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Abstract We consider the solution of strongly monotone variational inequalities of
the form F(x*)'(x — x*) > 0, for all x € X. We focus on special structures that lend
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and/or F is an expected value or is the sum of a large number of component functions.
We propose new methods that combine elements of incremental constraint projection
and stochastic gradient. These methods are suitable for problems involving large-scale
data, as well as problems with certain online or distributed structures. We analyze
the convergence and the rate of convergence of these methods with various types of
sampling schemes, and we establish a substantial rate of convergence advantage for
random sampling over cyclic sampling.
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1 Introduction

Variational inequalities (VI) is a general class of problems, which under appropriate
assumptions, include as special cases several fundamental problems in applied mathe-
matics and operations research, such as convex differentiable optimization, solution of
systems of equations and their approximation by Galerkin approximation or aggrega-
tion, saddle point problems, and equilibrium problems. The VI problem is find x* € X
such that

F(x*(x —x*)>0, VxeX, )

where F' : " — N" isamapping, and X isaclosed and convex setin )" . For extensive
background on VI, we refer to the books by Kinderlehrer and Stampacchia [31], by
Patriksson [43], and by Facchinei and Pang [22]. These books contain theoretical
analysis as well as a wide range of algorithms and applications.

We are interested in a VI of the form (1) in which the constraint set X is the
intersection of many sets, i.e.,

X = Niem Xi,

with each X; being a closed and convex subset of )", and M being the set of constraint
indexes. Moreover we allow the function F to have the form of an expected value,
or a sum of a large number of component functions. We assume throughout that the
mapping F is strongly monotone, so the VI has a unique solution x* (see e.g., [22]). We
will later introduce additional assumptions, including the condition that F is Lipschitz
continuous.

The classical projection method for solution of a VI (and also for convex optimiza-
tion when F is the gradient of a convex function) has the form

X1 = N [xx — e F(xp) ] (2

where IT denotes the Euclidean orthogonal projection onto X, and {«4} is a sequence
of constant or diminishing positive scalars. The projection exists and is unique since
X is closed and convex. It is well known that if F is strongly monotone, this method
converges to the unique solution x* if all o lie within a sufficiently small interval
(0, @) and Z,fio oy = 00, as first shown by Sibony [49].

A major difficulty when using this method in practice is the computation of the
projection at each iteration, which can be time-consuming. In the case where the
constraint set X is the intersection of a large number of simpler sets X;, it is possible
to exploit this structure and improve the method, by projecting onto a single set X; at
each iteration, in the spirit of random and cyclic projection methods that are widely
used to solve the feasibility problem of finding some point in X. This suggests the
following modification of the algorithm (2):

X1 = My [ — ok F ()] 3

where we denote by I1,, the Euclidean orthogonal projection onto X, , and {wg}
is a sequence of random variables taking values in M. An interesting special case
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is when X is a polyhedral set, i.e., the intersection of a finite number of halfspaces.
Then the algorithm involves successive projections onto halfspaces, which are easy to
implement and computationally inexpensive.

A second important difficulty arises when F is either the sum of a large number of
component functions, or more generally can be expressed as the expected value

F(x) =E[f(x,v)], “)

where f is some function of x and a random variable v. Then the exact computation of
F (xx) can be either very time-consuming or impossible due to some noise. To address
this additional difficulty, we may use in place of F(x;) in Eq. (3) a stochastic sample
f (xk, vi). This motivates the incremental constraint projection algorithm

2k =Xk — o SO, ), X = 2k — Br (2 — My z) » S

where {vr} and {wy} are sequences of random variables generated by some prob-
abilistic process, and {«x} and {B;} are sequences of positive scalar stepsizes. For
convergence to x*, we will assume that ¢ is diminishing and g is constant or slowly
diminishing (precise conditions will be given later).

An important feature of the incremental constraint projection algorithm is that it
processes sample functions f (x, vx) and sample constraints X, sequentially. This
makes each iteration computationally inexpensive. More importantly, this incremental
structure is well suited for a variety of applications involving large data sets, online
optimization, distributed learning, etc. For big-data problems, algorithm (5) can update
simultaneously as passing through the data set. For problems that require online learn-
ing, e.g., approximate dynamic programming, algorithm (5) is practically the only the
option to update without the knowledge of all the constraints. For problems with dis-
tributed structure, algorithm (5) can be implemented so that each agent/node updates
based on its local information regarding f and X. It is beyond the scope of this
paper to elaborate on the implementation of algorithm (5) for various applications.
We emphasize, however, that the incremental structure of incremental algorithm (5)
allows substantial flexibility in its application to various practical contexts.

The purpose of this paper is to analyze the convergence and rate of convergence
properties of the algorithm (5). We focus primarily on the case where the number of
constraint sets is finite, i.e, M = {1, ..., m}, where m is a positive integer. However,
a large portion of our analysis can be adapted to allow an infinite number of constraint
sets. To the best of our knowledge the algorithm and its analysis are new: there seems
to be no prior literature on projection methods for VI that involve feasibility updates
using projection on component supersets X; of the constraint set X.

The convergence mechanism of our algorithm involves an intricate interplay
between the progress of the constraint projection steps and the function projection
steps, and their associated stepsizes B and «x. An important new insight that emerges
from our analysis is that the algorithm operates on two different time scales: the con-
vergence to the feasible set, which is controlled by B, is faster than the convergence
to the optimal solution, which is controlled by «y. Thus, asymptotically, the method
operates nearly as if the projections are done on the entire set X . This two-time-scale
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mechanism is the key to the almost sure convergence, as we will demonstrate with
both analytical and experimental results.

Another important aspect of our analysis relates to the method of selection of the
samples v and wg. We will consider the two cases where:

e The samples vy and wy are generated randomly, so that all the indexes are sampled
sufficiently often. We refer to this as the random projection algorithm.

e The samples v and wy are generated “cyclically,” e.g., according to either a deter-
ministic cyclic order or a random permutation of the component indexes within a
cycle (a precise definition will be given later). We refer to this as the cyclic projection
algorithm.

For versions of the algorithm with non-diminishing stepsizes o and Sy, we show that
{x} converges to within an appropriate neighborhood of x*. In addition, we develop
convergence rate estimates for the number of iterations needed for the algorithm to
converge to within a given error tolerance. Our comparison of the rates of conver-
gence of the random and the cyclic sampling cases indicates an advantage for random
sampling. This has also been confirmed by computational experimentation, and is
consistent with earlier results on incremental subgradient methods [4,9,38].

Our proposed algorithm (5) is related to a number of known methods from convex
optimization, feasibility, VIs, and stochastic approximation. In particular, when g = 1
and F(xx) = O for all & in iteration (3) we obtain a successive projection algorithm for
finding some x € X = N;cp X;, of the type proposed and analyzed in many sources.
In the case where F'(xy) is the gradient at x; of a strongly convex function f, possibly
of the additive form f = > ., f;, we obtain special cases of recently proposed
algorithms for minimizing f over x € X = N;ep X; (see the following discussion).
Finally, in the case where X = X,,, for all w; and F is given as an expected value
[cf. Eq. (4)], our method becomes a stochastic approximation method for VIs, which
has been well known in the literature.

In view of the connections just noted, our analysis uses several ideas from the litera-
ture on projection, feasibility, incremental/stochastic gradient, and stochastic approxi-
mation methods, which we will now summarize. The projection method for numerical
solution of strongly monotone VIs has been studied extensively (see e.g., Bertsekas
and Tsitsiklis [11], and Facchinei and Pang [22] for textbook accounts of its proper-
ties and convergence analysis). A survey on deterministic projection-type methods is
given by Xiu and Zhang [54]. Some recent developments have considered a stochas-
tic framework and used a projection-type stochastic approximation method (see for
example Giirkan et al. [24], and Jiang and Xu [27]). The recent works by Kannan and
Shanbhag [32] and by Koshal et al. [28] have considered an iterative regularization
method and an iterative proximal point method for (stochastic) variational inequali-
ties that are not necessarily strongly monotone, where the former uses a diminishing
regularization term and an exact constraint projection step at each iteration, and the
latter applies iterative projection steps towards the proximal problem with changing
centers. The papers by Fukushima [23] and more recently Censor and Gibali [12] have
considered methods that utilize outer approximations of X by deterministic projection
onto a specially selected halfspace separating X and the iterate. These methods share
the motivation of constraint relaxation with the proposed algorithms of the current
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work. However, the assumptions, algorithmic details, applications and convergence
mechanisms of the methods differ fundamentally from each other. Other works in the
area include finding common solutions to VIs (see for e.g., Censor et al. [13,14]), and
general VIs (see the survey by Noor [42] and the citations there).

The feasibility problem of finding a point with certain properties within a set inter-
section N;ep X; arises in many contexts. For the case where M = {1, ..., m} with
m being a large number and each of the sets X; is a closed convex set with a simple
form, incremental methods that make successive projections on the component sets
X; have a long history, starting with von Neumann [51], and followed by many other
authors Halperin [26], Gubin et al. [25], Tseng [50], Bauschke et al. [3], Lewis and
Malick [35], Leventhal and Lewis [34], Cegielski and Suchocka [15], Deutsch and
Hundal [19-21], and Nedi¢ [39]. A survey of the work in this area up to 1996 is given
by Bauschke [1]. In our analysis we will require that the collection {X;} possesses a
linear regularity property. This notion has been originally introduced by Bauschke [1]
in a more general Hilbert space setting, and finds extensive application in alternating
(or cyclic) projection algorithms for solving feasibility problems (see for example
[21]).

