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Abstract— We consider the distributed solution of dynamic
programming (DP) problems by policy iteration. We envision
a network of processors, each updating asynchronously a local
policy and a local cost function, defined on a portion of the state
space. The computed values are communicated asynchronously
between processors and are used to perform the local policy
and cost updates. The natural algorithm of this type can fail
even under favorable circumstances, as shown by Williams
and Baird [WiB93]. We propose an alternative and almost as
simple algorithm, which converges to the optimum under the
most general conditions, including asynchronous updating by
multiple processors using outdated local cost functions of other
processors.
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I. INTRODUCTION

The field of distributed computation is experiencing renewed
interest in the context of systems of multiple communicating
processors/agents, each with its own autonomous computa-
tion capability. The processors take responsibility for local
computation/decision making, while exchanging information
with neighboring processors. In such a system it is natural for
the processors to operate asynchronously, possibly updating
and communicating their decision/computation variables at
different rates. Furthermore, the communicated results may
be out-of-date for a variety of reasons, which we loosely
refer to in this paper as communication delays.

Generally, convergent distributed iterative asynchronous
algorithms are classified in totally and partially asynchronous
(cf. Chapters 6 and 7 of the book [BeT89]). In the former,
there is no bound on the communication delays, while in the
latter there must be a bound (which may be unknown). These
two types of asynchronous algorithms differ not only in their
assumptions, but also, more fundamentally, in the conver-
gence mechanisms and corresponding lines of analysis. The
algorithms of the present paper are totally asynchronous ver-
sions of the classical policy iteration algorithm for dynamic
programming (DP), possibly in its modified form where
policy evaluation is performed with a finite number of value
iterations (see e.g., Puterman [Put94]).

The idea of asynchronous computation originated in the
60s, when it was seen as a means to alleviate the “commu-
nication penalty” in parallel computation and data network
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communication. This is the inefficiency that results from
synchronizing iterations across multiple processors that may
operate at different speeds and may be subject to inter-
communication delays. Chazan and Miranker [ChM69] first
analyzed the convergence of totally asynchronous Jacobi-
type algorithms for iterative solution of linear systems of
equations involving sup-norm contractions (they attributed
the idea of asynchronous iterative computation to Rosenfeld).
Related algorithms were subsequently studied by several
authors for nonlinear equations involving sup-norm contrac-
tions (Baudet [Bau78], Bertsekas [Ber83], Miellou [Mie75],
Robert [Rob76], El Tarazi [ElT82], Spiteri [Spi86], and Tsit-
siklis [Tsi87]), and for equations involving a monotonicity
structure, such as DP/value iteration (Bertsekas [Ber82]), and
Jacobi-type dual network optimization (Bertsekas and ElBaz
[BeE87], Bertsekas and Eckstein [BeE88], Tseng, Bertsekas,
and Tsitsiklis [TBT90], Bertsekas and Castañon [BeC91], El
Baz, et. al. [ESM96], and Beraldi and Guerriero [BeG97]).

In this paper we focus on algorithms for the distributed
solution of the DP/Bellman’s equation J = TJ , where J
represents the cost function of the problem and T is the
mapping associated with a value iteration. An example is
the infinite horizon α-discounted stochastic optimal control
problem, involving a cost per stage g(xk, uk, wk) and a
discrete-time system equation xk+1 = f(xk, uk, wk), where
xk and uk are the state and control at time k, and wk is a
random vector. In this case J is a function of the state x and
T has the form

(TJ)(x) = min
u∈U(x)

E
{
g(x, u, w) +αJ

(
f(x, u, w)

)}
, (1.1)

where U(x) is a set of admissible controls at state x, and the
expected value is taken over w (see e.g., [Ber07], Chapter 1).

We consider a distributed computation framework involv-
ing a partition of X into disjoint nonempty subsets, and a
network of processors, each updating their corresponding
local components of J , while using the local components
of other processors, which are communicated with some
“delay.” Note that each processor knows the (complete) state
x within the local subset of the state space, but does not
know fully the values of the cost vector outside the local
subset (these are communicated by other processors). This
is different from much of the literature on multi-agent system
models, where the state may consist of the Cartesian product
of the “local” states of the agents, none of whom may know
the complete/global state of the system.

Several earlier works are relevant to the present paper.
Two of these are the asynchronous distributed shortest path
and DP algorithm of [Ber82], and the general convergence



theorem of [Ber83] for deterministic totally asynchronous
iterations, which also served as the foundation for the
treatment of totally asynchronous iterations in the book
by Bertsekas and Tsitsiklis ([BeT89], Chapter 6). The rate
of convergence analysis given in [Ber89], Section 6.3.5 is
also relevant to our algorithms, but we have not focused
on this subject here. Our earlier paper (Bertsekas and Yu
[BeY10]) is the original source for several of the ideas of
the present paper and served as its starting point (see the
subsequent discussion for relations between the present paper
and [BeY10]).

To provide an overview of our algorithms for finding a
fixed point of a mapping T , which maps functions J of x ∈
X into functions TJ of x, let us consider a partition of
X into disjoint nonempty subsets X1, . . . , Xn, and let J be
partitioned as

J = (J1, . . . , Jn),

where Ji is the restriction of J on the set Xi. Each processor
i = 1, . . . , n, of the distributed computing system is in
charge of updating the corresponding component Ji. Let Ti
be the corresponding component of T , so that the equation
J = TJ can equivalently be written as the system of n
equations

Ji(x) =
(
Ti(J1, . . . , Jn)

)
(x), ∀ x ∈ Xi, i = 1, . . . , n.

Then in a (synchronous) distributed value iteration algorithm,
each processor i updates Ji at iteration t according to

J t+1
i (x) =

(
Ti(J

t
1, . . . , J

t
n)
)
(x), ∀ x ∈ Xi. (1.2)

In an asynchronous value iteration algorithm, processor i
updates Ji only for t in a selected subset Ti of iterations,
and with components Jj supplied by other processors with
communication “delays” t− τij(t), i.e., for all x ∈ Xi,

J t+1
i (x) =

(
Ti(J

τi1(t)
1 , . . . , Jτin(t)

n )
)
(x), ∀ x ∈ Xi. (1.3)

At times t /∈ Ti, processor i leaves Ji(x) unchanged, i.e.,
J t+1
i (x) = J ti (x).
The convergence of this algorithm was first studied in

[Ber82], and was also discussed as a special case of a general
asynchronous convergence framework given in [Ber83]. For
a very broad class of DP problems, the conditions for
asynchronous convergence are essentially that:
(1) The set of times Ti at which processor i updates Ji is

infinite, for each i.
(2) limt→∞ τij(t) =∞ for all i, j = 1, . . . , n.
(3) The mapping T is monotone (i.e., TJ ≤ TJ ′ if

J ≤ J ′), and has a unique fixed point within a range
of functions of interest. [In our notation, inequalities
involving functions are meant to be by component, e.g.,
J ≤ J ′ means J(x) ≤ J ′(x) for all x ∈ X .]

The key to the convergence proof of [Ber82] is the mono-
tonicity property of T , although a sup-norm contraction
property of T , when present [as for example in discounted
stochastic optimal control problems where T has the form

(1.1)] was mentioned as a sufficient condition for asyn-
chronous convergence in [Ber82] and [Ber83]. The mono-
tonicity property also plays a key role in the analysis of the
present paper.

