
An Efficient Discriminative Training Method for Generative Models

Huizhen Yu
Dept. Computer Science
University of Helsinki

00014, Finland

Dimitri P. Bertsekas
Dept. EECS

Massachusetts Institute of Technology
Cambrige, 00239

Juho Rousu
Dept. Computer Science
University of Helsinki

00014, Finland

Abstract

We propose an efficient discriminative train-
ing method for generative models under su-
pervised learning. In our setting, fully ob-
served instances are given as training exam-
ples, together with a specification of vari-
ables of interest for prediction. We formu-
late the training as a convex programming
problem, incorporating the SVM-type large
margin constraints to favor parameters under
which the maximum a posteriori (MAP) esti-
mates of the prediction variables, conditioned
on the rest, are close to their true values given
in the training instances. The resulting opti-
mization problem is, however, more complex
than its quadratic programming (QP) coun-
terpart resulting from the SVM-type training
of conditional models, because of the pres-
ence of non-linear constraints on the param-
eters. We present an efficient optimization
method, which combines several techniques,
namely, a data-dependent reparametrization
of dual variables, restricted simplicial de-
composition, and the proximal point algo-
rithm. Our method extends the one for solv-
ing the aforementioned QP counterpart, pro-
posed earlier by some of the authors.

1 INTRODUCTION

We consider discriminative training of parameters for
generative models with directed acyclic graphs and
with discrete-valued variables. We assume a super-
vised learning setting, in which fully observed in-
stances are given as training examples, together with
a specification of variables of interest to prediction.
These will be called hidden variables and they may
vary from instance to instance. As to which variables
are considered as hidden, it is sometimes naturally de-

termined by the model or task, as in the case of a
hidden Markov model (HMM) or a classification task.
However, the selection can also be made only for the
purpose of discriminative training: for example, in a
way emulating the idea of the “coding technique” or
“pseudo-likelihood” of Besag [Bes74], we can select a
subset of nodes of a complex Bayesian network (BN)
such that their edges cover many parts of the graph,
and given the rest of the nodes, the inference on the
graph is relatively easy.

There are certain circumstances where we may favor
discriminative training over other statistics-based ap-
proaches, e.g., maximum likelihood (ML) parameter
estimation: for example, when the number of instances
is small, or when the instances are selected with bi-
ases and therefore do not reflect the true distribution,
or when we want to adapt the parameters of a model
learned in similar but different applications. In gen-
eral, it may still be debatable whether discriminative
training is preferred for generative models, as such
training may introduce biases to the model. While
our focus in this paper is primarily on the algorithmic
aspects of efficient training, we emphasize here that
assessing and preventing such biases are important is-
sues, which we aim to address in the future.

We take the log-probabilities associated with the edges
of the generative model as model parameters. We for-
mulate the discriminative training as a convex pro-
gramming problem. Its objective function has KL
divergence terms to control the degree of deviation
of the model parameters from certain given distribu-
tions, and penalty terms for the SVM-type margin
violation to favor parameters under which the maxi-
mum a posteriori (MAP) estimates of the hidden vari-
ables, conditioned on the rest, are close to their true
values given in the training instances. Large mar-
gin type of training criteria have been used for con-
ditional models in recent structured prediction works
(e.g., [Col02, ATH03, TGK04]); there, the resulting
optimization problems are primarily convex quadratic

programming (QP) problems with a large number of
linear constraints due to the margin penalty. In our
context, the resulting optimization problems are more
complex, because of the presence of non-linear con-
straints on the parameters (since probabilities have to
sum to 1.)

We present an efficient optimization method; its idea
applies to solving a class of problems resulting from the
enforcement of large margin constraints. Our method
is an extension of the one proposed earlier by two of
the authors [YR07], which deals with the aforemen-
tioned QP problems resulting from non-kernelized for-
mulations. It differs from the optimization methods
of [TGK04, TJHA05, RSSS06, YR07] in its technique
of handling the large number of margin constraints
by a data-dependent linear reparametrization of dual
variables. This technique reduces the dimension of the
dual problem so that it is independent of the size of
the prediction space, and is amenable to the use of ef-
ficient optimization methods of the feasible-direction
type.1 For problems with parameter constraints in ad-
dition to the margin constraints, a simple example has
been demonstrated in [YR07], where the additional
constraints are simple sign constraints. As the con-
straints considered here are more complex, we enhance
these techniques by combining several ideas.

In broad terms, the method we propose in this paper
operates at two levels. At the top level, we apply the
proximal point algorithm and solve a sequence of reg-
ularized primal problems, which have nicer properties
than the original problem and whose solutions con-
verge to that of the latter. At the bottom level, we
solve each regularized primal problem by dual opti-
mization. In particular, by reparametrizing the multi-
pliers associated with the large number of linear mar-
gin constraints, we derive an equivalent size-reduced
dual problem which has an implicit polyhedral set con-
straint. We then use the restricted simplicial decompo-
sition (RSD) method [HLV87] to deal with the set con-
straint, while we deal with the rest of the constraints
directly.

The paper is organized as follows. In Sec. 2, we present
the formulation of the training problem and our opti-
mization algorithm. In Sec. 3, we describe two variants
of the algorithm using subsets of the training set as
working sets, including a variant with an online learn-
ing flavor, and we also describe extensions of our anal-
ysis to more general problem formulations. In Sec. 4,
we present experimental results.

