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Optimal Short-Term Scheduling of 
Large-Scale Power Systems 

Abstruct--This paper is concerned with the longstanding problem of 
optimal unit commitment in  an electric power system. We follow the 
traditional formulation of this problem  which gives rise to a large-scale, 
dynamic, mixed-integer programming  problem. We describe a solution 
methodology based on duality,  Lagrangian relaxation and nondifferentia- 
ble optimization that has two unique features. First, computational  require- 
ments typically grow only linearly  witb the number of generating units. 
Second, the duality  gap decreases in relative terms as the number of units 
increases, and as a result our algorithm tends to actually  perform better for 
problems of large size. This allows for the first time consistently reliable 
solution of large  practical  problems  involving several hundreds of units 
within realistic time constraints. Aside from the unit commilment problem. 
this methodology is applicable to a  broad class of large-scale dpamic 
scheduling and resource allocation problems  involving integer variables. 

A 
I. INTRODUCTION 

PROBLEM that must  be solved on a daily basis  by  a 
power utility is to  determine  a schedule of what units 

will be used to meet the  demand  anticipated over a  future 
24-hour period. This is commonly referred to as  the unit 
Commitment problem, and  its  solution  has been the subject 
of intensive efforts over the last 20 years. References [l] 
and [2] give an extensive account of these efforts  and an 
appraisal of the  state of the art. Generally,  the available 
approaches  can be categorized into two groups. The first 
group consists of rigorous optimization  approaches  that  are 
impractical  for  application  to  problems of realistic size. 
The second group consists of heuristic  approaches  that  are 
actually used in practice, but give no assurance  that  the 
schedules produced  are  optimal or even close to optimal. 

The purpose of this  paper is to describe an optimization 
methodology  which is, for the first time, capable of solving 
realistic unit commitment  problems. The  approach is  based 
on a  duality  transformation of the original problem  and 
optimal  solution of the associated (nondifferentiable)  dual 
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problem. This approach  coupled with the  branch-and- 
bound  technique is common in integer programming and is 
referred to  as Lagrangian  relaxation (see [l], [3]-[5]). It has 
been  used earlier for solution of the unit commitment 
problem by Muckstadt  and Koenig [l]. It is theoretically 
possible with this  approach  to  obtain  an  optimal  solution 
by examining a sufficient number of nodes of the  branch- 
and-bound tree, but in practice, due  to  computation time 
limitations,  one  can only  examine a small number of nodes 
and hope to find  a good suboptimal feasible solution. 
Verification of the quality of this feasible solution is based 
on  its cost (which is an upper  bound  to  the  optimal  cost) 
and the  optimal value of the corresponding  dual  problem 
(which is a lower bound to the  optimal cost). Typically, the 
branch-and-bound tree search  is terminated when the best 
feasible solution  obtained is demonstrably  (according to 
the preceding criterion) within a  certain  percentage of the 
optimum (1 percent is the  tolerance used in [ 11). 

An approach of this type  can  be successful in solving 
unit  commitment  problems of realistic size  only if it meets 
the following  two prerequisites. 

1) The difference between the  optimal values of the 
primal  and  dual  problems  (the  duality  gap)  is small. 

2) The nondifferentiable  optimization  method used for 
solving the  dual problem  provides sufficient information 
for generating  a nearly optimal feasible solution of the 
primal  problem. 

It turns  out  that  the  duality  gap for the  unit  commitment 
problem is  not  only typically small, but also becomes 
smaller ( in  relative terms)  as the  number of units  increases. 
This fact, which has  not been  observed earlier, is estab- 
lished rigorously in t h s  paper  and suggests that Lagrangian 
relaxation is particularly well suited for unit commitment 
problems of large size. 

The  approach of Muckstadt  and Koenig [ 11 is not  practi- 
cally viable primarily  because it  does  not satisfy prere- 
quisite 2). The  method used in [ I ]  is a version of Shor’s 
original subgradient method (see [5]-[7])  which solves 
satisfactorily the  dual  problem  (as verified also  by us), but 
does  not provide sufficient information for finding  con- 
sistently  a good feasible solution of the  primal problem. 
This is reflected in  computational results [ l ]  whch show 
that the number of nodes of the  branch-and-bound  tree 
that need to  be examined before  a  satisfactory  solution 
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(within 1 percent of the  optimum) is found varies widely 
from  a few nodes to nearly a  hundred.  It is therefore not 
surprising  that  the largest problem solved in [ l ]  involves 
only 15 generating  units over  12 time periods. 

Our own success with large-size problems is due  to the 
different method we use for solving the  nondifferentiable 
dual problem. This method (due  to Bertsekas [SI and [9]) is 
related to  a  method of multipliers with exponential  penalty 
function  (Kort and Bertsekas [lo]),  and is  based on  ap- 
proximating the dual problem uith a twice-differentiable 
problem which is subsequently  solved  by a  constrained 
version of Newton’s  method [ 111. The crucial fact is that 
this  method not  only solves the  dual problem. but  also 
provides additional  information  in  the form of certain 
multipliers that solve a problem  which  is a relaxed version 
of the original unit  commitment  problem (in the usual 
relaxed control sense). These multipliers form the basis for 
generating  a feasible unit commitment schedule  which, 
based  on  our  computational experience, is consistently 
within  1  percent  (and usually within 0.5 percent) of the 
optimum.  This  in  turn allows us to entirely abandon rhe 
branch-and-bound philosophy or equivalently satisfy our- 
selves with  examining only one node of the branch-and-bound 
tree. Since the number of iterations of Newton’s method 
needed to solve the  dual  problem is quite insensitive to the 
number of generating  units, it follows that the compura- 
tional requirements for solving the unit conzmitnlent problem 
in  this manner typically grow only linearly with problem size. 
We are  currently  able  to solve consistently with our experi- 
mental  code  problems involving  200 units over  24  time 
periods in 10- 12  min of VAX-11/780 CPU time. This 
indicates that  our optimization methodology is applicable 
to even the largest practical unit commitment  problems  to 
be encountered presently. 