Two works on incremental and randomized methods for convex optimization, by
Bertsekas [5] and by Nedi¢ [40], are strongly related with ours, in somewhat different
ways. The work of [40] focuses on gradient and subgradient projection methods with
random feasibility steps for convex optimization. In particular, it considers the mini-
mization of a function f over a constraint of the form X = Xo N { Njey X;}, where
Xo and X; are closed convex sets, M is a possibly infinite index set, and f is assumed
convex over Xo. Among the methods proposed by [40] the one most closely related
to ours is the one for the case X = 9", which is given by

Zk =Xk — kgks  Xk41 = 2k — B (2k — Muzk) (6)

where g, can be any subgradient of f at xi, wy is a randomly selected index from
M, B is a constant stepsize with 0 < B < 2, and o4 is a diminishing stepsize. The
analysis focuses on convergence under conditions that are related to the linear regu-
larity assumption for the constraints, noted earlier, as well as on error bounds for the
case where the stepsize oy is instead taken to be constant. By comparing the method
(6) of [40] with our method (5) applied to convex optimization problems, we see that
the analysis of [40] is different from ours in that it allows f to be nondifferentiable
and not necessarily strongly convex (so the problem may have multiple optimal solu-
tions), but it relies on the convex structure of the objective function. On the other
hand, the framework of [40] is less general in that it solves a convex optimization
problem rather than a VI, it does not consider the case where the objective function
is the sum of components or is an expected value, and it does not consider the use of
cyclic order projection. Consequently it does not use stochastic samples of the gra-
dients/subgradients, and does not provide a comparative analysis of the random and
cyclic orders of constraint-component selection approaches as we do.

The work of [5] (earlier discussed in the context of a survey of incremental opti-
mization methods in [4]) proposed an algorithmic framework which alternates incre-
mentally between subgradient and proximal iterations for minimizing a cost function
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f = 2", fi, the sum of a large but finite number of convex components f;, over
a constraint set X. Random or cyclic selection of the components f; for iteration is
a major point of analysis of these methods, similar to earlier works on incremental
subgradient methods by Nedi¢ and Bertsekas [9,37,38]. However, X is not assumed
to be of the form N;cp X; as in the work of [40] and in the current work. Instead
a special case of incremental constraint projections on sets X; can be implemented
via the proximal iterations. In particular, the case X = N/ X; is handled (requir-
ing Lipchitz continuity of each f;, but not requiring the linear regularity assumption)
by eliminating each constraint x € X;, while adding to f; a penalty function of the
form y dist(x, X;), where y is a sufficiently large penalty parameter. A proximal iter-
ation applied to this penalty function is equivalent to a projection iteration applied
to the constraint set X;. When proximal iterations are incrementally applied to the
penalty functions y dist(x, X;), and are combined with subgradient iterations for f;,
the resulting method takes the form

Zk = Xk — oGy, Xkl = 2k — Bic (2k — My 2k)

where i and wy are randomly selected indexes from {1, ..., m}, g;, is any subgradient
of fi, at xi, o is a constant or a diminishing stepsize, and

ﬂk = min 1, L .
dist (zk; ka)

Here the stepsize B, must be specified by using zx and X4, , and is coupled to c. This
algorithm allows the components f; to be nondifferentiable, it introduces proximal
iterations, and it does not require the linear regularity assumption. It is less general
in that, like the method of [40], it applies to a convex optimization problem rather
than a VI, and it requires the objective function to be Lipchitz continuous. Let us also
mention a more recent paper [52] by the authors on nonsmooth convex optimization. It
considers a class of algorithms involving both the constraint and subgradient sampling,
and establishes their almost sure convergence through a unified analysis.

The algorithmic treatment of the uncertainties when F is given as an expected value
[cf. Eq. (4)], is strongly related to stochastic approximation methods. In particular, we
make the typical assumptions > pojox = 00 and Y o oe,% < 00 on {ax} in order
to establish convergence (see e.g., the textbooks by Kushner and Yin [33], and by
Borkar [10], and the aforementioned papers [24] and [27]). Moreover, similar to many
sources on convergence analysis of stochastic algorithms, we use a supermartingale
convergence theorem.

For solution of stochastic VIs, the methodology of sample average approximation
(SAA) has recently gained interest; see [36,48,53]. SAA solves a sequence of approx-
imate VIs, which are obtained based on empirical means of sample functions, and
generates a sequence of approximate solutions that converge to an optimal solution at
arate determined by the central limit theorem. Our random projection method differs
from SAA in fundamental ways. First, our method focuses on solving VIs with com-
plicated set intersection constraint, while SAA does not consider the complexity and
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randomness in constraints. Second, each iteration of the random projection method
is easy to compute, while each iteration of SAA involves solving a new VI and can
be computationally expensive. We note that the proposed random projection method
does not exclude the possibility of using multiple samples per iteration. We refer to
the discussion following Assumption 4.

Another related method is the robust stochastic approximation (SA) by Nemirovski
et al. [41], which proposes a modified SA method that outperforms the classical SA
and SAA. This method uses a fixed stepsize to improve its efficiency, but does not
consider constraint sampling. Our incremental projection method requires a dimin-
ishing stepsize because of the randomness in projection, even if exact values of f are
used. This major difference makes it hard to compare our random projection method
with existing methods that require projection on the exact constraint set.

The remainder of the paper is organized as follows. Section 2 summarizes our
assumptions, proof techniques, and several preliminary results. Section 3 focuses on
the algorithm with random projection, and derives convergence results and a constant-
stepsize error bound. It also discusses extensions of the convergence analysis to various
schemes of constraint superset selection that may involve adaptive sampling and/or
allow an infinite number of constraint sets. Section 4 obtains corresponding results for
the algorithm with cyclic or randomly permuted order projection, and compares its
convergence rate with the one of the random projection algorithm. Section 5 discusses
applications of the proposed algorithms and presents some computational experiments.

Our notation in summary is as follows. For x € )", we denote by x’ its transpose,
and by ||x|| its Euclidean norm (i.e., || x| = V/x'x). The abbreviation «2% > means
“converges almost surely to,” while the abbreviation “i.i.d.” means “independent iden-
tically distributed.” For two sequences {yx} and {zz}, we write y; = O (zx) if there
exists a constant ¢ > 0 such that || y¢|| < cllz«|l for each k. In the case where {y;} and
{zx} are sequences of random variables, we write “y; = O(zx) w.p.1” if there exists
a constant ¢ > 0 such that || yi|| < c||z«|| for each k with probability 1. We denote by
Fi the collection

Fre =1{v0, .oy Vk—1, W0, « oy Wk—1, 205 + -+ » Th—15 X0s + - - » Xk,

so {Fk} is an increasing sequence.

2 Assumptions and preliminaries

To motivate our assumptions, we first briefly review the convergence mechanism of
the classical projection method

X1 = M[xx — e F(x) ], (7N

where IT denotes projection on X [cf. Eq. (2)]. The solution x* of the VI (1) is the
unique fixed point of the preceding iteration for any o > 0, i.e.,

x* = l'[[x* - osz(x*)].
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We assume that F is strongly monotone with a constant o > 0 such that
(F@) = F) (x =y zollx —yl’, Vx,ye®,
and is Lipschitz continuous with a constant L > 0 such that
|Fe) = Fy)| < Llix =y, Vx,yen"

Then iteration (7) is strictly contractive for sufficiently small ox > 0. This can be
shown as follows:

st — x*I? = | M[xe — o F ()] — O[x* — e FG] |
< [ = e F)] = [¢* — ax FeH]|?
= || (v — %) — ax(Fxp) — Fa*)|?
= llxe—x*1? = 204 (F(xe) = F () (o —x*) +0f | F ) — F ) |2

< (1 =200 + o} L?)|lx — x*||%,

where the first inequality uses the nonexpansiveness of the projection (i.e., that
ITIx — ITy|| < |lx — y|| for all x, y € M), and the second inequality uses the strong

monotonicity and Lipschitz continuity of F. In the case of a constant stepsize, assum-
20
’ L2
linearly to the unique fixed point x*. In the case of diminishing stepsizes, assuming
that 52y o = 0o and Y 2 @7 < oo, the iteration can be shown to converge to x*
by using a stochastic approximation argument (see the subsequent analysis).
Our proposed incremental constraint projection algorithm, restated for convenience
here,

ing that oy = @ € (0 for all k, the iteration is strictly contractive and converges

2k =Xk — o f O, v, X = 2k — B (2 — My z) » 3

differs from the classical method (7) in two important respects. First, the iterates {x;}
generated by the algorithm (8) are not guaranteed to stay in X. Moreover, the projection
IT,, onto arandom set X,,, need not decrease the distance between x; and X at every
iteration. Instead, the incremental projection process guarantees that {x;} approaches
X in a stochastic sense as k — 00. Second, the stepsize ax must be diminishing rather
than be a constant «. This is necessary because if o were a constant, the solution x*
would not be a fixed point of algorithm (8), even if f(x,v) = F(x) for all x and v.
Indeed, as we will show later, the stepsize {o;} must be decreased to 0 at a rate faster
than {8y} in order that the algorithm converges. Additionally a diminishing stepsize ok
is needed if samples f(x, v) of F(x) are used in place of F'(x), even if the projection is
on X rather than X, . This can be understood in light of the stochastic approximation
character of the algorithm in the case where X = i".

Let us outline the convergence proof for the algorithm (8) with random projection.
Similar to the classical projection method (7), our line of analysis starts with a bound
of the iteration error that has the form
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k1 — X% < flae — x* |12 = 20 F () (0 — x*) + e (e, ks B we, ve)s (9)

where e(xx, ok, Bk, Wi, vx) is arandom variable. Under suitable assumptions, we will
bound each term on the right side of Eq. (9) by using properties of random projection
and monotone mappings, and then take conditional expectation on both sides. From
this we obtain that the random projection algorithm is “stochastically contractive” in
the following sense

E[lxee1 — X1 | Fe] < A =200k + 80 llxk — x* 12 + e, w.p.1,

where o is the constant of strong monotonicity, and ¢, €; are positive errors such that
> e 8k < ooand Y 2 €k < oo. Finally, we will use the following supermartingale
convergence theorem result due to Robbins and Siegmund [RoS71] to complete the
proof.

Theorem 1 Let {yi}, {ur}, {ar} and {bi} be sequences of nonnegative random vari-
ables so that

E[yk+1 | gk] < +ap)yx —ur +br, foral k>0 w.p.1,

where Gy denotes the collection yy, ..., Yk, Uo, ..., Uk, Ag, - . ., Ak, bo, ..., bg. Also,
let Y 2ogax < 0o and Y jobx < oo with probability 1. Then yy converges almost
surely to a nonnegative random variable, and ";2 o ux < 00 with probability 1.