1A more detailed comparison to the early methods can
be found in [YR07].

2 FORMULATION AND
ALGORITHM

Let θi, i ∈ I be vector-valued variables, each of which
corresponds to a vector of log-conditional probabilities
of some variable given its parents. Thus, θi ∈ <di for
some di and θi ≤ 0. Let K index the training examples,
and for k ∈ K, let Sk denote the space of all possible
value assignments of the hidden variables in the k-th
example.2

For each example instance, the log of the joint prob-
ability of hidden and non-hidden variables is a linear
function of the log-probability parameters, with the
coefficients being the respective counts of number of
occurrences of certain patterns in the given instance,
involving each variable and its parents. Let (s, o) de-
note the values of hidden and non-hidden variables,
respectively, and let s∗ be the values of hidden vari-
ables in the instance. The SVM-type large margin
criterion is to require that after training, ideally, the
true value s∗ is the MAP estimate of the hidden vari-
ables and win by at least certain margin over other
value assignments s:

lnP (s, o) + l(s∗, s) ≤ lnP (s∗, o), ∀ s. (1)

Here l(s∗, s) is a non-negative loss function with
l(s∗, s∗) = 0 and may depend on the instance. It will
be assumed that l(·, ·) has a favorable structure, so
that the s maximizing the left-hand-side of Eq. (1),

arg max
s

[
lnP (s, o) + l(s∗, s)

]
,

can be computed efficiently. These problems are re-
ferred to as loss-augmented inference problems in the
structured prediction literature. Solving them corre-
sponds to identifying violating constraints in the con-
vex program associated with the training, which is why
their efficient solution methods are important for the
training to be efficient. Expressing the margin con-
straints (1) in terms of parameters θ, we have linear
inequalities the number of which equals the size of the
space of s.

We define some shorthand notation. For a vector
x ∈ <d, x = (x1, x2, . . . , xd), ex denotes the vector
(ex1 , ex2 , . . . , exd). Both vectors are treated as column
vectors. The symbol ′ denotes transpose. For x ∈ <d,
1′x will be used as a shorthand for

∑d
j=1 xj , where we

treat 1 as a vector of all ones with however a varying
dimension depending on x. Let θ denote the collection

2In the case of HMM, for instance, θi is either a vector
of log of state transition probabilities, or a vector of log
of observation probabilities, corresponding to some state,
and Sk is the space of the hidden state sequence for the
k-th state and observation trajectory.

of variables θi, i ∈ I, and let ε denote the collection of
scalar variables εk, k ∈ K.

2.1 PRIMAL PROBLEM

We formulate the training problem as solving the fol-
lowing convex program:

(P) min
θ,ε

−
∑
i∈I

c′iθi + η
∑
k∈K

εk (2)

subj.
∑
i∈I

ai,k(s)′θi + bk(s) ≤ εk, ∀s ∈ Sk, k ∈ K

(3)

1′eθi ≤ 1, ∀i ∈ I (4)
θi ≤ 0, ∀i ∈ I, εk ≥ 0, ∀k ∈ K (5)

The explanations for the constraints and the objective
function are as follows.

The constraints in (3) correspond to the margin con-
straints of Eq. (1): the term

∑
i∈I ai,k(s)′θi corre-

sponds to lnP (s, o)− lnP (s∗, o), while the term bk(s)
corresponds to the loss term lk(s∗, s).

The constraint 1′eθi ≤ 1 in (4) does not enforce the
sum of the associated probabilities to be 1, instead, it
only requires the sum to be no greater than 1. If we
replace the inequality with the equality, the constraint
would not be convex. However, apart from the pure
convexity/algorithmic-related reason, we also have a
natural interpretation for this constraint. We interpret
the missing probability mass 1 − 1′eθi , if 1′eθi < 1,
to be the probability of the variable taking an “un-
known” value, given its parents.3 Such parameters do
not cause practical problems for certain MAP infer-
ence, e.g., for predicting the hidden state sequence in
HMM. (We observe in our experiments, most of eθi

do correspond to probability distributions, while the
ones that do not usually have only a small amount of
missing mass.

Each term in the summation −
∑

i∈I c′iθi in the ob-
jective function (2) comes from the KL-divergence
D(p ‖ q), defined for two d-dimensional probability dis-
tributions p and q by

D(p ‖ q) =
d∑

j=1

pj ln
pj

qj
= −H(p)−

d∑
j=1

pj ln qj ,

with H(p) denoting the entropy of p. Here, for each
i, we let q = eθi , while we let p = ci be some fixed
distribution, which can be the maximum likelihood

3In the case of HMM, for instance, this will be either
the probability of transition to an “unknown” state or the
probability of generating an “unknown” observation at the
state that θi is associated with.

estimates of the parameters, or, for smoothing pur-
poses, the uniform distribution, or, parameters esti-
mated from a smaller model. Dropping the constant
terms H(ci) then gives the term −c′iθi in the objec-
tive. (Notice that

∑
j qj ≤ 1 due to the constraint (4);

but our use of the divergence formula is easily justi-
fied because we can think of p as having probability
zero on the unknown value while q having 1−1′eθi on
the latter.) Alternatively, one can choose other objec-
tive terms for θ, which are not necessarily linear. The
optimization method to be presented shortly applies
to more general cases, as will be discussed further in
Sec. 3.