In this paper we study distributed asynchronous policy
iteration algorithms that have comparable properties to the
value iteration algorithm (1.3) under the conditions (1)-
(3) above. In a natural asynchronous version of the policy
iteration algorithm, the processors collectively maintain and
update an estimate J t of the optimal cost function, and an
estimate µt of an optimal policy. The local portions of J t

and µt of processor i are denoted J ti and µti, respectively,
i.e., J ti (x) = J t(x) and µti(x) = µt(x) for all x ∈ Xi.

To illustrate, let us focus on discounted stochastic optimal
control problems where T has the form (1.1). For each
processor i, there are two disjoint subsets of times Ti and
Ti. At each time t:
(a) If t ∈ Ti, processor i performs a policy improvement

iteration, where the local policy is set to one attaining
the corresponding minimum in the value iteration (1.3),
i.e., for all x ∈ Xi,

µt+1
i (x) ∈ arg min

u∈U(x)

E
{
g(x, u, w) + αJ i,t

(
f(x, u, w)

)}
,

(1.4)
where J i,t =

(
J
τi1(t)
1 , . . . , J

τin(t)
n

)
. This local policy

improvement is done simultaneously with the local cost
update/value iteration (1.3).

(b) If t ∈ Ti, processor i performs a policy evaluation
iteration at x, where the local cost vector Ji is updated,
using the current (local) policy µi and “delayed” cost
components of other processors, i.e., for all x ∈ Xi,

J t+1
i (x) =

{(
Ti,µt

i
(J
τi1(t)
1 , . . . , J

τin(t)
n )

)
(x) if t ∈ Ti,

J ti (x) if t /∈ Ti,
(1.5)

where

(Ti,µi
J)(x) = E

{
g(x, µi(x), w) + αJ

(
f(x, µi(x), w)

)}
.

(c) If t /∈ Ti∪Ti, processor i leaves Ji and µi unchanged,
i.e., J t+1

i (x) = J ti (x), and µt+1
i (x) = µti(x) for all

x ∈ Xi.

Note that if a policy improvement is done by all processors
at every iteration via Eq. (1.4), the algorithm is equivalent to
the synchronous value iteration algorithm (1.2). An interest-
ing implementation is when the set of policy improvement
times Ti has a lot fewer elements than the set of policy
evaluation times Ti. This results in the typical advantage that
policy iteration-type methods (or modified policy iteration
in the terminology of Puterman [Put94]) hold over value
iteration methods (the more expensive policy improvement
using a computation of Ti is done less frequently than a
policy evaluation using Ti,µi

). Note, however, that even when
implemented as a nondistributed algorithm, modified policy
iteration may require that (J0, µ0) satisfies the condition
J0 ≥ Tµ0J0 for convergence. This restriction is undesirable,
particularly in a distributed setting, or when a favorable



initial condition is known from solution of a related problem.
For discounted DP with a standard Jacobi-like policy evalua-
tion this restriction is not needed (see [Ber07], p. 88). It may,
however, be needed for Gauss-Seidel variants (see [Put94],
Section 6.5), or for modified policy iteration methods applied
to discounted semi-Markov problems.

A distributed algorithm of the form (1.3)-(1.5), with
more asynchronous character than the Gauss-Seidel imple-
mentation of [Put94], was studied by Williams and Baird
[WiB93] for discounted finite-state Markovian decision prob-
lems (MDP). In their analytical framework there are no
communication delays [i.e., τij(t) = t], and only one
processor updates at a time (i.e., t ∈ Ti or t ∈ Ti for only
one i), but the order of processor updates, and their type (pol-
icy evaluation versus policy improvement) can be arbitrary.
Convergence of the method (1.3)-(1.5) to J∗, the optimal cost
function/fixed point of T , was proved in [WiB93] under some
assumptions, chief of which is the condition J0 ≥ Tµ0J0

(the same as in [Put94]). This analysis may also be found in
[BeT96] (Prop. 2.5) and [Ber07] (Prop. 1.3.5). Convergence
was also shown in [WiB93] for some variants of iteration
(1.5) under the assumption J0 ≥ J∗. Moreover it was shown
in [WiB93], with several deterministic counterexamples, how
the algorithm can oscillate/fail if the condition J0 ≥ Tµ0J0

is not satisfied. Thus failure is due to making policy updates
one processor at a time in a disorderly fashion rather than
due to stochastic effects or communication delays.

The purpose of this paper is to propose new asynchronous
policy iteration algorithms, which allow for delays, and
improve on the existing methods in two ways:

(a) They embody a mechanism that precludes the conver-
gence failure described above, without requiring the con-
dition J0 ≥ Tµ0J0. In particular, our algorithms update
the local policy of processor i by using the minimization
(1.4), but modify the policy evaluation Eq. (1.5) in a
simple way so that convergence is guaranteed. The idea is
that convergence may fail because through iteration (1.5),
J t+1
i (x) may be increased more than appropriate relative

to the value iterate
(
Ti(J

t
1, . . . , J

t
n)
)
(x) [cf. Eqs. (1.3)

and (1.5)]. Stated in simple terms, our algorithms include
a mechanism that senses when this may be dangerous,
and use a more conservative update instead.

(b) They are more general than the one based on Eqs.
(1.3)-(1.5) because they can be applied beyond dis-
counted finite-state MDP. This is done through the
use of the abstract DP model introduced in the pa-
per by Bertsekas [Ber77], and used extensively in the
book by Bertsekas and Shreve [BeS78]. This model
contains as special cases several of the standard DP
problems, including discounted and stochastic shortest
path MDP, Q-learning, deterministic shortest path, mul-
tiplicative/exponential cost, minimax, DP models with
aggregation, etc.

The mechanism to preclude convergence failure [cf. (a)
above] is one of main ideas of our earlier paper [BeY10],
where several closely related distributed asynchronous policy

iteration algorithms were proposed. A key idea of [BeY10]
was to modify the policy evaluation phase of policy iteration
for Q-factors in discounted MDP so that it solves an optimal
stopping problem. This idea has another important use: it
can provide the basis for exploration enhancement, which
is essential in policy iteration with Q-factor approximation
(see e.g., [BeT96], [SuB98]). Moreover [BeY10] proposed
the use of compact Q-factor representations, and derived
associated error bounds. Some of our algorithms admit
stochastic iterative implementations, which may be analyzed
using asynchronous stochastic approximation theory (Tsit-
siklis [Tsi94]). Several such algorithms were proposed and
analyzed in [BeY10], using compact Q-factor representations
and (approximate) solution of an optimal stopping problem
with the algorithm of Tsitsiklis and Van Roy [TsV99].

The paper is organized as follows. In Section II we
introduce the abstract DP model, and in Section III we
state our assumptions. In Section IV we give our algorithm
and convergence result, and in Section V we discuss an
algorithmic variation.

II. AN ABSTRACT DP MODEL

We adopt the general abstract DP framework of [Ber77] and
[BeS78]. Let X be a set of states, U be a set of controls, and
for each x ∈ X , let U(x) ⊂ U be a subset of controls that
are feasible at state x. Functions of the form µ : X 7→ U
with µ(x) ∈ U(x) for all x ∈ X are referred to as policies,
and the set of all policies is denoted by M.