This line of analysis is shared with incremental subgradient and proximal methods
(see [37,38]). However, here the technical details are more intricate because there are
two types of iterations, which involve the two different stepsizes oy and B;. We will
now introduce our assumptions and give a few preliminary results that will be used in
the subsequent analysis.

Assumption 1 The mapping F is strongly monotone with a constant ¢ > 0, i.e.,
! 2 a1
(F(x) = F(») (x —y) = ollx —ylI>, Vx,yeqR"

The mapping f (-, v) is “stochastically Lipschitz continuous” with a constant L > 0,
ie.,
2 2 2 mn
E[|f@.v0) = fOo0 I A] < L2lx = ylI?, Yxyedt”.  (10)

with probability 1. Moreover, there exists a constant B > 0 such that
|Fe)| < B, E[|f&*, v’ | F] < B?, forallk >0,

with probability 1.

The stochastic Lipschitz continuity condition (10) resembles ordinary Lipschitz
continuity. If f(x,v) = F(x) for all x and v, the scalar L is equal to the Lipschitz
continuity constant of F. If v takes finitely many values, Lipschitz continuity of each
f (-, v) implies the stochastic Lipschitz continuity condition.
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In order for the distance between x; and X to decrease “on average,” we make
several assumptions regarding the constraint sets {X;} and the incremental projection
process {I1,, }. The following assumption is a form of regularity of the collection of
constraint sets {X;}.

Assumption 2 There exists a positive scalar 1 such that for any x € R"

llx — Mx||* < pmax ||x — [, x|,
ieM

where M is a finite set of indexes, M = {1, ..., m}.

This assumption is known as linear regularity, and was introduced and studied by
Bauschke [1] (Definition 4.2.1, p. 53) in the more general setting of a Hilbert space;
see also Bauschke and Borwein [2] (Definition 5.6, p. 40). Recently, it has been studied
by Deutsch and Hundal [21] for the purpose of establishing linear convergence of a
cyclic projection method for finding a common point of finitely many convex sets.
This linear regularity condition is automatically satisfied when X is a polyhedral set.
The discussion in the preceding references provides several other situations where the
linear regularity condition holds, and indicates that this condition is a mild restriction
in practice.

Although the linear regularity assumption requires { X; } to be a collection of finitely
many sets, it can be relaxed to accommodate an infinite number of constraints for
random projection algorithms. Consequently, a substantial part of our subsequent
analysis can be adapted to the relaxation of Assumption 2; see the discussion of
Section 3.3. However, for cyclic projection algorithms, the number of constraints
must be finite.

Assumption 3 We have o € (0, 1), B € (0, 2) for all k, and

00 00 )
Z(xk=oo, Za,f<oo, Z—k<oo,
k=0 k=0 =0 V&

where yx = (2 — Br).
Note that to satisfy the condition

0 2

s az o
I JL
e =g P2 = Br)

we may either let B; be equal to a constant in (0, 2) for all k, or let B; decrease to 0
or increase to 2 at a certain rate. Given that )~ , ax = 00, the preceding condition
implies that
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We will show that as a consequence of this, the convergence to the constraint set is
faster than the convergence to the optimal solution.

Let us now prove a few preliminary technical lemmas. The first gives several basic
facts regarding projection.

Lemma 1 Let S be a closed convex subset of R, and let g denote orthogonal
projection onto S.

(a) Forallx e W', y € S, and B > 0,
|x = G = Tsx) — y|* < llx — yI? = B2 — B)llx — Msx>. (1)
(b) Forallx,y € ",
ly = gyl < 2llx — Mgx|* + 8]lx — y|I*.
Proof (a) We have

lx—Bx—TIsx)—yl* = lx =y +B|lx —sx |*=2B(x — y)'(x —Tsx)
<llx=yI*+B%Ilx = Mgx||* =28 (x — Msx) (x — Msx)
=[x — yI? = B2 — B)llx — Tgx]|?,
where the inequality follows from (y — ITgx)'(x — ITgx) < 0, the characteristic

property of projection.
(b) We have

y—IHsy = (x = Hsx) + (y — x) — (TMgy — Tsx).
By using the triangle inequality and the nonexpansiveness of I1g we obtain
ly=TIsyll < llx=Tsx||+[ly—x[[+ sy —sx| < [lx — Msx[| +2[lx — yl|.

Finally we complete the proof by using the inequality (a + b)*> < 2a* + 2b? for
a,beN. |

From Lemma 1(a) and the relation xx+1 = zx — Bk (zk — M, z) [cf. Eq. (8)], we
obtain for any y € X

k1= V1% < llzk — Y12 =B — Bi) I Ty zi — 2|1

= ||zx —x0) + Gk = 0| = vl Mz — 2l

and finally

otk 1=V 11 < Nl — Y IIPH2 2k — 1) o — 9)HI 2k — 2 12 =vic I Tl zk—2 1>, ¥y € X.
(12)
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This decomposition of the iteration error will serve as the starting point of our main
proof of convergence.

The next lemma derives a lower bound for the term F (x;)’ (x; —x*) that arises from
the decomposition of the iteration error ||xg4+1 — x*||? [cf. Eq. (9)]. Estimating this
term is complicated by the fact that x; need not belong to X, so the lemma involves
the Euclidean distance of x from X, denoted by

d(x) = [lx — Ilx||.

Lemma 2 Under Assumption 1, we have

Fx)(x —x*) >o|x —x*|> — Bd(x), VxeN. (13)
Proof We have
Fx) (x—x*) = (F(x)— F(x*))/(x — x4+ F ™) (TMx —x™)+ F(x™) (x = x).
By using the strong monotonicity of F we obtain e

(F) = FOM) (x = x) = o llx —x*|1%,
while from the definition of x* as the solution of the VI (1),
F(x™)'(ITx —x*) > 0.

Also, by using the inequality x’y > —||x||||y|l and the relation || F(x*)|| < B (cf.
Assumption 1), we have

F()(x = Mx) = = FOH)||lx = x| = —Bd(x).

By using the preceding three relations in Eq. (14), the desired inequality follows. O

The next lemma derives some useful estimates based on the Lipschitz condition of
Assumption 1.

Lemma 3 Under Assumption 1, for any x € W"* and k > 0, we have
E[llf(x, vl | Fi] < Llx —x*|| + B,
and
E[llf(x, vl | Fi] < 2L2|1x — x*|1* + 287,

with probability 1.
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Proof For any x € R" and k > 0, we use the triangle inequality to write

[ £ v < | £ v — FG5 v | + | FG* v

By taking expectation in the above relation, and using the Cauchy-Schwarz inequality
E[lly] < E[Ily12]"/?, and Assumption 1, we have

E[Il£ 0 voll | Fi] < E[I£ G, v — £&*, o0l | 7]
FE[I £ &*, vl | 7] < Lilx — x*| + B,

with probability 1. By using the inequality (a + b)> < 2a* + 2b?, for all a, b € R,
we also have

E[Il £ (e, v0l* | Fi] < 2E[I1f Gy o) — O v ll? + 11 vl | Fi]
< 2L%||x — x*||> + 2B2,

with probability 1. O

3 Convergence of random projection algorithms
In this section, we will analyze the algorithm

2k =%k — o f (o, ), Xt = 2k — Br (ak — M 2x) (15)
for the case where the projections IT,,, are randomly generated. We make the following

assumption, which requires that each X; be sampled sufficiently often, and that the
samples f(xx, vx) be conditionally unbiased.

Assumption 4 (a) The random variables wy, k = 0, 1, ..., are such that
. 0.
nf P(Xy, =X; | Fi)>—, i=1,....,m,
k>0 m

with probability 1, where p € (0, 1] is some scalar.
(b) The random variables vi, k =0, 1, .. ., are such that

E[f(x,vw) | Fx] =Fx), Yxe®R', k=0, (16)

with probability 1.
Assumption 4(a) requires that the random samples of the constraint sets be “nearly
independent”, in the sense that each constraint is always sampled with sufficient proba-

bility, regardless of the sample history. In the case where wy are independent identically
distributed in {1, ..., m}, we have p = 1. Thus the constant p can be viewed as a
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metric of the efficiency of the sampling process, and it does not scale with the number
of constraints m.

Assumption 4(b) requires that the sample function value f(x, vx) be conditionally
unbiased. Note that this is a very general assumption. It does not require vy to be either
independent or identically distributed. Indeed, given a simple sampling process (e.g.,
i.i.d.), we may obtain f(x, vx) by using certain algorithms to improve the efficiency
of the random projection method. For example, we may obtain f (x, vi) as the sum
or average of multiple simpler samples generated by an i.i.d. process. For another
example, we may calculate f(x, vr) based on an increasing number of simple samples
per iteration, so that f(x, vx) becomes increasingly accurate as k — ©0; this bears
similarity with the sample average approximation methodology.

3.1 Almost sure convergence
Consider the nonnegative function of x
2
E[llx — My x[I* | Fi],

which measures the “average progress” of random projection at the kth iteration. This
function can be used as a metric of distance between x and the entire constraint set X,
as shown by the following lemma.

Lemma 4 Under Assumptions 2 and 4, we have
E[lx — Myx)? | A = 2-d2), Vxen”, k>0, (17)
mn

with probability 1, where p € (0, 1] is the constant of Assumption 4(a).

Proof By Assumption 2, the index set M is finite, M = {1, ..., m}. By Assumption
4, we have forany j = 1,...,m,

m

2 . 2. P 2

E[llx — Myx|I” | Fi] = .El P(we =1 |Fp)llx —Iix||” > lex = I;x|~.
1=

By maximizing the right-hand side of this relation over j and by using Assumption 2,
we obtain

P P P
E[lx — Myx|? | F] = = max |x — [Tjx[|* > —— |lx — [x||* = —d*(x).
m 1<j<m mn mn

We are now ready to present the first of the main results of the paper.