We note that because of the KL divergence terms
−

∑
i∈I c′iθi, the solution of (P) is non-degenerate, that

is, the probabilities eθi in optimal or near optimal so-
lutions will not all tend to zero, as this will cause an
infinite amount of increase in the objective.

2.2 PRELIMINARIES FOR THE
ALGORITHM

The margin constraints (3) introduce potentially a
huge number of linear constraints per example. To ef-
fectively deal with this, we will use the reparametriza-
tion approach proposed in [YR07]. Its idea is to
reparametrize the associated multipliers by a data-
dependent linear transformation that makes the di-
mension of the dual function independent of the size
of assignment space Sk. The reduced dual problem,
which has an implicit polyhedral set constraint due to
the reparametrization, is then optimized using feasible
direction methods such as RSD. In this subsection, we
first explain these ideas, (see [YR07] for more details),
and we then point out a difficulty in applying RSD
directly, which motivates our algorithm given in the
next subsection.

2.2.1 Reparametrization

We derive our reparametrization essentially from the
Lagrangian function. For each k ∈ K, let βk(s), s ∈ Sk

be the multipliers associated with the constraints (3)
and let βk denote a collection of them. Let β denote
the collection of βk, k ∈ K. Let λi be the multipliers
associated with the constraints (4) for each i ∈ I, and
let λ denote the collection of λi, i ∈ I. Define

µi =
∑

k∈K,s∈Sk

βk(s)ai,k(s), ω =
∑

k∈K,s∈Sk

βk(s)bk(s).

(6)

We have the Lagrangian function

L
(
(θ, ε), (β, λ)

)
= −

∑
i∈I

c′iθi + η
∑
k∈K

εk +
∑
i∈I

µ′iθi + ω

−
∑

k∈K,s∈Sk

βk(s)εk +
∑
i∈I

λi(1′eθi − 1)

=
∑
i∈I

(µi − ci)′θi + ω +
∑
i∈I

λi(1′eθi − 1)

+
∑
k∈K

(
η −

∑
s∈Sk

βk(s)
)
εk,

from which, by minimizing over (θ, ε), we obtain the
dual problem

(D’) max
β,λ

ω −
∑
i∈I

λi +
∑
i∈I

qi(µi, λi)

subj. β ≥ 0, 1′βk ≤ η, ∀k ∈ K
λ ≥ 0, (µ, ω) satisfy (6)

where

qi(µi, λi) = min
θi≤0

[
(µi − ci)′θi + λi1′eθi

]
. (7)

Equivalently, we write the dual problem in terms of
reparametrized variables (µ, ω, λ) with an implicit set
constraint as

(D) max
µ,ω,λ

ω −
∑
i∈I

λi +
∑
i∈I

qi(µi, λi) (8)

subj. λ ≥ 0, (µ, ω) ∈ D

where the set D, determined by the parametrization
in (6), is

D =
{

(µ, ω)
∣∣∣ µi =

∑
k∈K,s∈Sk

βk(s)ai,k(s),

ω =
∑

k∈K,s∈Sk

βk(s)bk(s),

βk ≥ 0, 1′βk ≤ η, ∀k ∈ K
}

. (9)

Notice that unlike β, the dimension of (µ, ω) is one
plus the dimension of the parameters and does not de-
pend on the size of Sk. At an optimal dual solution
(µ∗, ω∗, λ∗), an optimal primal solution θ∗ can be de-
termined from (7).4

As the above reparametrization reduces the dimension
of the dual function, it introduces a complicated im-
plicit polyhedral set constraint D. However, feasible
direction methods can deal effectively with constraints
of this type. There are also alternative reparametriza-
tions based on the same idea, some of which will be
given in Sec. 3.1.

4There is no duality gap and there exists at least one
dual optimal solution, since the Slater constraint qualifica-
tion holds for (P).

2.2.2 Dual Optimization with RSD

The method of simplicial decomposition [Hol74,
Hoh77, HLV87] (see also [Ber99]) operates by solving
iteratively two types of problems, called the master
problem and the direction-finding subproblem, respec-
tively. In the master problem, we optimize the ob-
jective function over an inner approximation of the
feasible region, formed by the convex hull of a finite
number of extreme points. This optimization can be
done efficiently using the projected Newton method
[Ber82], whenever the Hessian matrix can be con-
veniently computed. Subsequently, in the direction-
finding subproblem, we find an extreme point along
an ascent/descent direction, if the current solution is
not a maximum/minimum. We form a new inner ap-
proximation of the feasible region by adding this point
to the existing ones, thereby expanding the approxi-
mation into the part of the feasible region on which
the objective can be improved. A new iteration of the
master problem then starts.

The RSD algorithm [HLV87], in addition to follow-
ing the above procedure, sets an upper limit on the
number of extreme points forming the inner approx-
imations,5 and by doing so, it makes the complexity
of solving master problems independent of that of the
original problem. As the projected Newton method en-
joys superlinear convergence rate (under certain stan-
dard conditions), master problems take relatively little
time to solve, and the effectiveness of the algorithm
thus depends on the effectiveness in making inner ap-
proximations of the feasible region. Therefore, there is
an incentive not to restrict the number of points used
in the inner approximation to be too small.