Let F be the set of extended real-valued functions J :
X 7→ [−∞,∞]. For any two functions J, J ′ ∈ F , we write

J ≤ J ′ if J(x) ≤ J ′(x), ∀ x ∈ X,

J = J ′ if J(x) = J ′(x), ∀ x ∈ X.

Let H : X × U × F 7→ [−∞,∞] be a given mapping, and
consider the mapping T : F 7→ F defined by

(TJ)(x) = min
u∈U(x)

H(x, u, J), ∀ x ∈ X, (2.1)

and for each policy µ ∈ M, the mapping Tµ : F 7→ F
defined by

(TµJ)(x) = H
(
x, µ(x), J

)
, ∀ x ∈ X. (2.2)

We assume that the minimum in Eq. (2.1) is attained for
all x ∈ X and J ∈ F . This is necessary since we will be
dealing with policy iteration-type algorithms. Given a subset
F of functions within F , the problem is to find a function
J∗ ∈ F such that

J∗(x) = min
u∈U(x)

H(x, u, J∗), ∀ x ∈ X,

i.e., find within F a fixed point J∗ of T . We also want to
find a policy µ∗ such that Tµ∗J∗ = TJ∗.

We consider a partition of X into disjoint nonempty
subsets X1, . . . , Xn. For each J ∈ F , let Ji : Xi 7→
[−∞,∞] be the restriction of J on Xi. Similarly, let Hi



be the ith component of H , so that the equation J = TJ
can be equivalently written as the system of n equations

Ji(x) = min
u∈U(x)

Hi(x, u, J1, . . . , Jn), ∀ x ∈ Xi,

for i = 1, . . . , n. For each µ ∈ M, let µi : Xi 7→ U and
Ti,µi

J be the restrictions of µ and TµJ on Xi, respectively,
so the components of TµJ are defined by

(Ti,µi
J)(x) = Hi

(
x, µi(x), J1, . . . , Jn

)
, ∀ x ∈ Xi, (2.3)

for i = 1, . . . , n. We introduce a network of n processors,
which asynchronously update local estimates of J and µ. In
particular, processor i updates Ji and µi, and communicates
Ji (or a compact/basis function representation of Ji) to the
other processors j 6= i.

We give a few examples, and we refer to [Ber77], [BeS78],
[Ber82] for additional examples.

Example 2.1: (Discounted Markovian Decision Prob-
lems) Consider an α-discounted MDP involving states x =
1, . . . , n, controls u ∈ U(x) at state x, transition probabilities
pxy(u), and cost per stage g(x, u, y). For

H(x, u, J) =

n∑
y=1

pxy(u)
(
g(x, u, y) + αJ(y)

)
,

the equation J = TJ , with T given by Eq. (2.1), is Bellman’s
equation for the MDP. Here each set Xi consists of a single
state i, and processor i updates J(i), and communicates the
result to the other processors. It is also possible to consider
models where processors update the costs of multiple states,
but the nature of our asynchronous computation model is
such that there is no loss of generality in assuming that the
number of processors is equal to the number of states, as
long as the number of states is finite (we create duplicate
processors if necessary). �

Example 2.2: (Deterministic and Stochastic Shortest Path
Problems) Consider a classical deterministic shortest path
problem involving a graph of n nodes x = 1, . . . , n, plus a
destination d, an arc length axy for each arc (x, y), and the
mapping

H(x, y, J) =

{
axy + J(y) if y 6= d,
axd if y = d.

Then the equation J = TJ , with T given by Eq. (2.1), is
Bellman’s equation for the shortest distance J(x) from node
x to node d. A generalization is a mapping of the form

H(x, u, J) = pxd(u)g(x, u, d)+

n∑
y=1

pxy(u)
(
g(x, u, y)+J(y)

)
,

which corresponds to a stochastic shortest path problem
([Ber07], Chapter 2), and includes as a special case stochastic
finite-horizon, finite-state DP problems. �

Example 2.3: (Discounted Semi-Markov Problems) With
x, y, and u as in Example 2.1, consider the mapping

H(x, u, J) = G(x, u) +

n∑
y=1

mxy(u)J(y)

where G is some function representing cost per stage, and
mxy(u) are nonnegative numbers with

∑n
y=1mxy(u) < 1

for all x ∈ X and u ∈ U(x). The equation J = TJ , with T
given by Eq. (2.1), can be viewed as Bellman’s equation for
a continuous-time semi-Markov decision problem, after it is
converted into an equivalent discrete-time problem (see e.g.,
[Ber07], Section 5.3). �

Example 2.4: (Minimax Problems) For the MDP notation
of Example 2.1 and an additional antagonistic player choos-
ing a variable w from a set W (x, u), consider the mapping

H(x, u, J) = max
w∈W (x,u)

n∑
y=1

pxy(u,w)
(
g(x, u, w, y)+αJ(y)

)
.

Then the equation J = TJ , with T given by Eq. (2.1), is
Bellman’s equation for a minimax MDP. �

Example 2.5: (Distributed Policy Iteration with Cost
Function Approximation) In large-scale problems, it may
be inconvenient for the processors to exchange their local
cost functions Ji(x) for all x ∈ Xi. It is thus interesting to
introduce cost function approximation, and an algorithmic
framework where each processor updates Ji, while using
approximate cost functions/compact representations of Jj ,
j 6= i, communicated by other processors.

For instance, in the context of a finite-state discounted
MDP, suppose that each processor i maintains/updates a
(local) cost Ji(x) for every state x ∈ Xi, and an aggregate
cost

Ri =
∑
x∈Xi

dixJi(x), (2.4)

where {dix | x ∈ Xi} is a probability distribution over
Xi. We generically denote by J and R the vectors with
components J(x), x ∈ X , and Ri, i = 1, . . . , n, respectively.
Consider the mapping Hi defined for all i = 1, . . . , n,
x ∈ Xi, u ∈ U(x), and J , by

Hi(x, u, J) =
∑
y∈X

pxy(u)g(x, u, y) + α
∑
y∈Xi

pxy(u)J(y)

+ α
∑
y/∈Xi

pxy(u)Rj(y)

=
∑
y∈X

pxy(u)g(x, u, y) + α
∑
y∈Xi

pxy(u)J(y)

+ α
∑
y/∈Xi

pxy(u)
∑

z∈Xj(y)

dj(y)zJj(y)(z),

(2.5)
and where for each original system state y, we denote by
j(y) the subset to which y belongs [i.e., y ∈ Xj(y)]. Then the
solution of the equation J = TJ , with T given by Eq. (2.1)
is an approximate/aggregation-based Bellman’s equation for
the MDP. Alternatively, we may consider a mapping

Hi(x, u, J,R)

that involves both J and the corresponding aggregate vector
R, as defined by Eq. (2.4). �



III. ASSUMPTIONS FOR ASYNCHRONOUS CONVERGENCE

We introduce the assumptions for our algorithm to be intro-
duced in Section IV.