Proposition 1 (Convergence of Random Projection Algorithm) Let Assumptions
1-4 hold. Then the random projection algorithm (15) generates a sequence {xy} that
converges almost surely to the unique solution x* of the VI (1).
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Proof By applying Eq. (12) [which follows from Lemma 1(a)] with y = x*, we obtain

2 2 2 2
ka1 —x 17 < Ml —x* 17 + 2z —x0) (5 — x*) + llzk — xll” = il Ty 26 — 2411

By using Lemma 1(b), we further have o
Tk — x> < 20Ty 2k — 2xll* + 8llze — x|,
which combined with Eq. (18) yields
k1 — x* 1% < e — x* )17 + 22k — x0) (v — x¥)
+ (1 +dp0llze =l = iy =l (19)

Defining gx = f (xx, vk) — F(xg), we have

(zk — x1) (xx — x*) = —on f ek, v) (o — x¥)
= —osz(xk)/(xk — x*) — gy (xk — x*)

< —ayo||lxx — x*|I + Boyd (xx) — agl (xx — x*),

where the inequality follows from Lemma 2. We apply the preceding inequality to Eq.
(19) and obtain

k1 — X% < (1 = 200) vk — x* 1% = 2auegp (v — x*) + (1 + 4y lzx — xe

+2Bed() — ST — i (20)
According to Assumption 4, since x; € F, we have
E[g; (k — x*) | ] = (B[ f Gxo ve) | Fi] = F) (xx —x*) =0. 2D
From Lemma 3, we have
E[llzx — x> | Fi] = oRE[Ilf (xi. i) I7 | Fi] < ef (2L [lxx — x*[* 4+ 2B%). (22)

From Lemma 4, we have
E[ | My — x| | 7] = 2=d?xp). (23)
mn

Taking conditional expectation on both sides of Eq. (20) and applying Egs. (21)-(23),
we obtain

E[ Il =17 | 2] = (1=200) e —x* 12+ 202 (1+430) (L2 v —x* |2+ B?)

+2Bogd(x) — 225 d%(xp).
2mn
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Finally, by writing the last two terms in the right-hand side as

2 2
(07 (07

2Bayd(xy) — ;idz(xk) =P (d(xk) — 2Bmnp~! —") 4+ 2B mnp ! 2k,
mi) mi) Vi Vi

1

2
and bounding them by 2B%mnp~ ‘;—i we further obtain

Efls =412 1 7] = (1= 200 + 22201+ 4p00d) llxe — x|

2
1%k

+2B%(1 + 4y)af + 2B*mnp~ ”

2
< (1 — a0 + O (a,f)) e —x* 12+ 0 o2 + j—]’: .
(24)
F . oo 2 00 2, 9%
rom Assumption 3, we have >~ o < oo and D> /7, (ak + )/_k) < 00, so the
Supermartingale Convergence Theorem 1 applies to Eq. (24). It follows that || x; —x*||?
converges almost surely to a nonnegative random variable, and that

o0
ZZozkaka —x*? <00, w.p.l.
k=0

The preceding relation implies that [x; — x*||? 2% 0 with probability 1 [if ||x; —
x*||? converged to a nonzero random variable, then thio 20 ||xx — x| = oo
with positive probability, thus yielding a contradiction]. To conclude, we have ||x; —

a.s. . a.s.
x*||> =5 0, or equivalently, xp —= x*. q

3.2 Convergence rate and constant stepsize error bound

Let us now focus on the rate of convergence of the random projection algorithm (15).
We will consider a diminishing stepsize oy, and derive the convergence rates of the
iteration error ||x; — x*|| and the feasibility error d(xx). In particular we will derive
an estimate on the number of iterations needed to achieve a specified error tolerance.
We will also consider a constant stepsize a, and show that in this case the algorithm
converges to within a certain error bound. This error bound will be compared later to
the corresponding error bound for the cyclic projection algorithm.

Proposition 2 (Random Projection Algorithm: Convergence Rate for Diminishing
{or}) Let Assumptions 1-4 hold, let oy € (O, S(’F)for all k, and let {xy} be generated

by the random projection algorithm (15). For any positive scalar €, there exists a
random variable N such that
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Onllcm {lek —x*)? —5k} <e, (25)

with probability 1, where

(07 (09
8 = ;" (Lze LBy B2mnp*1y,€‘1) +0 (a,% +akyk) 0 (y")
k

and
. 2
[Z ] ||xo |2 26)
0 O €

Proof Given € > 0, we let

ak —1
h=———\cre+tc2rtcaxy, )
20 — ¢y ko

where
crk =2L2(L+4y), o =2B*(1+4y), c3p = 2B2myp .
It can be seen that

(07 _
Sk < ;k (Lze +B%+ Bzmnp_lyk 1) + 0 (a,f +ozkyk) ,

where L, B are the constants in Assumption 1, and p is the constant in Lemma 4. Note
that, since a; € (0, 5”722) and yx = Br(2 — Br) < 1, we can verify that 20 — ¢y gorx >
20 — 10L%q; > 0 and 8; > O for all k.

Define a new process {Xy}, which is identical to {x;} except that once X enters the
level set

Lkz{xem”| ||x—x*||2§5k+e}

the process stays at X = x™* for all future k. Following the analysis of Proposition 1
[cf. Eq. (24)], we have for all k with probability 1 that

2
R 2 2\ 2 2 ¥
E[l k41 —x* 17 | Fi] < (1 — 200 + Cl,kak) X — x™ )1 4 coper; + CS,ky_~
(3
We write this relation as
A 2 A 2
E[ 41 — x 17 | Fi] < 1% — ™17 — &, (27)

where we define
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a?

20,0 — ¢ 012) R —x*? — 02 — 3K if % ¢ Ly,
£ = ( k Lo ) N1 Xk Il 2.k — C3 k ” k& L (28)
0 otherwise.

When X ¢ Lyj, we can verify by using the definition of §; that

2
o
& > (Zakcr — Cl,ka]%) 6k +¢€) — (cZ,kalz + 3k )/_k) = Qo€)ay. (29)
k

Note that & > 0 for all k. By applying Theorem 1 to Eq. (27), we have
oo
ng < oo, w.p.l.
k=0

If x5 ¢ Ly for all k, by using Eq. (29) and Assumption 3 we would obtain

o0 oo
D& = Qoe) Y o = o0,
k=0 k=0

with positive probability, yielding a contradiction. Thus {X;} enters L; eventually,
with probability 1.

Let N be the smallest integer N such that X; € Ly for all k > N with probability
1, so that Eq. (25) holds. By taking expectation on both sides of Eq. (27), we have

k
E[[|%c41 — x*[1*] < %0 — x*|* — E [Z&] (30)
=0

By letting k — oo and using the monotone convergence theorem, we obtain

00 N—1 N—-1
o —x*|* = E [Zsk} =E [Z sk} > Q06K [Z ak] :
k=0 k=0 k=0

This proves Eq. (26). O

Equation (26) quantifies the random number of iterations needed to achieve the
solution accuracy specified by Eq. (25). If we take ax and B to be constant stepsizes,
we obtain the following result with a nearly identical proof to the one of the preceding
proposition.

Proposition 3 (Random Projection Algorithm: Error Bound for Constant {ox} and
{Br}) Let Assumptions 1, 2, and 4 hold, let the stepsizes be constant scalars satisfying

a=ac(0.25). A=Be0.2. n=y=BC-p. Ykz0,

and let {xy} be generated by the random projection algorithm (15). Then
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~1\ p2
(l+4y+m17,0 y ) B <O(moz)’

— L2(1 + 4y)a oy

liminf [|x; — x*||> < 8(a, )
k—o00 oy

with probability 1. For any positive scalar €, there exists a random variable N such
that
. *12
min |jxx —x7[|° < 8(a, y) + €,
Jmin_flxe =" < 8. y)

with probability 1, and N satisfies

llxo — x*||?
(20 —2L%(1 + 4y)a)ea

E[N] =

Proof Werepeat the analysis of Proposition 2 with o replaced with «, B replaced with

2
B, vk replaced with y, §; replaced with § (¢, y), and € replaced with M

Then Ly is replaced by
L(e) = {x e N | fx — x*|2 55(a,y)+e}, k=01,....
Similar to Eq. (27), we have
E[lI£41 — x*I7 | Fi] < 18 — x*11” — &. 31)

where we can verify that

¢ > (20 —2L%(1 + 4y)a)ea, if X ¢ L(e),
“.;‘ =0, if Xx € L(e).
Since o € (O, 5"? and y = B(2 — B) < 1, we have & > O for all k.

By applying Theorem 1 to Eq. (31) and using a similar analysis as in Proposition
2, we can show that & = O for all k sufficiently large with probability 1. This implies
that {x;} and {x;} both enter L(¢) eventually, and since € > 0 is arbitrary, it further
implies that

liminf |xx — x| < 8(er, y), w.p.l.
k—00

Finally, by defining N similar to the proof of Proposition 2, we can prove the desired
error bounds involving N. O

Let us also consider the convergence rate of the distance to the constraint set for
our algorithm. By using an analysis similar to that of Proposition 2, we obtain the
following result.

Proposition 4 (Random Projection Algorithm: Convergence Rate of d(xi)) Let

Assumptions 1-4 hold, let oy € (O

, 5L2) for all k, and let {x;} be generated by
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the random projection algorithm (15). For any positive scalar €, there exists a random
variable N such that

02}{13 {d (xp) — 8k} (32)

where
052
8 =8B mnp~! (4 +yt+ Emnp_lyk’z) ag=0|-2L).

with probability 1, and
lxo — x*|>
[ > yk} (4mno™) . (33)
€

Proof Given € > 0, we let
dmnp~! a? -
= Z—f (62,1(0!;3 +2¢3k 7/_1;) =8B mnp~! (4 +yt+ 2mnpyy 2) o

where ¢ = 2B>(1 +4y) and ¢34 = 2B*mnp~.