Let us outline the form of the RSD iterations in our
context, under an ideal (but not correct) assumption
that qi were everywhere real-valued functions (the clar-
ification on a domain related difficulty will be given
shortly). It is only necessary to make inner approxi-
mations of D, since the feasible region of λ is simple.
Then, with (µj , ωj) ∈ D, j = 1, . . . ,m being m points
whose convex hull makes an inner approximation of
D, the master problem takes the following equivalent
form

max
α,λ

m∑
j=1

αj ωj −
∑
i∈I

λi +
∑
i∈I

qi

(m∑
j=1

αj µj
i , λi

)
(10)

subj. λ ≥ 0, α ≥ 0,
m∑

j=1

αj = 1 (11)

5When the number of points exceed the upper limit, we
can simply discard some of them and add in the current
feasible solution point.

The projected Newton method can be applied to solve
this convex program with simple constraints [Ber82]
(it operates by converting in a certain way the simplex
constraint (11) to non-negativity constraints and then
applying the Newton method with a crucial block diag-
onal condition on the scaling matrix). Corresponding
to an optimum (ᾱ, λ̄) of (10), the point (µ̄, ω̄, λ̄) with
µ̄ =

∑m
j=1 ᾱjµ

j , ω̄ =
∑m

j=1 ᾱjω
j is optimal for the

master problem. Subsequently, with Q(µ, ω, λ) denot-
ing the dual function (8), the direction-finding sub-
problem aims to find a feasible point along an ascent
direction by solving

max
(µ,ω)∈D

[
∇µQ(µ̄, ω̄, λ̄)′(µ−µ̄)+∇ωQ(µ̄, ω̄, λ̄)′(ω−ω̄)

]
.

As can be seen, the optimal value is zero if and only if
(µ̄, ω̄, λ̄) is optimal for the original problem. When the
optimal value is nonzero, we use the optimal solution
(µ, ω) to expand the inner approximation of D. By the
definition of Q and D [Eq. (9)] from our reparametriza-
tion, the direction finding subproblem is equivalent to

max
(µ,ω)∈D

[
ω +

∑
i∈I

∇µiqi(µ̄i, λ̄i)′µi

]

=
∑
k∈K

max
s∈Sk

[∑
i∈I

∇µiqi(µ̄i, λ̄i)′ai,k(s) + bk(s)

]
, (12)

and the maximization problems in the expression on
the right-hand-side have the same form as the loss-
augmented inference problems and can be solved effi-
ciently when there are favorable structures in the loss
function and the generative models.

We make two observations. First, as the complexity of
solving the master problems is unaffected by the train-
ing problem, we can exploit this property and save the
number of calls to the inference algorithms by keeping
a relatively high dimension of the simplex in the mas-
ter problems. Second, due to the special structure of
our problem, each term inside the summation in the
right-hand-side of (12) is a feasible point in D; whether
it points to an ascent direction can be determined by
calculating its inner product with the gradient. So,
in our context, at the direction-finding step we can
generate multiple ascent directions, instead of one, to
expand the inner approximation.

2.2.3 A Difficulty Related to Domain

We cannot apply directly the above standard proce-
dure of RSD, however, because the domain of the dual
function (8) is not the entire space: the function qi

given in Eq. (7) is not everywhere real-valued, and its
domain can be seen to be

dom(qi) = {µi | µi ≤ ci} × <. (13)

Consequently, in order to start the RSD iterations, we
need at least one point (µj , ωj) in the master problem,
Eq. (10), to be in the domain of the dual function,
(otherwise, the value is −∞); and furthermore, for
the direction finding subproblems, we essentially need
to find a point (µ, ω) along an ascent direction that
lies not just in D but in the intersection of D and
the Cartesian product of {µi | µi ≤ ci} over i and
<. While finding such a point can be done, it is too
computationally intensive, as far as our investigation
shows.

To overcome this difficulty caused by the domain
boundary of the dual function, we can add a small
quadratic regularization term to the objective function
of the primal problem, which then makes the corre-
sponding dual function everywhere real-valued so that
RSD as described above can be applied directly. More-
over, we do not have to settle for solving an approxima-
tion of the original problem: by changing the center of
the quadratic term and solving a sequence of problems,
we can approach the optimal solution of the original
problem. This is the basis of the algorithm that we
will present next, which is a proximal point algorithm
from the primal viewpoint.

2.3 ALGORITHM

2.3.1 A Dual Proximal Point Algorithm

We apply the proximal point algorithm for solving the
primal (P): at iteration n, we optimize (Pn), which
differs from (P) only by a quadratic proximal term
γn

2 ‖θ − θn‖2 in the objective function:

(Pn) min
θ,ε

−
∑
i∈I

c′iθi + η
∑
k∈K

εk + γn

2 ‖θ − θn‖2 (14)

subj.
∑
i∈I

ai,k(s)′θi + bk(s) ≤ εk, ∀s ∈ Sk, k ∈ K

(15)

1′eθi ≤ 1, ∀i ∈ I (16)
εk ≥ 0, ∀k ∈ K (17)

Here, for all n, θn satisfies the constraints (16), with
the initial θ0 being any point, e.g., the log of the
uniform distribution or the maximum likelihood es-
timates; γn is some small positive number and is
bounded above for all n by some arbitrary positive
number. We have dropped the constraints θi ≤ 0
from (P), which are redundant anyway given the con-
straints (16), to simplify the dual problem. It can be
seen that θ is an improved solution over θn for (P), if
θ is for (Pn). Moreover, it is well known that if for
all n, the center θn+1 in the proximal term of (Pn+1)
is the optimal solution of (Pn), then the sequence θn

converges to an optimal solution of (P), assuming that

γn is bounded above (see e.g., [Ber99] and references
given there). In our case, we will optimize (Pn) indi-
rectly by optimizing its dual, and it turns out that the
center θn can be changed in a more flexible way, as
will be described in Sec. 2.3.3.