Assumption 3.1: (Monotonicity)
(a) The mapping H is monotone within F in the sense that

H(x, u, J) ≤ H(x, u, J ′),

for all x ∈ X, u ∈ U(x), and J, J ′ ∈ F such that
J ≤ J ′.

(b) The mapping T has a unique fixed point J∗ within F .
(c) There exist two functions J and J in F such that all

functions J ∈ F with J ≤ J ≤ J belong to F , and we
have

J ≤ TJ ≤ TJ ≤ J.

Furthermore,

lim
k→∞

(T kJ)(x) = lim
k→∞

(T kJ)(x) = J∗(x), ∀ x ∈ X.

In our algorithm, we assume the following regarding the
initial estimates J0

i held at processors i = 1, . . . , n:

Assumption 3.2: (Initial Conditions) The initial functions
J0 = (J0

1 , . . . , J
0
n) satisfy J ≤ J0 ≤ J.

Note that Assumptions 3.1 and 3.2 (for any initial J0)
are satisfied for discounted DP problems with bounded cost
per stage, and for stochastic shortest path (SSP) models (see
the discussions in [Ber77], [BeS78], [Ber82], [Ber07]). For
example in the discounted MDP Example 2.1, one may take
for all x ∈ X ,

J(x) = −β, J(x) = β, (3.1)

where β is a sufficiently large number. For the case of
SSP models (assuming all policies are proper), see the
construction of the proof of Prop. 2.2.3 of [Ber07].

In our algorithms, the processors asynchronously update
local estimates of J and µ using policy improvement iter-
ations similar to Eq. (1.4), and policy evaluation iterations
similar to Eq. (1.5). For each i, there are two disjoint subsets
of times Ti,Ti ⊂ {0, 1, . . .}, corresponding to policy
evaluation and policy improvement iterations, respectively.
At the times t ∈ Ti ∪ Ti, the local cost function J ti of
processor i is updated using “delayed” local costs Jτij(t)

j

of other processors j 6= i, where 0 ≤ τij(t) ≤ t, and
at the times t ∈ Ti, the local policy µti is also updated.
For various choices of Ti and Ti, the algorithm takes
the character of value iteration (when Ti = {0, 1, . . .}),
and policy iteration (when Ti contains a large number of
time indexes between successive elements of Ti). We view
t − τij(t) as a “communication delay.” We consider τij(t)
as being defined for all t [even though the algorithm uses
τij(t) only for t ∈ Ti ∪Ti], and we assume the following.

Assumption 3.3: (Continuous Updating and Information
Renewal) For each i = 1, . . . , n, the set Ti is infinite, and

lim
t→∞

τij(t) =∞, ∀ j = 1, . . . , n.

Assuming that Ti is infinite is essential for proving
any kind of convergence result about our algorithms. The
condition τij(t) → ∞ guarantees that outdated information
about the processor updates will eventually be purged from
the multi-processor system. It would also be natural to
assume that τij(t) is monotonically increasing with t (i.e.,
the processors use increasingly up-to-date information), but
this assumption is not necessary for our analysis.

IV. DISTRIBUTED ASYNCHRONOUS POLICY ITERATION

In our first policy iteration method, the processors collec-
tively maintain and update functions J t, V t, and a policy
µt. We assume that the initial V 0 satisfies J ≤ V 0 ≤ J (for
example we may use V 0 = J0). The initial µ0 is arbitrary.
At each time t and for each processor i:

(a) If t ∈ Ti, processor i does a policy improvement iteration,
i.e., sets for all x ∈ Xi,

µt+1
i (x) = arg min

u∈U(x)

Hi

(
x, u, J

τi1(t)
1 , . . . , Jτin(t)

n

)
, (4.1)

J t+1
i (x) = min

u∈U(x)
Hi

(
x, u, J

τi1(t)
1 , . . . , Jτin(t)

n

)
, (4.2)

and records the value of the minimum in Eqs. (4.1)-(4.2)
in the function Vi : Xi 7→ [−∞,∞]:

V t+1
i (x) = J t+1

i (x). (4.3)

(b) If t ∈ Ti, processor i does a policy evaluation iteration,
i.e., sets for all x ∈ Xi,

J t+1
i (x) = min

{
V ti (x),

(
Ti,µt

i

(
J
τi1(t)
1 , . . . , Jτin(t)

n

))
(x)
}
,

(4.4)
and leaves Vi and µi unchanged, i.e., V t+1

i (x) = V ti (x)
and µt+1

i (x) = µti(x) for all x ∈ Xi.
(c) If t /∈ Ti ∪ Ti, processor i leaves Ji, Vi, and µi

unchanged, i.e., J t+1
i (x) = J ti (x), V t+1

i (x) = V ti (x),
and µt+1

i (x) = µti(x) for all x ∈ Xi.

Note the difference between Eqs. (1.5) and (4.4): the latter
restricts J t+1

i (x) not to exceed V ti (x). This modification
provides the convergence mechanism that precludes the
difficulties associated with the Williams and Baird counterex-
amples (cf. the related remarks in the introductory section).

Proposition 4.1: Under Assumptions 3.1-3.3 we have for
all i = 1, . . . , n, and x ∈ Xi,

lim
t→∞

J ti (x) = lim
t→∞

V ti (x) = J∗(x).

Proof: The proof makes use of the functions W t
i : Xi 7→

[−∞,∞] defined for all t, i = 1, and x ∈ Xi, by

W t+1
i (x) = min

u∈U(x)
Hi

(
x, u, J

τi1(t)
1 , . . . , Jτin(t)

n

)
. (4.5)

For t = 0, we define W 0
i = J0

i . From Eqs. (2.3), (4.2), (4.4),
and (4.5), we have

min
{
V ti (x),W t+1

i (x)
}
≤ J t+1

i (x) ≤ V ti (x),

∀ x ∈ Xi, t ∈ Ti,
(4.6)



J t+1
i (x) = V t+1

i (x), ∀ x ∈ Xi, t ∈ Ti. (4.7)

The preceding two relations play an important role in the
proof: it is shown that W t

i (x) and V ti (x) converge to J∗(x),
so Eqs. (4.6)-(4.7) guarantee the convergence of J t to J∗.
In particular, we will show that for each k ≥ 0, there exists
an integer tk ≥ 0, such that for all i = 1, . . . , n, we have

(T kJ)(x) ≤ J ti (x) ≤ (T kJ)(x), ∀ x ∈ Xi, and t ≥ tk,
(4.8)

(T kJ)(x) ≤ V ti (x) ≤ (T kJ)(x), ∀ x ∈ Xi, and t ≥ tk,
(4.9)

(T kJ)(x) ≤W t
i (x) ≤ (T kJ)(x), ∀ x ∈ Xi, and t ≥ tk.