Define a new process {X;} which is identical to {x;} except that once X enters the
level set

Lkz{xem"| ||x—x*||2§5k+e}

the process stays at X = x™* for all future k. Following the analysis of Proposition 1
[cf. Eq. (24)], we have

Ellfee = x* 121 7] = (1 - 200+ e1xaf) 15 — 27112

2 2
o o
_ PV (d(xk) 2anp1—k) +C2’k(){]%+(33’k—k
mn Yk Vk
2
~ P)’k 1%
< 1% — x*|* - (d(xk) 2Bmnp ‘—)
2m Yk

2

2 Y

e ko + 3 k—
Yk

2
n PVk _
snxk—x*nQ—M( d* () — 4B*m*n?p 2 ")

Vk
2
o
+62,kot,% + C3,k—k
Yk
PYk of
= 1% — x*7 = 5 d ) + e kOlk + 2¢;3, ==,
mn Vi
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where the first inequality uses the fact oy € (0, 5"7) c (0 ), and the second

a
T
inequality uses the fact —(a — b)> < — (1a® — b?) for any a, b € %. Equivalently,
this is the relation

E[l| 801 — X117 | Fi] < 18 — x*)1* — &, (34)
where we define
YkP 2 a/%
%-k — md ()Ck) — C2 k0 — 2C3,k% if Xk ¢ Lk7 (35)
0 otherwise.

When X ¢ Ly, we can verify by using the definition of §; that

2

o €

b= 2L 5+ 6) — [ crnof + 203, % ) = ZLE (36)
4mn Vi 4mn

Note that & > 0 for all k. By applying Theorem 1 to Eq. (34), we have > 22, & < 00
with probability 1. It follows that {X;} enters Lj eventually, or equivalently, & = 0
for all k sufficiently large with probability 1.

Let N be the smallest integer N such that x; € Ly forall k > N with probability 1,
so that Eq. (32) holds. By taking total expectation of both sides of Eq. (34) and adding
over indexes up to k, we have

k
E [l = x*12] < g0 = x*)2 — [Z st} : (37)

t=0

By letting k — oo and using the monotone convergence theorem, we obtain
00 N-1 pe N-1
—x*|I* > E =E > —E
llvo —x*11% = [é f»;k} [% sk] Z G % v |

where the last inequality follows from Eq. (36). This proves Eq. (33). O

A comparison between Propositions 2 and 4 suggests that the random projection
algorithm converges to the constraint set at a faster rate than to the optimal solution. In
particular, from Proposition 4 it follows that d2(x; ) converges to a smaller error bound

2
o . . .
(on the order of y—’;) in fewer iterations, compared to the convergence of ||x; — x* IR
k

into an error bound (on the order of ‘;‘—’;) as given by Proposition 2, since y; is much
larger than oy. This two time scale phenomenon is consistent with the way we select
the stepsizes.
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3.3 Extensions

In the presentation of the current section, we have focused on the case where {X;}
is a finite collection of sets, possessing the linear regularity property, and each X; is
sampled nearly independently, with the purpose of drawing a comparison between
random and cyclic orders later in Sect. 4. However, our analysis can be adapted to
hold under a more general set of conditions.

A key step of the analysis of the current section is to obtain a lower bound of the
progress towards feasibility for the algorithm [cf. Eq. (17) of Lemma 4]. Intuitively, as
long as every projection step makes sufficient progress “on average,” the convergence
of the algorithm follows. In particular, we can replace Assumptions 2 and 4(a) with
the following more general condition: there exists ¢ > O such that for any k > 0

E[llxk — Muexll?® | Fie] = ed®(xe), w.p.1. (38)

Under this condition, as well as Assumptions 1, 3, 4(b), the proof of Proposition 1
goes through. Therefore, under these more general assumptions, the random projection
algorithm (15) is still convergent to the unique solution x* of the VI (1). Moreover,
the rate of convergence results of Propositions 2—4 can also be adapted accordingly,
by replacing the constant m%?, which comes from Eq. (17), with the constant ¢ from
Eq. (38).

Condition (38) allows more flexibility in choosing the sample constraint sets { X, }.
In particular, we may select the sample constraints adaptively based on the current
iterates. For an example, consider the case where the collection {X;} is finite and
possesses the linear regularity property (cf. Assumption 2), and let wy be the index of
the most distant constraint set to the current iterate, i.e.,

wi = argmax; ¢ |lxx — x|

Then by using linear regularity, we obtain
l My x| = I Hixill = . d(xk) 1 (39)
Xk weXell = max ixkll = 7 xk), w.p.l.

It follows that condition (38) is satisfied with ¢ = 1/n, and the associated random
projection algorithm is convergent. In fact, this algorithm has a better rate of con-
vergence than the algorithm that uses nearly independent samples of the constraints
(cf. Assumption 4). More specifically, by using projection to the most distant constraint
set, we can remove the factor m in the error bounds of Propositions 2—4. In particular,

in an analog of Proposition 3 the error constant § (c, y) is of the form O (%) instead

of O (%), while in an analog of Proposition 4, Eq. (33) takes the form

@ Springer



Incremental constraint projection methods 343

N—1 2
S 4nllxo — x*||
E < —7
|:k—0 yk:| - €

indicating a much faster attainment of feasibility. However, this approach, although
having a superior convergence rate, is often impractical because finding the most dis-
tant constraint set index can be expensive. Instead, an index of a “nearly”” most distant
constraint set may either be deterministically computed or stochastically obtained by
sampling (e.g., according to an importance sampling distribution related to the iterates’
history). The structure and properties of such constraint selection rules are interesting
subjects for future research.

More generally, condition (38) extends to the case where {X; }; < is a collection of
infinitely (even uncountably) many sets, which applies to a broader range of contexts.
Since any closed convex set X is the intersection of all the halfspaces containing it,
the idea of random superset projection can be extended to problems with arbitrary
convex constraint. By appropriately selecting the halfspaces, we may obtain a bound
of the form (38) and establish the convergence of the associated algorithm. As an
example, at each iteration we may select a halfspace X, that properly separates from
X aneighborhood of the current iterate x;. This type of analysis is related to the works
by [23] and [12], and is another interesting subject for future research.

4 Convergence of cyclic projection algorithms

An alternative to random projection, in the case where M = {1, ..., m}, is to cycli-
cally select the constraint set X, from the collection {X;}/" ; according to either a
deterministic order or a randomly permuted order. Each cycle consists of m iterations.
To be more general, we allow the samples f (xg, vx) to be selected in a cyclic manner

as well. The algorithm takes the same form as Eq. (15), i.e.,

2k =Xk — o f (s vi)s Xkgr = 2k — Br (zk — Ty 2x) - (40)

We make the following assumption regarding the sampling process, which parallels
Assumption 4.

Assumption 5 (a) Each cycle ¢ consists of m iterations, corresponding to indexes
k=tm,tm+1,..., (t+1)m—1.Iterations within cycle ¢ use constant stepsizes,
denoted by

El‘:ak’ B[:ﬂk, 7t=yk=,3k(2_ﬂk), k=l‘m,tm+1,,(t+1)m—l

However, the sequence {8} satisfies lim sup;_, o, B < 2.
(b) Within each cycle ¢,

(t+1)m—1
> Elf(.v) | Fml=F@), Yxe®" wp.l.

1
m
k=tm
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(c) Within each cycle ¢, the sequence of constraint sets {X,,, }, where k = tm, tm +
1,...,(+ 1)m — 1, is a permutation of {X1, ..., X, }.

We refer to the algorithm under the preceding assumption as the cyclic projection
algorithm. Note that this assumption covers several interesting cases. For example, in
the case where F (x) is evaluated without sampling [ f (x, v) = F(x)], the algorithm
differs from the classical projection method only in the way the constraint projection is
performed. For another example, we may let v be generated as i.i.d. random variables,
so the algorithm chooses samples of F randomly and independently, but chooses
samples of the constraint sets cyclically. Also covered by Assumption 5 is the important
case where the mapping F is the sum of a large number of component functions.
In a more general situation, ' may have an arbitrary (possibly infinite) number of
component functions:

F(x) =) Fi),
iel
where [ is the set of indexes. In this case, we may let {/, ..., I,,} be a partition of /

and use the following samples

m .
J Gk, o) = — Fj(xx), where ji € I;.
e

Here vy = (ix, jx), where iy is selected from {1, ..., m} cyclically, and jj is then
obtained by sampling from /;, independently with probability p; . Assumption 5 is
satisfied in all the cases mentioned above.

We will show that under Assumption 5, as well as assumptions on strong monotonic-
ity, Lipschitz continuity, stepsizes, and linear regularity of the constraints sets (namely
Assumptions 1-3), the cyclic projection algorithm (40) converges almost surely to the
unique solution x* of the VI (1). The proof idea is to partition the sequence of iterates
{xx} into cycles

{xtm’-'-vx(t—}-l)m—l}, 1= 192""7

and to consider the m iterations within the same cycle as a single step. To do this, we
will argue that the iterates {x;} “do not change much” within one cycle. In this way, the
m iterations involving {X,, } and { f (xx, vk)} resemble a single iteration involving X
and F. This will show that the mapping x;,, — X(;+1)m is asymptotically contractive
in the sense that

E[lx-+1m — x*IP | Fom] < (1 = 2mo@; + 8¢) lxim — x*7 + €,
where §; and € are nonnegative random variables such that Z,fio (8 +e€x) < oo.Then
it will follow by the supermartingale convergence argument that {x;,, } converges to the

solution x* ast — o0. Finally, since the iterates within one cycle become increasingly
close to each other, it will follow that {x;} converges to the same limit.
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4.1 Almost sure convergence

We will be using Assumptions 1-3 and 5, so Lemmas 1-3 still hold. According to the
assumptions on the stepsizes [Assumptions 3 and 5(a)], we can verify that

% 0, B0, w <o) % <o, <o
k k

Bk

We will frequently use the O (-) notation to simplify the subsequent analysis. The fol-
lowing lemma gives a uniform bound on || f (xx, vg)|| fork = tm, ..., (t + Dhm — 1,
within a cycle. The bound is in terms of the distance between the starting iterate x;,
and x*.