We consider solving (Pn) by dual optimization with
the reparametrization and RSD introduced in Sec. 2.2.
With the same parametrization in (6), we obtain the
size-reduced dual problem of (Pn):

(Dn) max
µ,ω,λ

ω −
∑
i∈I

λi +
∑
i∈I

qn
i (µi, λi) (18)

subj. λ ≥ 0, (µ, ω) ∈ D

where D is as defined in Eq. (9), and the functions qn
i

are defined by [cf. the definition of qi in Eq. (7)]:

qn
i (µi, λi) = min

θi∈<di

[
(µi−ci)′θi+λi1′eθi+γn

2 ‖θi−θn
i ‖2

]
.

(19)
The latter are everywhere real-valued functions, and
hence, so are the dual function Qn of (Dn) [given
in (18)]. The procedure of applying RSD is thus as
described in Sec. 2.2 with Qn replacing the dual func-
tion Q of (D), and with qn

i replacing qi in Eqs. (10)
and (12).

Let us look more closely at how RSD operates with a
varying sequence of convex programs instead of one.
Since D is functionally independent of θn, inner ap-
proximations of D still are valid inner approxima-
tions, unaffected by θn. Similarly, a feasible solution
zn = (µ, ω, λ) of (Dn) still is feasible for (Dn+1), and
furthermore, since a small change in θn usually results
in a small change in the dual optimal solution, zn is
a natural starting point for optimizing (Dn+1). Thus,
while the actual function values and ascent directions
are affected by a varying θn, they can be treated as
generated from a black box, on top of which, RSD can
run continuously without re-initializations for center
changes (even though a careful re-initialization may
give some speed-up). As a result, the overhead of the
dual proximal point algorithm is not as high as might
seem.

2.3.2 Details of Computation

The value, gradient and Hessian of the dual function
Qn of (Dn) are needed in RSD to optimize (Dn): the
Hessian, or simply its diagonal entries, is useful for
speeding up the convergence by applying the projected
Newton method [Ber82]. We show how to compute
these quantities efficiently. By the simple linear rela-
tions between qn

i , Qn and the objective function (10) of
the master problem of RSD, we only need to show how
to evaluate qn

i and its first and second order derivatives
efficiently.

Evaluation of function values: To compute
qn
i (µ̄i, λ̄i), we solve the minimization problem in (19),

which has a unique minimum denoted by θ̄i. Notice
that this minimization problem is separable in each
component of θi. For the j-th component, the neces-
sary and sufficient optimality condition is

f(x) = µ̄ij − cij − γn θn
ij + λ̄ie

x + γn x = 0. (20)

The solution of Eq. (20) can be obtained by Newton’s
method:

xm+1 = xm −
(
f ′(xm)

)−1
f(xm) = xm − f(xm)

λ̄iexm + γn
,

which converges to θ̄ij globally with quadratic conver-
gence rate; this follows from [OR70] (Theorems 13.3.4
and 13.3.7, p. 451-453) thanks to the convexity and
other properties of f .

Evaluation of gradients: It can be seen that the
gradients of qn

i (µ̄i, λ̄i) are

∇µiq
n
i (µ̄i, λ̄i) = θ̄i, ∇λiq

n
i (µ̄i, λ̄i) = 1′eθ̄i . (21)

Evaluation of Hessians: The Hessians of qn
i (µ̄i, λ̄i)

can be derived as follows. Since θ̄ij satisfies Eq. (20),
i.e.,

µ̄ij − cij − γn θn
ij + λ̄ie

θ̄ij + γn θ̄ij = 0,

by differentiating both sides with respect to µij and
λi, we have, respectively,

1 + λ̄ie
θ̄ij

∂θ̄ij

∂µij
+ γn

∂θ̄ij

∂µij
= 0

⇒ ∂θ̄ij

∂µij
=

−1
λ̄ieθ̄ij + γn

, (22)

eθ̄ij + λ̄ie
θ̄ij

∂θ̄ij

∂λi
+ γn

∂θ̄ij

∂λi
= 0

⇒ ∂θ̄ij

∂λi
=

−eθ̄ij

λ̄i + γneθ̄ij
. (23)

Notice that ∂θ̄ij

∂µij
and ∂θ̄ij

∂λi
are smooth functions of µij

and λi, so, qn
i and hence the dual function are twice

differentiable. In particular, combining Eqs. (21)-(23),
we see that the Hessian of qn

i is given by

∂2qn
i (µ̄i, λ̄i)
∂2µij

=
−1

λ̄ieθ̄ij + γn

, (24)

∂2qn
i (µ̄i, λ̄i)

∂µij∂λi
=

∂2qn
i (µi, λi)

∂λi∂µij
=

−eθ̄ij

λ̄i + γneθ̄ij
, (25)

∂2qn
i (µ̄i, λ̄i)
∂2λi

=
di∑

j=1

−e2θ̄ij

λ̄i + γneθ̄ij
. (26)

2.3.3 Center-Change Rule and Bounds on
Optimal Value

Let p∗n and p∗ denote the optimal value of (Pn) and
(P), respectively. Let Pn(θ; θn) and P o(θ) be the func-
tion of θ obtained by minimizing the primal function
of (Pn) and (P), respectively, over the slack variable ε.