(4.10)
In view of Assumption 3.1(c), the desired result will follow.
Simultaneously with Eqs. (4.8)-(4.10), we will show that for
all i, j = 1, . . . , n, we have

(T kJ)(x) ≤ Jτji(t)i (x) ≤ (T kJ)(x), ∀ x ∈ Xi, t ≥ tk.
(4.11)

The proof of Eqs. (4.8)-(4.11) will be by induction on k.
We first show that Eqs. (4.8)-(4.11) hold for k = 0. Indeed

letting t0 = 0, we see that Eqs. (4.8)-(4.10) hold for t =
0 because of the initial condition Assumption 3.2 and the
definition W 0

i = J0
i . By induction on t, they hold also for

t > 0: suppose they hold for all t ≤ t̄, then for t = t̄ +
1, Eqs. (4.9) and (4.10) hold because the update formulas
(4.3) and (4.5) for V t and W t, respectively, maintain the
inequalities J ≤ V t ≤ J and J ≤ W t ≤ J in view of
Assumption 3.1(c). From Eqs. (4.6)-(4.7) it follows that for
t = t̄ + 1, Eq. (4.8) holds, so Eqs. (4.11) also holds. This
shows that Eqs. (4.8)-(4.10) hold for t ≥ 0.

Assuming that Eqs. (4.8)-(4.11) hold for some k, we will
show that they hold with k replaced by k + 1. For every
i = 1, . . . , n, let tk(i) be the first integer t > tk such
that t ∈ Ti (we use here Assumption 3.3). Then from the
update formulas (4.3) and (4.5) for V t and W t, respectively,
Assumption 3.1, and Eqs. (4.11), we have

(T k+1J)(x) ≤ V ti (x) ≤ (T k+1J)(x),

∀ x ∈ Xi, and t > tk(i),
(4.12)

(T k+1J)(x) ≤W t
i (x) ≤ (T k+1J)(x),

∀ x ∈ Xi, and t > tk(i).
(4.13)

Thus, from Eqs. (4.6)-(4.7) it follows that

(T k+1J)(x) ≤ J ti (x) ≤ (T k+1J)(x),

∀ x ∈ Xi, and t > tk(i).
(4.14)

Finally, using again Assumption 3.3, let tk+1 be the first
integer such that for all t ≥ tk+1,

τij(t) > max
`=1,...,n

tk(`), ∀ i, j = 1, . . . , n.

Then, from Eq. (4.14), we have for all i, j = 1, . . . , n,

(T k+1J)(x) ≤ Jτji(t)i (x) ≤ (T k+1J)(x),

∀ x ∈ Xi, and t ≥ tk+1.
(4.15)

Combining the fact tk+1 > maxi=1,...,n tk(i) and Eqs.
(4.12)-(4.15), we see that Eqs. (4.8)-(4.11) hold with k
replaced by k + 1, and the induction is complete. Q.E.D.

Let us note that the preceding proof does not depend on
the choice of the local policies µi used in the update (4.4);
any choice of policy will work. On the other hand, the update
of µi based on the minimization of Eq. (4.1) is natural and
consistent with the principles of policy iteration, and comes
at no additional cost since the minimization must be carried
out anyway to update Vi using Eqs. (4.2) and (4.3).

V. AN ALGORITHMIC VARIATION

A potential inefficiency in the algorithm arises when we often
have

V ti (x) <
(
Ti,µt

i

(
J
τi1(t)
1 , . . . , Jτin(t)

n

))
(x) (5.1)

in Eq. (4.4), in which case J t+1
i (x) is set to V ti (x) and

the policy evaluation iteration is “wasted.” This can be
inefficient, particularly when V ti approaches its limit J∗i
from lower values (some value iteration and modified policy
iteration algorithms, such as the Bellman-Ford algorithm
for shortest paths, generally tend to work slowly, when the
solution is approached from lower values, but the inefficiency
noted can exacerbate the difficulty). We present an algorith-
mic variation that modifies appropriately Eq. (4.4), using
interpolation with a stepsize γt ∈ (0, 1], to allow J t+1

i (x)
to take a higher value than V ti (x).

In particular, for t ∈ Ti, in place of Eq. (4.4), for all
x ∈ Xi, we calculate

J̃ t+1
i (x) =

(
Ti,µt

i

(
J
τi1(t)
1 , . . . , Jτin(t)

n

))
(x), (5.2)

and we use the update

J t+1
i (x) = J̃ t+1

i (x), if J̃ t+1
i (x) ≤ V ti (x), (5.3)

and

J t+1
i (x) = γtJ̃

t+1
i (x) + (1− γt)V ti (x)

if J̃ t+1
i (x) > V ti (x),

(5.4)

where {γt} is a sequence with γt ∈ (0, 1] and γt → 0. For
t /∈ Ti ∪Ti, we leave Ji(x) unchanged:

J t+1
i (x) = J ti (x), ∀ t /∈ Ti ∪Ti. (5.5)

As in the algorithm of Section IV, we assume that the initial
V 0 satisfies J ≤ V 0 ≤ J (for example V 0 = J0), while the
initial µ0 is arbitrary.

The idea of the algorithm is to aim for larger increases
of J ti (x) when the condition (5.1) holds. Asymptotically, as
γt → 0, the iteration (5.2)-(5.4) becomes identical to the
convergent update (4.4). It can be shown that if the condition
J0 ≥ Tµ0J0 is satisfied, and τij(t) are monotonically
increasing with t, then the convergence of iteration (5.2)-
(5.4) is monotonic from above to J∗ and we have

J̃ t+1
i (x) ≤ V ti (x)

at all times, so that from Eq. (5.3), J t+1
i (x) = J̃ t+1

i (x).
The same is true for the algorithm of Section IV, i.e., the



"Natural" Algorithm New Algorithm Interpolated Variant

Fig. 5.1. Comparison of three algorithms for a 6-state Williams-Baird
counterexample. Plotted are Jt(x) for x = 2 under a malicious order of
component selection with a malicious choice of J0 (top row), and under a
random order of component selection with J0 well below J∗ (bottom row).

minimum over V ti (x) in Eq. (4.4) is unnecessary. Thus in
the case where J0 ≥ Tµ0J0, the algorithms of Sections
IV and V coincide with the “natural” asynchronous policy
iteration algorithm, and the convergence result of [WiB93]
mentioned in the introduction is recovered.

Figure 5.1 illustrates the behavior of these three algorithms
for Example 2 of Williams and Baird [WiB93] (with α =
0.9). The top row shows how our algorithms correct the
convergence difficulty of the natural asynchronous policy
iteration algorithm (1.4)-(1.5), while the bottom row shows
how the algorithm of this section can improve over the
algorithm of Section IV when J t approaches J∗ from below.

The convergence properties of the algorithm with the mod-
ification (5.2)-(5.4) will be more fully discussed elsewhere.
The following proposition proves convergence under some
additional assumptions, which are satisfied in the discounted
finite-state MDP Example 2.1, and in SSP models where all
policies are proper (see the proof of Prop. 2.2.3 of [Ber07]).

Proposition 5.1: Let Assumptions 3.1-3.3 hold. Assume
further that J and J are real-valued and bounded, and that
for all J with J ≤ J ≤ J , we have

TµJ ≤ J, ∀ µ ∈M, (5.6)

and
T (J + c1) ≤ TJ + c1, ∀ c ≥ 0, (5.7)

where 1 denotes the function that is identically equal to 1.
Then for all i = 1, . . . , n, and x ∈ Xi, we have

lim
t→∞

J ti (x) = lim
t→∞

V ti (x) = J∗(x).