Lemma 5 Under Assumptions 1-3 and 5, foranyt > Oandk = tm, ..., (t+1)m—1,

E[ £ G, vOll | Fon* <E[1L Gk 0012 Fin] < O (Ixem—x* 12 41) . w.p.1.
(4D

Proof By applying Lemma 1(a) to algorithm (40), we have

2 2 2
k1 = x*1% < llze — 217 < (Ilxe — x| + el f Gxs v ll) ™

Taking conditional expectation on both sides yields

E[ et — X 17 | Fi] < llxe — x* 12 + 20 E[ 1L f G, vl | Fe ]l — x|
+ oRE[ILf Cer, v 17 | Fi]
< Il — x*1> + 200 (L1xx — x| + B)llxx — x|
+ o (2L |lx — x*|* 4 2B?)
- (1 20 L + 2a,§L2) e — x*|
+ 20x Bllxx — x*|| + 207 B?
< (1+ L+ 1) + 20 L?) |lx¢ — x*||* + ox B* + 20} B2,

where the first inequality uses the fact x; € Fy, the second inequality uses Lemma 3,
and the third inequality uses the relation 2 B||xx — x*|| < ollxx — x* 1% + ax B2
Since a; — 0, it follows that

E[llxes1 — x*12 | Fe] < (1 + O(a0) lxe — x*[1* + O(ow).
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Let ¢ > 0. By induction we have for all k = tm, ..., (t + )m — 1, that

(t+1)ym—1
E[lxer —x* 12 | Fm] = | [ 0+ 0@p)) | llxim — x*I12

j=tm

(t+hm—1 [t+Dm—1

+ > [ a+o0@)|ow)

j=tm i=j
0 (Il = x*I2+1).
Then by using Lemma 3, we obtain
E[Il £ e v 1?1 Fim] = E[E[ILf G v | Fi] | Fim]
<2L7 E[|lxk — x*||* | Fym] + 2B
< O(llxim — x*I + 1),

forallk =tm, ..., (t + 1)m — 1, with probability 1. Finally, we complete the proof
by using the Cauchy—Schwarz inequality. O

We will now argue that the iterates {x;} do not change “too much” within a cycle.
Define the maximal change of iterates within cycle ¢ to be

Ay = by X .
t tm<k<(t+1) {” k — Xtm ”}

The next lemma states that this maximal change per cycle is bounded by a diminishing
term, which is determined by the stepsizes, the distances from the starting iterate to
the optimal solution and to the constraint set.

Lemma 6 Under Assumptions 1-3 and 5, for any t > 0,
2 2142 42 *12
EIA? | Finl < OB (i) + O (m*@2) (Iim — x*12 + 1), w.p.1.

(t+1)m—1
k=tm

Proof We will use the inequality A; < >
bound. From the relation

[xx — Xxk+1]| to obtain the upper

X1 = Xk — ok f (Xk, vi) — Bz — My k)

[cf. Eq. (40)], we obtain

2
ke —xi1 1% < (el f G v 1+ Bicllzie — T 2 )
< 2071 f G, v I* + 2B 1zk — Ty zicll*
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By applying Eq. (12) with y = ITx;, we have

1
2 2 2
llzk — Ty 2l Sy (Ika—thmH = lIxXk1 = Toxgpm |
(

+ o1 o, v I + 2 f Cees ) (o = Tl

By combining the last two relations, we obtain

2
2 2'3k 2 2 l
[k — X1 SW N0k = TLoxsn 17 = Nl = Tz 17 + 200k ]| f (X, v (ke = Tt ) |l

2 2
+(2+%)a,f||f(xk, vo 1%

Adding the preceding relations over k = tm,...,t(m + 1) — 1, and using the fact
that the stepsizes within one cycle are constant, we obtain

(t+Dm—1 —2

_ 2 < 2 1 —1I 2 _ —1I 2
lxe — xk1ll” < — | llxem Xem | ”x(t+1)m Xem |l
k=tm t

(t+DHm—1

+2@ > I ok v Gk — M) |

k=tm

232 (t+1)m—1
+(2+T’)a? S olfenwlt @)

Vi k=tm

Let € be an arbitrary positive scalar. For any k = tm, ..., t(m + 1) — 1, we have

20|l f (ks i) (e = T | = 20|l f G, vie) ok — Xem) + f (ks V&) (e — D) |
< 20|l f o, vi)" Ok —Xem) 4200 || f (X, V) e — D) |

“1% 2 2
<\ —If G vl + €viellxe — Xeml
€Yk

2
£ e v 12 + et — Mot |2
e Xk, Uk EVi | Xtm Xtm

2
20 2 2 2
< 76]/1( ILf ks viOl” + €vie A7 + €yl Xem — |7,

where the second inequality uses the fact 2ab < a® + b> for any real numbers a, b,
and the third inequality uses ||xx — xs, || < A;. By applying the preceding relation to
Eq. (42), we obtain
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(t+Dym—1 — —2

28 _ 28
}jnm—MHWs3f0+mwgwm4umW—;Hmmm4umw
t t

) 2[3 4/3 (t+1)m—1
+2BmeAt+T (24 =+ 5 ) D I G wol?
Vi €Yi k=tm

j=tm

< B,0 (1 +¢€)d*(xi) + O(me)A?
(t+1)m—1

@20 +1/e) > If vl (43)

k=tm

where the second inequality uses the facts d(x;,) = x5 — xgull, Br/ve < O(1),
Br < O(1) and yx < O(1). By taking € to be sufficiently small so that O (me) < ﬁ
and O (1 + 1/€) < O(m?) , we obtain

(t+Dm—1 (t+1)m—1
z:”M—%H”<me%mH"—+0waJ > Gl

j=tm k=tm

Combining this relation with the inequality

(t+1)ym—1 2 (t+1)m—1
2 2
AP D) ] =m0 =l
k=tm k=tm

it follows that
(t+Dm—1
A7 = 0B ) + 382+ 0 (w'@) D If G vl @4)

k=tm

Finally, by taking conditional expectation on both sides and applying Lemma 5, we
obtain

E[Af | f,,,,] < OmB,)d (xym) + %E [Af | ]-",m] +m*&20 (||x,m — X+ 1)

This implies the desired inequality. O

The next lemma derives a lower bound for the algorithm’s progress towards fea-
sibility within one cycle, and parallels Lemma 4 of the random projection case. Its
analysis revolves around properties of cyclic projections, and has a similar flavor as
that of [21] Theorem 3.15.
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Lemma 7 Under Assumptions 1-3 and 5, for any t > 0,

(t+Dym—1

> Elllz — My zill® | Fo]

k=tm

8—d(x,m) me> (||x,,,,—x|| +1) w.p.1. (45)

Proof Let j € {tm, ..., (t + 1)m — 1} be the index that attains the maximum in the
linear regularity assumption for x;,, (cf. Assumption 2), so that

2 2 2
d“Cxim) < n. IlllaX llxm — 1_IX,-)Ctm” = nllxim — ijxtm” .
i=l,...m
We have

ﬁd(xtm) < lxem — nw_/xtm”

<||x¢m— ijzj || (by the definition of l'[wjx[m and the fact l'[wjzj € Xw/.)
1 1-8
= ||Xtm — =Xj+1 +

B, B
(by the relation x; 1 = z; — B,(zj — Iy,z;). cf. algorithm (40))

3_11—1 1 J J
== > (Zk—Xk+1)+B— D (k=) — D 2k — x%)

t
Zj

’Bt k=tm ! k=tm k=tm
< Z Ik =il + = Z lzk — il + Z lzi — xell
B k=tm tk =tm k=tm
E 1 (t+1)m—-2 (t+1)m—1
.
<17 D lax—xmsil+= D lzx —xxpil
ﬂt k=tm ﬂt k=tm
(t+1)m—1 t+1)m—1 (t+1m—1
+ D lax—xul<= D lu-—xpal+ D luw—xl
k=tm ﬁt k=tm k=tm
(since B, € (0,2))
(t+1)m—1 (t+1)m—1
=2 > la-—Tyzul+a D 1f Gkl
k=tm k=tm

(by the definition of algorithm (40))

(t+1)m—1 (t+1)m—1 1/2

<Vom 4 D la—Tuzl*+a D Ifeewl|

k=tm k=tm
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where the last step follows from the generic inequality (Zl'-"zl ai + 2, b,-)2 <
2m (31 a? + X1, b7) forreal numbers a;, b;. The preceding relation can be equiv-
alently written as

1 (t+1)m—1 (t+1)m—1
2 2 =2 2
Md (tm) < 4 k_zm lzk — My zi | + @ k_zm Il e, vi) 112

By taking expectation on both sides and applying Lemma 5, we obtain Eq. (45). O
We are ready to present the main result of this section.

Proposition 5 (Convergence of Cyclic Projection Algorithm) Let Assumptions 1-3
and 5 hold. Then the cyclic projection algorithm (40) generates a sequence of iterates
{x} that converges almost surely to the unique solution x* of the VI (1).

Proof Lett > 0. By using Lemma 1(a), we have for all k that
b1 =17 < boe =17 4+ 2k =) (v = %) + N1z — 2 = vl T 2 — 2401

(40)
In Eq.(46), the cross product term can be decomposed as

2(zk—xp) (xk —x") = =200 f Ok, v (xx = %) = =200 f Gt V&) (Xem—x") + 20 hi,

47)
where we define
he = — f (e, vo) (3 — x™) + f oo v6) (Xem — x7¥). (48)
By combining Egs. (46) and (47), we obtain
et = X1 < ok = 2517 = 200 f oy 08 (xem — x%)
el + lzk — xl® = vl Tz — 21> (49)
We apply Eq. (49) repeatedly for k = tm, ..., (t + 1)m — 1, and obtain
(t+Dm—1 !
B riym = X517 < e — X1 =200 [ D2 F G ve) | (xim — x¥)
k=tm
(t+1)m—1
7 D Mz —zl?
k=tm
(t+D)m—1
+ > (2o Az = xel?) (50)
k=tm

We take conditional expectation on both sides of Eq. (50), and then apply Assumption
5(b) and Lemma 7. This yields

Vi

E[ 11X+ 1m=x 1% | Fom | < 1em —x* 12 =2m@; F em) (Xem —x*) — Smndz(xtmwe,,

&1V
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where we define
(t+Hm—1
e=E| D (20 + Nz - wl?) ‘ Fim | +m@7,0 (Ixim = x*I2 +1).
k=tm
By Lemma 2 we have
—F Gom) (xem — x*) < =0 [|Xim — x*[|1* + Bd(xm),

so Eq. (51) becomes

E[l1x¢+1m — x* 7 | Fom] < (1= 20ma@) || xim — x* |1 + 2Bma;d (xim)
iz

dz(xtm) + er. (52)
8mn

We will now obtain a bound on the error e; with the following lemma.
Lemma 8 Under Assumptions 1-3 and 5, for any € > 0, t > 0,
42

e, <0 (%) &) + O (meaf) (||xtm — X+ 1) . w.p.l.