Let zn = (µ̄, ω̄, λ̄) be the dual feasible solution at iter-
ation n, which is the optimal solution of the most re-
cent master problem. Let θ̄n be the vector whose com-
ponents θ̄n

i solve the minimization problems defining
qn
i (µ̄i, λ̄i), respectively. The point θ̄n is not necessarily

feasible for the primal problems, so we define θ̄n,s to
be a primal feasible point obtained from θ̄n by a shift
to each of the components,

θ̄n,s
i = θ̄n

i −max
{

0, ln
(
1′eθ̄n

i
)}

;

in other words, if 1′eθ̄n
i > 1, eθ̄n,s

i is a scale of eθ̄i

by 1′eθ̄n
i . Then, since p∗n ≤ Pn(θ̄n,s; θn) and p∗ ≤

P o(θ̄n,s), we use the right-hand-sides to define upper
bounds on p∗n and p∗.

Lower bounds on p∗n are obtained by the dual function
values at iteration n. Lower bounds on p∗ are not
easy to compute. We make inaccurate estimations by
evaluating the original dual function (D) – inaccurate,
because not all µ̄i are necessarily in the domain of qi,
therefore, zn is not necessarily in the domain of the
dual function of (D). We project µ̄i to the domain of
qi (note that the projected point may not be in D),
and calculate the dual function value at the projected
point. We also record how many µ̄i are outside the
domain of qi as a practical indicator for the reliability
of the estimated lower bound.

In the standard/classical version of the proximal point
algorithm, the center θn remains unchanged until
problem (Pn) is fully solved. However, more efficient
variants are often used, whereby θn changed to the
current iterate once a suitable criterion is met. Simul-
taneously, γn may also be changed (usually decreased
but could be also left constant). There is analysis cor-
responding to such variants, but this analysis must be
modified for our situation because (Pn) is not solved
directly. Instead the dual problem (Dn) is solved with
the constraint set D being approximated by RSD. For
our experiments, we have devised the following simple
rule, and we will address the associated convergence
issues in our extended report.

We set γn = γ for all n. We fix some δ̄ > 0 and a
sequence of positive δm converging to 0. Let m(n) be
the number of center changes occurred before n. We
set θn+1 = θ̄n,s, if either (i) or (ii) of the following is
true: (i) there is at least a δ̄ amount of improvement
for (P): po(θ̄n,s) ≤ P o(θn) − δ̄; (ii) the dual feasible

solution zn is δm(n)-optimal for (Dn), in the sense that

sup
λ≥0, λ∈B(λ̄)

[
L∇λQ(µ̄, ω̄, λ̄)′(λ− λ̄)

]
+ sup

(µ,ω)∈D

[
∇µQ(µ̄, ω̄, λ̄)′(µ− µ̄)

+∇ωQ(µ̄, ω̄, λ̄)′(ω − ω̄)
]
≤ δm(n),

where L is some positive scalar and B(λ̄) is the unit
ball centered at λ̄, (i.e., we check the violation of the
optimality condition at zn). It is evident that unless
θn is optimal for (P) at some finite n, eventually only
(ii) will be applied.

3 VARIANTS AND EXTENSIONS

3.1 TWO VARIANTS

While Sec. 2 presents the main idea of using
reparametrization and simplicial decomposition, there
are still many variations in the parametrization
schemes and algorithms. Here we demonstrate two
variants relating to partitioning the training set K into
subsets, which we call working sets. Partitioning K
into subsets Kj , j = 1, . . . ,m, which are used one at
a time or in parallel fashion for optimization, can be
especially helpful when the training set is large, and
when the dimension of the parameters θ is high, but
only a few of the parameters are typically relevant for
each training example. The two cases usually hap-
pen simultaneously, as in natural language processing
tasks, for instance. The first variant considers parti-
tions with non-overlapping subsets, while the second
variant deals with arbitrary subsets and works in an
online learning setting.

A Coordinate Ascent Variant for Working Sets

The first variant is to apply, for each subset Kj , a
separate parametrization of the multipliers associated
with k ∈ Kj . To explain this, we write (µ, ω) as the
sum of m vectors and correspondingly, D as the sum
of m sets,

µi =
m∑

j=1

µj
i , i ∈ I, ω =

m∑
j=1

ωj , D = D1⊕D2 · · ·⊕Dm,

with Dj being the feasible region of (µj , ωj) defined
by, [cf. Eq. (9)],

Dj =
{

(µj , ωj)
∣∣∣ µj

i =
∑

k∈Kj ,s∈Sk

βk(s)ai,k(s),

ωj =
∑

k∈Kj ,s∈Sk

βk(s)bk(s),

βk ≥ 0, 1′βk ≤ η, ∀k ∈ Kj

}
. (27)

If training examples relating to similar subsets of pa-
rameters are grouped into common subsets, the effec-
tive dimension of each µj can be much lower than that
of µ and θ, therefore, less memory and computation is
needed for optimizing over µj alone.

