 1
B−1

t φ(xt )
`
g(xt , xt+1) + α min{c(xt+1), φ(xt+1)

′rt} − φ(xt )
′rt
´
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Second Variant: Convergence

Proposition
For all m ≥ 1, rt defined by Eq. (6) converges to r∗ as t →∞, w.p.1.

About Proof

• Two proofs are given in the extended report (Yu and Bertsekas 2006): a proof
based on o.d.e. analysis (Borkar 2006, Borkar and Meyn 2001), and an alternative
“direct” proof. (A weaker result w/ a boundedness assumption is mentioned in the
ECC paper.)

Convergence Rate Comparison

• A simple example illustrates that

for LS Q-learning : tE{‖rt − r∗‖2} < ∞

for variant with m ≥ 1 : tE{‖rt − r∗‖2} = ∞

• Expect m > 1 to have practical (but not likely asymptotic) improvement of
convergence speed over m = 1
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Summary

New Q-learning Algorithm for Optimal Stopping

• Based on projected value iteration and least squares

• Convergence/convergence rate analysis

• Variants with reduced computation overhead

Future Work

• Convergence analysis of the first variant

• Empirical studies
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