Proof: For any δ > 0, k > 0, we will show that for all
i = 1, . . . , n, and x ∈ Xi,

(T kJ)(x) ≤ J ti (x) ≤ (T kJ)(x) + δ,

(T kJ)(x) ≤ V ti (x) ≤ (T kJ)(x) + δ,

for all t sufficiently large, which will imply the desired
conclusion in view of Assumption 3.1(c). Since by using

the update formula (5.3)-(5.4) one can only increase J ti for
t ∈ Ti than by using the update formula (4.4) of the basic
algorithm, the lower bounds in the above inequalities follow
from the same monotonicity arguments as in the proof of
Prop. 4.1, and we only need to prove the upperbounds.

Let ∆ = ‖J − J‖∞, which is finite because J and J are
bounded under our assumption. Let γ̄k, k ≥ 1, be positive
scalars such that ∆

∑∞
k=1 γ̄k ≤ δ. Define δk = ∆

∑k
`=1 γ̄`

for k ≥ 1 and δ0 = 0.
We will show that there exist integers tk, k ≥ 0, such that

J ti (x) ≤ (T kJ)(x) + δk, ∀ x ∈ Xi, and t ≥ tk, (5.8)

V ti (x) ≤ (T kJ)(x) + δk, ∀ x ∈ Xi, and t ≥ tk, (5.9)

and for all i, j = 1, . . . , n,

J
τji(t)
i (x) ≤ (T kJ)(x) + δk, ∀ x ∈ Xi, t ≥ tk. (5.10)

The proof is by induction on k.
For k = 0, with δ0 = 0 and t0 = 0, Eqs. (5.8)-

(5.10) follow from the initial condition on J0 and V 0, and
Assumptions 3.1 and Eq. (5.6), by induction on t, similar
to the proof of Prop. 4.1. In particular, we only need to
verify that the update formula (5.4) for J ti maintains the
relation J ti (x) ≤ J(x). Indeed, if t̄ ∈ Ti and Eqs. (5.8)-
(5.10) hold for all t ≤ t̄, then from Eqs. (5.10) and (5.2),
and Assumptions 3.1 and (5.6), we have

J̃ t̄+1
i (x) ≤ (Ti,µt̄

i
J)(x) ≤ J(x),

so if Eq. (5.4) is used to obtain J t̄+1
i (x), then J t̄+1

i (x) ≤
J(x) in view of Eq. (5.9) and the fact γt̄ ∈ (0, 1]. The
preceding induction argument also shows that for all t ∈ Ti,

J̃ t+1
i (x) ≤ J(x) ∀ i = 1, . . . , n, x ∈ Xi. (5.11)

Suppose that Eqs. (5.8)-(5.10) hold for some k. We will
show that they hold for k + 1. For every i = 1, . . . , n, let
t̄k(i) be the first integer t ≥ tk such that t ∈ Ti (which is
finite under Assumption 3.3). Then, using the update formula
(4.3) for V t, Eq. (5.10), and Assumptions 3.1 and (5.7), we
have

V ti (x) ≤ (T k+1J)(x) + δk, ∀ x ∈ Xi, t > t̄k(i). (5.12)

Consider now J t+1
i for any t > t̄k(i). Using the update

formulas for J ti , we see that if t ∈ Ti, or if t ∈ Ti and
J t+1
i is obtained through the update formula (5.3), we have

J t+1
i (x) ≤ V ti (x) ≤ (T k+1J)(x) + δk, ∀ x ∈ Xi,

while if t ∈ Ti and the update formula (5.4) is used to obtain
J t+1
i , by using Eqs. (5.12) and (5.11), we have for x ∈ Xi,

J t+1
i (x) = (1− γt)V ti (x) + γtJ̃

t+1
i (x)

≤ (1− γt)
(
(T k+1J)(x) + δk

)
+ γtJ(x)

≤ (T k+1J)(x) + δk + γt
(
J(x)− (T k+1J)(x)

)
≤ (T k+1J)(x) + δk + γt∆,

where the last inequality follows from Assumption 3.1 and
the definition of ∆. Thus, letting t̃k+1 be such that

t̃k+1 > max
i=1,...,n

t̄k(i) and γt ≤ γ̄k+1, ∀ t ≥ t̃k+1,



we have for all i = 1, . . . , n,

J t+1
i (x) ≤ (T k+1J)(x) + δk + γ̄k+1∆

= (T k+1J)(x) + δk+1,

∀ x ∈ Xi, t ≥ t̃k+1.

(5.13)

Finally, letting tk+1 be an integer such that

τji(t) > t̃k+1, ∀ t ≥ tk+1, i, j = 1, . . . , n,

and using Eqs. (5.12) and (5.13), we see that Eqs. (5.8)-(5.10)
hold with k + 1 in place of k. The induction is complete.
Q.E.D.

As noted earlier, the assumptions (5.6) and (5.7) are
satisfied for the discounted finite-state MDP Example 2.1,
and for SSP models where all policies are proper. More
generally, let TJ and TµJ be bounded for all bounded J ,
and let H satisfy for some α ∈ (0, 1), and all x ∈ X and
u ∈ U(x) the condition∣∣H(x, u, J)−H(x, u, J ′)

∣∣ ≤ α‖J − J ′‖∞, (5.14)

for all bounded J and J ′. Then T is a sup-norm contraction,
so Eq. (5.7) holds, and all mappings Tµ are sup-norm con-
tractions with corresponding fixed points Jµ. Assume that Jµ
are uniformly bounded in the sense that supµ∈M ‖Jµ‖∞ <

∞ (e.g., whenM is finite). Then any function J that satisfies

α‖J − Jµ‖∞1 ≤ J − Jµ, ∀ µ ∈M, (5.15)

(for example a sufficiently large constant function) also
satisfies the condition (5.6). To see this, note that for J ≤ J ,

TµJ ≤ TµJ ≤ Jµ + α‖J − Jµ‖∞1 ≤ J,

where the first inequality follows from the monotonicity of
H , the second inequality follows by applying Eq. (5.14) with
J = J , J ′ = Jµ, and u = µ(x), and the third inequality is
Eq. (5.15). Note that the condition (5.14) is satisfied for the
discounted cost Examples 2.1, 2.3, 2.4, and 2.5.

VI. AN ALGORITHMIC VARIANT WITH RANDOMIZATION

In this variant, there are policy improvement and policy
evaluation iterations as in the classical version of the method,
but there is also a randomization scheme, defined by a small
probability p > 0, according to which a policy evaluation
iteration is replaced by a policy improvement iteration with
probability p, independently of the results of past iterations.
We model this randomization by assuming that before the
algorithm is started, we restructure the sets Ti and Ti

as follows: we take each element of each set Ti, and
with probability p, remove it from Ti, and add it to Ti

(independently of other elements).
Following the randomization, the processors execute the

classical form of the algorithm. In particular, they collec-
tively maintain and update a function J t and a policy µt,
with arbitrary initial µ0 and real-valued J0. At each time t
and for each processor i:

(a) If t ∈ Ti, processor i sets for all x ∈ Xi,

µt+1
i (x) = arg min

u∈U(x)

Hi

(
x, u, J

τi1(t)
1 , . . . , Jτin(t)

n

)
,

(6.16)

J t+1
i (x) = min

u∈U(x)
Hi

(
x, u, J

τi1(t)
1 , . . . , Jτin(t)

n

)
. (6.17)

(b) If t ∈ Ti, processor i sets for all x ∈ Xi,

J t+1
i (x) = Ti,µt

i

(
J
τi1(t)
1 , . . . , Jτin(t)

n

))
(x), (6.18)

and leaves µi unchanged, i.e., µt+1
i (x) = µti(x) for all

x ∈ Xi.
(c) If t /∈ Ti ∪Ti, processor i leaves Ji and µi unchanged,

i.e., J t+1
i (x) = J ti (x) and µt+1

i (x) = µti(x) for all x ∈
Xi.