We can apply a coordinate ascent type of optimiza-
tion: optimize over a selected subset of variables
(µj , ωj), j ∈ J and λ on the Cartesian product
(
∏

j∈J Dj) × {λ | λ ≥ 0}, while keeping the rest
variables fixed. The application of RSD correspond-
ingly takes a slightly different form. We maintain for
each j a separate inner approximation D̂j of Dj . For
the associated direction-finding subproblem, we only
need to solve loss-augmented inference problems for
the examples in Kj . For the master problem, we op-
timize the dual function over the Cartesian product
(
∏

j∈J D̂j) × {λ | λ ≥ 0}. The master problem thus
has several simplex constraints instead of one, but
can again be solved by applying the projected Newton
method. It can be seen that the evaluation of function
values and derivatives is the same as the one given in
Sec. 2.3.

An Online Learning Variant for Working Sets

Given a stream of subsets Kt of K that covers K and
can overlap with each other, our second variant of
the algorithm uses Kt one at a time to optimize the
dual function. However, it uses the reparametrization
(µ, ω), without tracking the individual (µt, ωt) as in
the first variant.

To explain the idea, let us consider any subset Kj of
K and its associated parametrization (µj , ωj) and set
Dj as given in Eq. (27). Notice a special property:

Dj ⊆ D, ∀Kj ⊆ K,

which holds because the origin is in all the sets Dj , or
in other words, we can set the rest of the multipliers
βk(s) to zero for all k 6∈ Kj and s ∈ Sk. Thus, given
a subset Kt at time t, we can exploit the possibility of
expanding the inner approximation of D into the part
of Dj on which the dual function can be improved. In
particular, we optimize the dual function over

conv
(
D̂o

t ∪ D̂t

)
× {λ ≥ 0},

where D̂o
t is the inner approximation of D before the

arrival of Kt, and D̂t is an inner approximation of Dt,
which keeps changing during the iteration t as we run
RSD using the subset Kt. At time t + 1, we update
D̂o

t to D̂o
t+1 properly and proceed to the next subset

Kt+1. Like the effect of center-change discussed early,
here, RSD can run in a way “indifferent” to the subset
change, with the generation of feasible directions being
treated as a black box.

For an offline learning setting, this sequential use of Kt

may not be as efficient as the first variant, and further-
more, if Kt are not chosen properly, the solution may
be confined in a subset of the feasible region. Never-
theless, the second variant is convenient to apply, and
the ideas of the two variants can be combined.

3.2 MORE GENERAL OBJECTIVES AND
CONSTRAINTS

The method and analysis of Sec. 2 for solving (P) are
generally applicable to solving large-margin type of
training problems of the following form,

min
θ,ε≥0

∑
i∈I

fi(θi) + η
∑
k∈K

h(εk) (28)

subj. Ak(s)′θ + bk(s) ≤ εk, ∀s ∈ Sk, k ∈ K (29)
gij(θi) ≤ 0, j = 1, . . . ,m, i ∈ I (30)

where Eq. (29) are margin constraints, Eq. (30) are
convex parameter constraints independent of the data,
fi and h are convex functions, with h being a penalty
function for margin violation.

As an example of fi different to the one used in (P),
we can consider again the KL-divergence D(p ‖ q), but
associate p with the parameters and q with some fixed
distribution. One can show that the algorithm of
Sec. 2.3 applies to solving the convex program with
the new KL divergence terms replacing those in (P).

The penalty function h for margin violation affects the
reparametrization and the set D: sometimes variables
in addition to (µ, ω) are introduced to simplify the
dual problem, and the application of RSD can also
be slightly different. It is straightforward to work out
these details for specific choices of h, similar to Sec. 2.2;
illustrations for certain cases (loss-rescaled slacks and
quadratic penalties) can be found in [YR07].

4 PRELIMINARY EXPERIMENTS

We report preliminary experimental results on two
data sets. One is artificially created, and the other
is the Connect data set from the UCI machine learn-
ing repository. Additional experimental results will be
reported in an extended version of this paper.

Our first experiment is on a toy tracking problem with
an HMM model. There are 10 states and 7 obser-
vations. This results in 21 log-probability parameter
vectors with a total dimension of 180. The 10 states
correspond to 10 equally spaced positions on a ring,
and the transition matrix is generated by perturbing
the deterministic transition along the ring with a small
probability (≈ 0.3) of transitioning to a random state,
while the initial distribution is uniform. States 1 to 7

0 100 200 300 400 500 600 700 800 900 1000
1500

1600

1700

1800

1900

2000

2100

2200

2300

2400

2500

Q
n

upperbound of p
n
*

Figure 1: Behavior of the Algorithm on a Toy Tracking
Problem with HMM.

tend to generate observations 1 to 7, respectively, but
they also have a small probability of generating a ran-
dom observation. For the last 3 states, the observation
distribution is uniform.