Proof We note that

hi = — f Gy ve) (xk — x*) + f o v0) (x0m — x¥)

(f Cetms ) — f s v0) (e = ) + f Qs 06) (Xem — k),

so that

il < || f Gemy vi) = f Ceies v [ ke — 21+ || f Geems v | l0m — Xkl

By taking conditional expectation of both sides and using the stochastic Lipschitz
continuity of f(-, v) (cf. Assumption 1) repeatedly, we have with probability 1,

E[lhell | Fe] < E[If Gim, ve) — f G, vl | Fie] e — x|
+E[Ilf Goms vl | Fae]lem — xil
< Lllxtm — xllllxx = x*[| + (Ll1xem — x|l + B) lxem — x|
< Lllxim — x|l (1%em — x| + 1x0m — xxll)
+ (Lllxtm — x*| 4 B) [1xtm — xill
= Bl|xtm — Xkl 4+ 2L 115k — Xem | 1em — x* || + Lllxem — x|
< BA; +2LA | xm — x¥|| + LAZ.
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Let € > 0. Then by using the basic inequality 2ab < a® + b? repeatedly and the fact
o — 0 we obtain

E[axlliill | Fi] < O(akAr + axArllxm — x*|| + axA?)
3.2

m-o
< o(mk +e/m)AF + = (Il — 212+ 1))

3.2
m=og

€
= =50 (87) + =20 (o — "7 + 1).
m

€

By applying the preceding bound to the definition of ¢, and then using Lemmas 5 and
6, we obtain

€ 2\, M 12 2 = *(2
er =0 (87)+ =50 (It = x*IP + 1) +m@ (1 +7) O (Jxim — "2 +1)
7 )
€ m-'o
< L0 (00) + (en® + ") O =271 +1)

— 4-—=2
€ m o
<0 (%) d*Gem) + O ( - ) (Ixem — x>+ 1).

Let us return to the main proof of Proposition 5, and apply Lemma 8 to Eq. (52).
We have

E [ xstm =17 | Fim | < (1= 20m@0) e —x* P+ 2B x) = 67 P

— 4-—=2
+0 (%) (i) +0 (’" & ) (Ixom —x* 1+ 1).
m €
(53)

For € and @, sufficiently small, we have

= = 32
€ o

2B&md(xim) — 8;’,7 d2(xym) + O (%) d2(xm) < O (’"7 ¢ ) .
t

By summarizing and reordering the terms in Eq. (53), we obtain for some ¢y, c3 > 0
that

4572 452
_ m*a m*a
E [||x(t+1)m_x*||2 | Trm] =< (1 —2mot; +c1— t) lxem = X112 +e2—".
Vi Vi
(54)
According to Assumption 3, we have >~ @; = 00, and ) .~ ‘;7‘—’ < oo0. It follows
t

from the Supermartingale Convergence Theorem 1 that || x;, —x*|| 2% 0and x; £
x* as t — oo. This also implies that d(x;,,) 2500,
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There remains to show that x; —> x* as well. For any € > 0, by using Lemma 5,
we have

Pl O w0l = €) = 3 LS e L]
k=0

I/\

k=0
i O (E[IIx e/mym —x*[I*1+ 1)
k=0

€2
<0 (Z oz,%) < 00.
k=0

It follows by the Borel-Cantelli lemma that the event {ak Il f xx, v |l > e} cannot
happen infinitely often, or equivalently, o || f (xx, vk)|| < € for all k sufficiently large

with probability 1. Since € is arbitrary, this further implies that o || f (xk, vi) || 2% 0.
Finally, by using the analysis of Lemma 6 [cf. Eq. (44)], we have

(t+1Hm—1
2 < 0B (i) + 0 (w'@) D" If G w0l 5 0,

k=tm
Since x;, 2% x*, we also have
a.s.
lxx — x N < llxk — xpk/mjm | 1%k gmim — XN < Akym) H Xk ymjm — x| — 0.

a.s.
Therefore x; — x* as k — 00. O

4.2 Convergence rate and constant stepsize error bound

Now we consider the rate of convergence of the cyclic projection algorithm. We will
derive convergence rate results for both the case of diminishing stepsizes oy and the
case of constant stepsizes .

Proposition 6 (Cyclic Projection Algorithm: Convergence Rate for Diminishing
{ar}) Let Assumptions 1-3 and 5 hold, let {ay} be bounded by a sufficiently small
positive scalar, and let {x;} be generated by the cyclic projection algorithm (40). For
any positive scalar €, there exists a random variable N such that

: *12
min Xy — X -4 } <e, w.p.l,
Jmin fle —x*IP — o < wp

where §; = O (mzf”‘) and N satisfies
N
Z ||x() — X ||2
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Proof The analysis is very similar to that of Proposition 2. Let §; be given by

(cim*e + com*) g/ k
2mo — cym*ay /v

k =

where c1, 7 are the constants from Eq. (54). For oy sufficiently small, we have 2mo —
3
cim*ay /yr > 0so that 8 > 0. It can be seen that §; < O (";—;;k)
Define a new process {x;} which is identical to {x;} except that once X; enters the
level set

Ly = {x €N | I — x| < & +e},

the process stays at X = x* for all future k. According to Eq. (54), we have

4=2 4=2
A~ _ m-o N m-'o
Ell£¢+1m — x* 17 | Fim] < (1 —2mod, + ¢ = ) I Zem — x* 1 4+ co—=.
t t
This is equivalent to
E[IZ¢t1m — X 17 | Fom] < NZim — x*I1* — &, (55)

where we define

Vi
0 otherwise.

4-2 42
[ (2mo@, — e "5 ) ek — 1P — 2 "S5 if fu ¢ Lom,
ét = Vi
When X, ¢ L, we can verify by using the definition of §; that
& > 2oem)a;.

Hence we have § > 0 forall 7. By applying Theorem 1 to Eq. (55), we have > 2 & <
oo with probability 1. Therefore & must terminate at O for ¢ sufficiently large with
probability 1.

Let N be the smallest integer such that X, € Ly for all k > N with probability 1,
implying that X, [N/m] € Lm[n/m1- We have for all ¢ that

13
E[l£m — x*II | Fi] < %o —x*|> —E [Zsk} :
k=0

By letting + — oo and using the monotone convergence theorem, we obtain

) [N/m] [N/m]
||xo—x*||zzE[Zst}=E D> & |=@mooE| > @

=0 t=0 t=0
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Finally, we have

N fN/"ﬂ ”xO _X*HZ
E Zak <E Z (may) | < Toge
t=0

k=0
O

The next proposition gives an error bound for cyclic projection algorithms with
constant stepsizes. It is an almost immediate corollary of Proposition 6.

Proposition 7 (Cyclic Projection Algorithm: Error Bound for Constant {oy } and {8 })
Let Assumptions 1, 2, and 5 hold, let the stepsizes be constant scalars satisfying

a=a>0, fp=p€c0,2), nu=y=p2-p), Yk=0,

where « is a sufficiently small scalar, and let {x;} be generated by the cyclic projection
algorithm (40). Then

3
liminf [lx; — x*||2 < O (M) , w.p.l.
k—00 ay

For any positive scalar €, there exists a random variable N such that

. *12 m3oz
min |xx —x" " <e+O0{(— ), w.p.1,
1<k<N oy

where N satisfies
llxo — x*|?

BlN] = (20 — O (m3a/y) )ea’

Proof The proof is identical with that of Proposition 6. O

Let us compare Propositions 3 and 7. In a comparable expected number of iterations,
the cyclic algorithm converges to within an error tolerance of the order of m3, while the
random projection algorithm converges to within an error bound that is of the order
of m. This suggests an advantage of the random projection algorithm. Intuitively,
the analysis shows that the cyclic algorithm may incur an accumulating error within
one cycle, due to the correlation of the random process {(wk, vk)} within the cycle
and across cycles. Of course, the preceding comparison is based on upper bound
estimates, and to some extent may be an artifact of our method of analysis. However,
the superiority of the random sampling approach over the deterministic cyclic sampling
approach is supported by the computational results of the next section, and is consistent
with related analyses for incremental subgradient and proximal methods (e.g., [38],

[4D.
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5 Applications and computational experiments

Our algorithm is particularly well-suited for VIs with many linear constraints. As an
example consider a linear complementarity problem with

F(x)=Ax—b, X={xed"|Cx<d},

where A is an n X n positive definite matrix, b is a vector in ", C is an m X n matrix,
and d is a vector in ™. The constraint set X is an intersection of halfspaces X; given
by

Xi={xeW |dx<d}, i=1,....m,

where clf is the ith row of C, and d; is the ith entry of d. In this case, assuming that
Axy — b is computed exactly without sampling, our algorithm becomes

max{cl/-k 2k — d;, 0}
Ciy -
llciy II?

2k =Xk — ok (Axg — b), xiy1 =2k — Bk

Thus the set projection portion of the algorithm is very simple.

Linear complementarity problems with a large number of constraints arise among
others in important approximate dynamic programming contexts (see e.g., the books
[7,11,46]), which motivated in part our work. In one such context, arising in approx-
imate policy evaluation, we aim to approximate the solution of a high-dimensional
linear fixed point equation y = Ay + b, where A is an n x n matrix and b € R", by
approximation over a low-dimensional subspace S = {®x | x € N*}, where P is an
n x s matrix (with s < n) whose columns can be viewed as basis functions for S. In
the Galerkin approximation approach (see e.g., Krasnoselskii et al. [30], Saad [45]),
the high-dimensional problem y = Ay + b is replaced by the low-dimensional fixed
point problem

Dx =TI5(Adx + D).

Here I1g denotes weighted Euclidean projection onto S, where the projection norm
being ||x|| = ~/x’Ex, where E is a positive definite symmetric matrix. Aside from
classical applications in solving large-scale problems arising from discretization of
partial differential equations or from inverse problems, this approach (in combination
with randomization and simulation) is central in popular approximate dynamic pro-
gramming methods, known as projected equation or temporal difference methods, as
well as in aggregation methods (see [7] for a textbook treatment and references).