We will assume the following:

Assumption 6.1:
1. X is a finite set and U(x) is a finite set for each x ∈ X .
2. There exists α ∈ (0, 1) such that for all x ∈ X , u ∈ U(x),
and real-valued functions J and J ′, we have∣∣H(x, u, J)−H(x, u, J ′)

∣∣ ≤ α‖J − J ′‖∞. (6.19)

3. There exists an integer B ≥ 0 such that (Ti ∪Ti) ∩ {τ |
t < τ ≤ t+B} 6= ∅ for all t and i.
4. There exists an integer B′ ≥ 0 such that 0 ≤ t− τij(t) ≤
B′ for all t, i, and j.

Assumption 6.1.1 implies that the set of policies M is
finite. Assumption 6.1.2 implies that T and Tµ are sup-norm
contractions with modulus α. Assumption 6.1.3 guarantees
that each processor i will execute at least one policy evalu-
ation or policy improvement iteration within every block of
B consecutive iterations. Assumption 6.1.4 places a bound
B′ on the communication delays.

The convergence of the algorithm is shown in the follow-
ing proposition.

Proposition 6.1: Under Assumption 6.1 we have

lim
t→∞

J t(x) = J∗(x), ∀ x ∈ X,

with probability one.
Proof: Let J∗ and Jµ be the fixed points of T and Tµ,
respectively, and denote by M∗ the set of optimal policies:

M∗ = {µ ∈M | Jµ = J∗} = {µ ∈M | TµJ∗ = TJ∗}.

We will show that the algorithm eventually (with proba-
bility one) enters a small neighborhood of J∗ within which
it remains, generates policies in M∗, becomes equivalent
to asynchronous value iteration/policy improvement, and
therefore converges to J∗. The idea of the proof is twofold.
(a) There exists a small enough ‖·‖∞-sphere centered at J∗,
call it S∗, within which policy improvement generates only
policies in M∗, so policy evaluation with such policies as
well as policy improvement keep the algorithm within S∗ if
started there, and reduce the ‖·‖∞-distance to J∗, in view of
the contraction and common fixed point property of T and
Tµ, µ ∈M∗.
(b) With probability one, thanks to the randomization device,
the algorithm will eventually enter permanently S∗ with a
policy in M∗.



We now establish (a) and (b) in suitably refined form to
account for the presence of delays and asynchronism. We first
define a bounded set within which the algorithm remains at
all times. For b > 0, consider the set

Ab =
{
J | ‖J − Jµ‖∞ ≤ b, ∀ µ ∈M

}
,

which is bounded since M is a finite set by Assumption
6.1.1. Note that we have TµJ ∈ Ab for all µ ∈ M and
J ∈ Ab, since ‖TµJ − Jµ‖∞ = ‖TµJ − TµJµ‖∞ ≤ α‖J −
Jµ‖∞ ≤ ab < b. Let b be sufficiently large so that J0 ∈ Ab,
and define

Sk =
{
J | ‖J − J∗‖∞ ≤ αkc

}
where c is sufficiently large so that Ab ⊂ S0. Then J t ∈ Ab
and hence J t ∈ S0 for all t.

Let ` be such that

J ∈ S` and TµJ = TJ implies µ ∈M∗. (6.20)

Such an ` exists in view of the finiteness of X and U(x),
and the Lipschitz continuity of H(x, u, ·) for each x ∈ X
and u ∈ U(x) (cf. Assumptions 6.1.1 and 6.1.2).

We now claim that with probability one, for any given
k ≥ 1, J t will eventually enter Sk and stay within Sk for
at least B′ additional consecutive iterations. This is because
our randomization scheme is such that for any t and k, with
probability at least pk(B+B′) the next k(B + B′) iterations
are policy improvements, so that J t+k(B+B′)−ξ ∈ Sk for all
ξ with 0 ≤ ξ < B′ [if t ≥ B′ − 1, we have J t−ξ ∈ S0 for
all ξ with 0 ≤ ξ < B′, so J t+B+B′−ξ ∈ S1 for 0 ≤ ξ < B′,
which implies that J t+2(B+B′)−ξ ∈ S2 for 0 ≤ ξ < B′, etc].

It follows that with probability one, for some t we will
have Jτ ∈ S` for all τ with t − B′ ≤ τ ≤ t, as well as
µt ∈M∗ [cf. Eq. (6.20)]. Based on property (6.20) and the
definition (6.16)-(6.18) of the algorithm, we see that at the
next iteration, we have µt+1 ∈M∗ and

‖J t+1 − J∗‖∞ ≤ ‖J t − J∗‖∞ ≤ α`c,

so J t+1 ∈ S`; this is because in view of Jµt = J∗, and the
contraction property of T and Tµt , we have

|J t+1
i (x)− J∗i (x)| ≤ α‖J t − J∗‖∞ ≤ α`+1c, (6.21)

for all x ∈ Xi and i such that t ∈ Ti∪Ti, while J t+1(x) =
J t(x) for all other x. Proceeding similarly, it follows that
for all t > t we will have Jτ ∈ S` for all τ with t − B′ ≤
τ ≤ t, as well as µt ∈M∗. Thus, after at most B iterations
following t [after all components Ji are updated through
policy evaluation or policy improvement at least once so that

|J t+1
i (x)− J∗i (x)| ≤ α‖J t − J∗‖∞ ≤ α`+1c,

for every i, x ∈ Xi, and some t with t ≤ t < t + B, cf.
Eq. (6.21)], J t will enter S`+1 permanently, with µt ∈ M∗
(since µt ∈ M∗ for all t ≥ t as shown earlier). Then, with
the same reasoning, after at most another B′ +B iterations,
J t will enter S`+2 permanently, with µt ∈ M∗, etc. Thus
J t will converge to J∗ with probability one. Q.E.D.

The proof of Prop. 6.1 shows that eventually (with
probability one after some iteration) the algorithm will
become equivalent to asynchronous value iteration (each
policy evaluation will produce the same results as a policy
improvement), while generating optimal policies exclusively.
However, the expected number of iterations for this to happen
can be very large. Moreover the proof depends on the sets
X and U(x) being finite. These observations raise questions
regarding the practical effectiveness of the algorithm, which
may be partially answered by some experimentation.