We generate 100 training sequences and 1000 testing
sequences all of length 50. For the divergence terms
in the objective function, we choose all ci to be uni-
form distributions. We compare the discriminatively
trained model (DT) with that estimated by ML, on
their MAP state estimation performance. When we
use the 0/1 Hamming loss, we find that DT performs
nearly as well as ML, but cannot outperform it. When
we set the loss function to be the distance between the
predicted position and the true one measured along
the ring, DT noticeably outperforms ML. In partic-
ular, on the test data, DT has an average loss 94.6
per sequence with standard deviation 13.5, while ML
has an average loss 103.4 with standard deviation 19.1.
We also test the Hamming loss of the DT trained with
the above loss function; it performs nearly as well as
ML, making, on average, 2 more mistakes per sequence
than ML.

Our algorithm, initialized with θ0 corresponding to
uniform distributions, solves the optimization problem
(to within 0.1%-optimal) in about 1000 iterations (see
Fig. 1). (Here, an iteration refers to an RSD iteration.)
It runs in MATLAB. Table 1 shows the total cpu time
in seconds and the percentage of it spent on solving
master problems, direction finding, and handling cen-
ter changes, respectively. The maximal dimension of
the simplex in RSD is set to be 100; at the final solu-
tion, the dimension of the simplex is 61.

Our second experiment is performed on the UCI data
set Connect, with a BN structure learned by a struc-
ture learning software independent of our algorithm.
There are 43 nodes in the graph, one of which is a class

Total Master Dir. Finding CC
T 717s 3.4% 86.6% 10.0%
C 4627s 7.2% 48.5% 44.3%

Table 1: Time Usage of Optimization Subroutines: (T)
refers to the tracking problem; (C) refers to the Con-
nect data set; and the (CC) column refers to direction
re-finding after an immediate center change.

variable taking 3 values. We take the subgraph around
the class variable, which has 13 nodes and covers 172
log-probability parameter vectors with their total di-
mension being 513. There are over 60, 000 instances in
this data set, among which we randomly select 30, 000
for training and keep the rest for testing. We further
split the training set evenly into 60 subsets, and apply
the online learning variant of the algorithm given in
Sec. 3.1. We choose ci in the objective function to be
uniform distributions, and we initialize the algorithm
with θ0 corresponding to uniform distributions. Since
the data set is too large, we only run the algorithm for
6 rounds over the 60 subsets sequentially; during each
round, for each subset, we run maximally 3 RSD iter-
ations. The total cpu time and the percentages spent
on solving various subproblems are given in Table 1.
We have not optimized the criterion for changing cen-
ter. We compare DT with ML estimated on the entire
data set. On both training and testing sets, DT makes
about 100 less mistakes in predicting the class than
ML. (The exact numbers for DT are 6, 939/8, 766 mis-
takes on training/testing sets, respectively, while those
for ML 7, 023/8, 872.)

5 DISCUSSION

We have presented an optimization method for effi-
cient discriminative training of generative models. Our
technique applies to a class of problems associated with
large margin type of training. Besides algorithmic im-
provements, future work may lead to better under-
standing of the effect on the solution of various aspects
of the problem formulation, including the relaxed con-
straint (4), and the tradeoff between faithfulness to
the data and discriminative capacity.

References

[ATH03] Y. Altun, I. Tsochantaridis, and T. Hof-
mann, Hidden Markov support vector ma-
chines, Proc. 20th Int. Conf. Machine
Learning, 2003.

[Ber82] D. P. Bertsekas, Projected Newton methods
for optimization problems with simple con-

straints, SIAM J. Control and Optimiza-
tion 20 (1982), no. 2, 221–246.

[Ber99] , Nonlinear programming, 2nd ed.,
Athena Scientific, Belmont, MA, 1999.

[Bes74] J. Besag, Spatial interaction and the sta-
tistical analysis of lattice systems, J. Royal
Statistical Society, Series B 36 (1974),
no. 2, 192–236.

[Col02] M. Collins, Discriminative training meth-
ods for hidden Markov models, Proc. Conf.
Empirical Methods in Natural Language
Processing, 2002.

[HLV87] D. W. Hearn, S. Lawphongpanich, and
J. A. Ventura, Restricted simplicial de-
composition: Computation and exten-
sions, Mathematical Programming Study
31 (1987), 99–118.

[Hoh77] B. Von Hohenbalken, Simplicial decomposi-
tion in nonlinear programming algorithms,
Mathematical Programming 13 (1977), 49–
68.

[Hol74] C. A. Holloway, An extension of the Frank-
Wolfe method of feasible directions, Math-
ematical Programming 6 (1974), 14–27.

[OR70] J. M. Ortega and W. C. Rheinboldt, Itera-
tive solution of nonlinear equations in sev-
eral variables, Academic Press, New York,
1970.

[RSSS06] J. Rousu, C. Saunders, S. Szedmak, and
J. Shawe-Taylor, Kernel-based learning of
hierarchical multilabel classification models,
J. Machine Learning Research 7 (2006),
1601–1626.

[TGK04] B. Taskar, C. Guestrin, and D. Koller, Max-
margin Markov networks, Proc. Advances
in Neural Information Processing Systems
16, 2004.

[TJHA05] I. Tsochantaridis, T. Joachims, T. Hof-
mann, and Y. Altun, Large margin methods
for structured and interdependent output
variables, J. Machine Learning Research 6
(2005), 1453–1484.

[YR07] H. Yu and J. Rousu, An efficient method
for large margin parameter optimization in
structured prediction problems, Technical
Report C-2007-87, University of Helsinki,
2007.