In a constrained variant of the Galerkin approach one may improve the quality
of approximation if the solution of the original fixed point problem is known (or is
required) to belong to some given closed convex set C. Then it typically makes sense
to impose the additional constraint ®x € C, thereby giving rise to the problem of
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finding x such that
dx = [gnc(ADx + b).

This constrained projected equation has been discussed in [6], and was shown to be
equivalent to the VI

(I — Adx* +b) EO(x —x*) =0, VxeXE (x| dxecC)

A serious difficulty for its solution by projection methods is that while the dimension
of x may be small, the constraint set X often consists of the intersection of a large
number of constraints (for example, if C is the nonnegative orthant, X consists of linear
constraints whose number is equal the row dimension of ®). This difficulty also arises
in approximate linear programming methods, another major approach for approximate
dynamic programming (see e.g, de Farias and Van Roy [17], [18], and Desai et al.
[16]). Our proposed method in this paper addresses effectively this difficulty, by using
incremental projections on simpler supersets of X.

We will now describe the results of computational experimentation with our method.
The test problem is an example based on the constrained Galerkin approximation
approach just described. For additional computational examples, we refer to our recent
paper [52] on random constraint projection methods for convex optimization.

Example We want to compute a low-dimensional approximation to the invariant dis-
tribution & of an ergodic 1,000-state Markov chain with transition probability matrix
P. The approximation has the form ®x, where ® is an 1,000 x 20 matrix and x is

a vector in %20, We approximate the equation & = P’& characterizing the invariant
distribution by using its projected version

dx = «[1P dx,

where o € (0, 1]is adiscount factor, and I'T denotes the weighted orthogonal projection
onto the set of distribution vectors

(Ox | x e R, dx >0, dx=1}

with weight vector £ (other Euclidean projection norms could also be used), e is the
vector in " with all components equal to 1. As noted earlier, the projected equation
is equivalent to the VI

(x —x*)Ax* >0, VxenR? st x>0, ¢dx=1, (56)
where A takes the form

A=d'E( —aP),
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with E being the diagonal matrix with the components of the vector £ along the
diagonal. Note here that there are efficient methods for calculating the matrix A by
simulation and low-dimensional calculation (see e.g., [6])—such methods could be
used to calculate a close approximation to A prior to applying our algorithm to VI
(56). Throughout our experiments we assume that A is known. We have chosen the
columns of @ to be sine functions of various frequencies together with the unit vector,
and have chosen & to be an arbitrary distribution vector (so & may not belong to the
range of ®). The values of ® and £ have been chosen such that VI (56) is strongly
monotone with « = 1. Figure 1 plots the approximate distribution ®x*, obtained as
the optimal solution of VI (56), and compares it with the underlying true distribution &.

To evaluate the proposed incremental projection algorithms, we have experimented
with different choices of the stepsizes «x and B, as illustrated in Fig. 2. In this
experiment, we have used f (xk, vg) = F(xx) = Axg, and have also used uniformly
distributed independent samples of the constraint set indexes. The left side of Fig. 2
plots ||xx — x*|| and d(xx) in the cases where By = 1 and By = 1/logk, with o =
k=93 in both cases. The comparison between the two cases indicates an advantage for
using a constant 8 over a diminishing 8. The right side of Fig. 2 plots the trajectories of
iteration errors and feasibility errors in the case where ay = k~! and in the case where
o = k_0'55, with B = 1 in both cases. Again, the iteration with the larger stepsizes,
i.e. ax = k=03 converges faster than the iteration with the smaller stepsizes.

The next experiment is to compare the constraint sampling schemes. More specifi-
cally, we have tested the independent uniform sampling scheme against the determinis-
tic cyclic sampling scheme, while using f (xk, vg) = F(xx) = Axg, o = k=935 and
Br = 1throughout. Asillustrated in Fig. 3, the algorithm that uses random/independent
samples converges much faster than the algorithm using deterministic cyclic samples.
We have repeated this experiment with other choices of stepsizes, and have observed

0'4 'S 1 1 1 1 J
0 200 400 600 800 1000

state

Fig. 1 Estimated distribution ®x* compared against the true invariant distribution & (Example 1), with
(DX*, S c 9{],000
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10° : 10° -
—— Il X1l - B =t —— [l X - e, =k 0

100 B dx(xf) - Bt 10° e | dyx) - op =k 0%
—— lxxN-Blo = —— ||xk—x‘\| - ak=k"

1072 - == ) -Blo 1072 - = = dylx) o=k

107 107

107° 10°°

107° 10°

107 0 1 PR ] 4; 5 6 107 - > ) :

10° 10" 10* 10® 10" 10° 10 10°  10' 10 * 10' 10°  10°

Fig. 2 Comparison of different choices of stepsizes {«;} and {B;} (Example 1). The left figure plots the
trajectories of iteration errors and feasibility errors with y = 1 and By = 1/logk | 0, while fixing
oy = k=055 The right figure plots the trajectories of iteration errors and feasibility errors with o = k!
and oy = k=055 while fixing B = 1.In both figures, we use f(xj, vg) = Axy and independent uniformly
distributed samples of the constraint sets

10 T T T T
—— ||xk—x’|| —iid. projection

100 B (FRRRT dx(xk) —i.i.d. projection |
— ||xk—x.|| - cyclic projection|
- dx(xk)—cyclic projection

2

10"

107

10°}

10°}

107° 0 X " S i

10 10 10 10 10
k

Fig.3 Comparison between independent uniformly distributed and deterministic cyclic orders of constraint
sampling (Example 1), with oy = k=055, Br = 1,and f(xg, vr) = Axy forall k

similar phenomena. These observations are consistent with our analysis in Sects. 3
and 4, and support our argument that random sampling is preferable over deterministic
cyclic sampling. We have also experimented with the alternative of randomly shuffling
the constraint indexes at the beginning of each cycle. This type of constraint sampling
is more similar to independent random sampling, and gave comparable results in our
experiments (not reported here). This is consistent with earlier observations and analy-
sis by Recht and Re [44], which suggest that the performance of cyclic sampling in
incremental subgradient methods is enhanced if the components of the cost function
are randomly reshuffled at the beginning of each cycle.
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Fig. 4 Combinations of independent uniformly distributed and deterministic cyclic orders of function and
constraint sampling (Example 1). In the case of “batch f”, we use f(xg, vk) = Axg. In the case of “i.i.d.
f7s weuse f(xg, vg) = Ay, xg, where Ay, are i.i.d. random variables with mean A. In the case of “cyclic
f7, we use f(xg, vp) = Ay xg, where Ay, are cyclic samples such that their empirical mean over one
cycle equals to A. In all five cases, we use o = 1/k and By = 1 for all k

Finally, we have experimented with all possible combinations of random inde-
pendent sampling and deterministic cyclic sampling, for both the component func-
tions and the constraint sets. The results are plotted in Fig. 4. The “batch”
case, using f(xx,vx) = F(xx) = Ax; and independent uniform samples
of the constraint sets, has the fastest rate of convergence. However, for large
scale problems, the computation of F(x;) requires a time complexity on the
order of the number of component functions, which makes each iteration of
the algorithm very expensive. On the other hand, when F is linear, one may
replace the matrix A and the vector b defining F with a simulation-based
approximation, in which case the time complexity is reduced. As noted ear-
lier in connection with Galerkin approximation, methods of this type are popu-
lar in simulation-based approximate dynamic programming (see [7]), and lead to
more efficient computation than stochastic approximation methods. Methods of
this type have also been considered in simulation-based nonlinear optimization,
where they are known as sample average approximation methods (see Shapiro,
Dentcheva, and Ruszczynski [47] for a recent textbook treatment, and Nemirovski
etal. [41]).

In the remaining four cases of Fig. 4, we consider A as an average of a large number
of matrices

1 n n
A= ~ ZZAU’ where A;; = n’&¢i (i — apjid;) .

i=1 j=I

where &; denotes the ith entry of £, p;; denotes the (i, j)th entry of P, and ¢ denotes
the ith row of ®. We will use A,, , where vi are sample index pairs (i, j), as samples of
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A. The last four cases in Fig. 4 use one sample component function f (xx, vk) = Ay, Xk
per iteration. Among these cases, it can be seen that random sampling generally per-
forms better than cyclic sampling. This is particularly so for constraint sampling, since
according to Fig. 4, the two cases using random/independent samples of constraints
have much better convergence properties than the other two cases using cyclic samples
of constraints.

6 Concluding remarks

In this paper we have proposed new algorithms for strongly monotone variational
inequalities with structure that lends itself to constraint and function sampling. We
analyzed the convergence properties of various types of sampling, and we established
a substantial rate of convergence advantage for random sampling over cyclic sam-
pling. Our cyclic sampling rule for constraints requires that each constraint is sampled
exactly once in a cycle, and allows a lot of freedom on how the constraint indexes
are ordered within each cycle; our convergence rate result applies to the worst case. It
is therefore possible that a cyclic rule with separate randomization within each cycle
yields a performance close to the one of the independent uniform sampling method, and
superior to a deterministic cyclic rule; this was observed in the experiments described
Sect. 5. We also note that constraint sampling rules that sample constraints adaptively
based on their “importance” and the progress of the algorithm may yield even better
performance, and that this is an interesting subject for investigation.

A potential direction of further research is to relax the strong monotonicity assump-
tion on F, either by assuming a special structure or by modification of our algorithms.
For example, if F is the gradient of a convex function, the projection method as well as
the related methods of Bertsekas [5] and Nedi¢ [40] do not require strong convexity of
the cost function (or equivalently, strong monotonicity of the gradient). Another inter-
esting case arises when X is polyhedral and F(x) = &' F(®x), where F is strongly
monotone but ® is singular (cf. classical applications in network traffic assignment
problems). The convergence of the projection method for this case was shown by
Bertsekas and Gafni [8]. Another possibility is to consider the extragradient method
of Korpelevich [29] or the recent iterative Tikhonov regularization method and the
iterative proximal point method of Kannan et al. [28], which are modifications of the
projection method to deal with VIs that are not necessarily strongly monotone.
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