A potentially important issue is the choice of the random-
ization probability p. If p is too small, convergence may be
slow because oscillatory behavior of the type exhibited in
the Williams-Baird counterexample may go unchecked for
a long time. On the other hand if p is large, a correspond-
ingly large number of policy improvement iterations may be
performed, and the hoped for benefits of optimistic/modified
policy iteration may be lost. Adaptive schemes which adjust
p based on algorithmic progress may be an interesting
subject for investigation and experimentation. For example
each processor i may maintain a separate value of p and
increase/decrease it (within a range in [p̂, 1] where p̂ > 0) at
each time t ∈ Ti∪Ti for which ‖J t+1

i −J ti ‖∞ is greater/less
than some threshold defined heuristically (for example a
moving average of the previous values ‖J t

′+1
i − J t′i ‖∞, for

t′ ∈ Ti ∪Ti, t′ < t).
Let us finally note a hybrid variant of the policy evaluation

iteration (6.18) whereby as in the algorithms of Sections IV
and V, we maintain V t, but we use randomization as follows:
for t ∈ Ti, we perform a policy improvement of the form
(6.16)-(6.17) with probability p if(

Ti,µt
i

(
J
τi1(t)
1 , . . . , Jτin(t)

n

))
(x) > V ti (x), (6.22)

and we perform the policy evaluation iteration

J t+1
i (x) =

(
Ti,µt

i

(
J
τi1(t)
1 , . . . , Jτin(t)

n

))
(x)

otherwise. Adaptive schemes for adjusting p depending on
algorithmic progress are also possible. The simplest conver-
gent scheme is to use p = 1 throughout, i.e., perform a policy
improvement of the form (6.16)-(6.17) at every time t ∈ Ti

and state x ∈ Xi for which the inequality (6.22) holds. In
this case the algorithm becomes very similar to the one of
Section IV, and the proof of Prop. 4.1 goes through under
Assumptions 3.1-3.3 (Assumption 6.1 is not needed).

VII. VARIANTS FOR STOCHASTIC SHORTEST PATH
PROBLEMS

In this section we consider stochastic shortest path problems
(Example 2.2) where we do not assume that all policies
are proper, so the interpolation algorithm of Section V does
not apply. Moreover the randomization algorithm of Section
VI also does not apply since Assumption 6.1.2 does not
hold. (Note, however, that if all policies are proper, a result
analogous to Prop. 6.1 can be shown.)

We assume the following.

Assumption 7.1:



1. There exists at least one proper policy.

2. For every improper policy, the corresponding cost is ∞
for at least one initial state.

This is the assumption of Bertsekas and Tsitsiklis [BeT89],
[BeT91] (also used in [Ber07], Sections 2.1, 2.2), who show
that the optimal cost J∗(x) is finite for all initial states
x = 1, . . . , n, that there exists an optimal proper policy,
and that value iteration converges to J∗ from any starting
vector J . There are no known optimistic/modified policy
iteration algorithms for these problems; see for example
Puterman ([Put94], Sections 7.3.4 and 7.3.5). A convergent
policy iteration algorithm was given in [BeT89], [BeT91],
but it assumes that the initial policy is proper, and it does
not seem to admit a straightforward asynchronous optimistic
version, at least for general initial conditions. The difficulty
is that the cost corresponding to improper policies cannot be
bounded, and as a result the iterates using an improper policy
cannot be bounded. To address this difficulty, we modify
the corresponding DP mapping so that boundedness of the
iterates is maintained.

Suppose that Ĵ is a known upper bound to J∗:

Ĵ(x) ≥ J∗(x), ∀ x = 1, . . . , n.

Consider the mapping defined by

H(x, u, J) = min
{
Ĵ(x), H̄(x, u, J)

}
, (7.23)

where

H̄(x, u, J) = pxd(u)g(x, u, d)+

n∑
y=1

pxy(u)
(
g(x, u, y)+J(y)

)
.

Note that the mapping H corresponds to a modified
stochastic shortest path problem, which includes one extra
action that stops the system at any state x with cost Ĵ(x).
However, the stopping action is nowhere optimal, so the
modified problem is equivalent to the original (they have
the same optimal costs and optimal policies).

Let us define

(TJ)(x) = min
u∈U(x)

H(x, u, J), x ∈ X,

(T̄ J)(x) = min
u∈U(x)

H̄(x, u, J), x ∈ X,

and note that T and T̄ are monotone. Also for any scalar
c > 0, define

J = J∗ − c1, J̄ = J∗ + c1.

Then, since J∗ is a fixed point of T (as well as T̄ ), TJ ≤ T̄ J
for all J , and TJ = T̄ J for J ≤ J∗, we have

T kJ = T̄ kJ ≤ J∗ ≤ T kJ̄ ≤ T̄ kJ̄ .

Since limk→∞ T̄ kJ = J∗ for any J ∈ <n ([Ber07], Prop.
2.2.2), it follows that limk→∞ T kJ = J∗ and that J∗ is the
unique fixed point of T . Moreover, we have

J ≤ TJ ≤ J∗ ≤ T J̄ ≤ J̄ ,

and it follows that value iteration using T converges to
J∗ asynchronously, based on the preceding relations and
the generic convergence properties of asynchronous value
iteration as described in [Ber82]. Furthermore, since a policy
µ is optimal if and only if T̄µJ∗ = T̄ J∗ ([Ber07], Prop.
2.2.2), we see that µ is optimal if and only if TµJ∗ = TJ∗.

Assume now that c is sufficiently large so that J ≤ Ĵ ≤
J̄ and J ≤ J0 ≤ J̄ . Then it can be seen that with the
above definition of H , the assumptions of Props. 4.1 and 5.1
hold, so the corresponding algorithms of Sections IV and V
converge to J∗. The algorithm with randomization of Section
VI also converges to J∗. In particular, under Assumptions
6.1(c)-(d) and 7.1, the line of proof of Prop. 6.1 applies. The
steps of the proof are outlined below:

(1) Define

Sk = {J | T kJ ≤ J ≤ T kJ̄}, k = 0, 1, . . .

Then starting with J ∈ S0, the algorithm remains in S0.
Moreover, given any `∞-sphere S centered at J∗, there exists
k̄ such that T kJ ∈ S for all k ≥ k̄.

(2) Denote by M∗ the set of optimal policies:

M∗ = {µ ∈M | Jµ = J∗} = {µ ∈M | TµJ∗ = TJ∗}.

Let ` be such that

J ∈ S` and TµJ = TJ implies µ ∈M∗.

Such an ` exists in view of the finiteness of X and U(x).

(3) As in the proof of Prop. 6.1, the algorithm with prob-
ability 1 will enter S`, and once it does it will become
equivalent to asynchronous value iteration based on T , and
hence converge to J∗.

This line of analysis also applies in the case where instead
of Assumption 7.1, we assume:

Assumption 7.1’:

1. There exists an optimal proper policy.

2. g(x, u, y) ≥ 0 for all x, y, and u ∈ U(x).

Here we must also take J = 0 and J0 ≥ 0; see [BeT89]
Exercise 3.4, or [BeT91].

VIII. CONCLUDING REMARKS

We have considered general DP-type problems, and proposed
modified policy iteration methods that converge under less
restrictive conditions than existing methods. Our methods
also apply to broader classes of problems, in both a nondis-
tributed and a totally asynchronous distributed setting. In
the latter case, they rectify the convergence difficulties of
asynchronous policy iteration demonstrated by Williams and
Baird [WiB93]. Future works will provide a more complete
discussion of synchronous and asynchronous modified policy
iteration algorithms for general DP-like models.
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