This paper is organized as follows. In the next section, 
we formulate the unit  commitment problem as a  determin- 
istic, dynamic  optimization  problem involving integer and 
continuous variables. The  formulation is essentially the 
same  as earlier formulations (see, e.g., [ 11). A discussion of 
the underlying physical assumptions  and the relevance of 
the  mathematical model  is  given  in a  separate  paper [12]. 
For simplicity, we have restricted ourselves to  thermal 
generating  units exclusively. Thus we  have  assumed in 
effect that all hydro power generation  has  already been 
scheduled. The  combined  thermal  and  hydro  unit schedul- 
ing problem is the subject of a  separate  publication [23] in 
which we show  how it is possible (again using duality  and 
nondifferentiable  optimization)  to schedule  optimally the 
hydro  units first over a period of one week and then the 
thermal  units using the method of this  paper. We  have also 
assumed for simplicity the absence of interchange  con- 
tracts,  but the basic model can be  easily  modified to 
account for this possibility. 

In Section 111  we formulate  a problem  which  is dual  to 
the unit commitment problem and which involves a  non- 
differentiable objective function.  In Section  IV wre describe 
the  approximation  method for solving the  dual problem. In 
Section V we introduce  a relaxed version of the unit 

commitment  problem  and show  how the approximation 
method of Section  IV solves t h s  problem simultaneously 
with the dual problem.  We also show  how various deriva- 
tives needed in the  approximation method can  be  com- 
puted efficiently by making use of the  structure of the 
relaxed  problem. 

In Section VI  we show that  the  duality  gapl  as  a  per- 
centage of the minimum cost, is inversely proportional  to 
the  number of units. This analysis is camed  out by refor- 
mulating  the relaxed  version of the problem  as  a  linear 
program and applying known results of linear  program- 
ming  theory (compare with [4, p. 1721). In Section  VI1  we 
show  how a good feasible solution of the original unit 
commitment problem can  be  generated by making use of 
the  solution of the relaxed problem. In Section VI11  we 
report  on  our  computational experience. and in Section IX 
we  summarize our results. 

11. PROBLEM FORMULATION 

Given a power  system consisting of I thermal units,  the 
problem is to schedule startup.  shutdown, and power  gen- 
eration of these units over N time periods so as to minimize 
fuel costs whle meeting  given demand  and reserve require- 
ments. 

For each unit i ,  we denote  the following. 
g: The average output power in period r. 
g, The minimum output power of unit i. 
E, The maximum output power of unit i. 
C, ( g )  The fuel cost for  operating  unit i at power  level g 

over one period. 
uf The  startup/shutdown decision variable  for  unit 

i at period t (one for startup, zero for  shutdown). 
We  will  assume that each unit  can be in one of two 

states: up (denoted by 1) and  down  (denoted by 0). Thus 
the  state  transition diagram of each unit is as given  in Fig. 
1. and if we denote by x: the state of unit i at time t ,  the 
equation governing its evolution is given  by 

- 

x:l ’ = u: ( i = l ; - - , I ;  t = O . l ; . . . A r - l )  . (2.1) 

This  assumption neglects typical practical  constraints  that 
require  that once a  unit is started  up  (shut down), it  cannot 
be shut down  (started  up) for a given number of periods. 
However. it is possible to  take into account these con- 
straints by introducing  additional  states into the state 
transition  graph.  The methodology  described in this  paper 
can  be trivially modified to  account for this possibility. The 
necessary  changes are described in [ 121 and [ 131, and  in 
fact  our implemented code (which  was  used to  produce  the 
computational  results of Section VIII) fully takes into 
account these uptime  and  downtime  constraints. We  have 
decided to adopt  a simpler  model in this  paper  to make the 
presentation more clear and  to  cope  better with an already 
overburdened  notation. 

The  startup/shutdown cost for unit i will be  denoted  by 
S , ( x , .  u , )  and  depends  on the state x, and  the decision 
variable u,. It is possible to allow for startup  costs  that 

~ 

Authorized licensed use limited to: MIT Libraries. Downloaded on October 19, 2009 at 15:50 from IEEE Xplore.  Restrictions apply. 



BERTSEKAS et a/. : SCHEDULING OF LARGE-SCALE POWER SYSTEMS 3 

u t  = 1 x.+l = 1 We assume  for simplicity that we have 
1 

L 
r 

Fig. I .  State transition diagram for unit i. 

ri( u i )  = ge if u: = 1 (2.6a) 

r i (u:>=o i fuj=O (2.6b) 

where g; is  the maximum emergency  power available for 
unit i. A possible generahzation which can be readily 
incorporated in our  solution  methodology is to let ri be a 
piecewise linear concave function  of g: when ui = 1 -for 
example, r:( 1, gf ) = min{ gf + g:,  g;}, where gf is the max- 

interval associated with the reserve constraint (e.g., 10 
min). 

We can  now state  our  problem as one of finding  optimal 
control variables ( u , g ) = { ( u f , g ] ) l i = I , . . . , I ,  t = O ; - - , N  
- 1) that minimize the  total  cost: 

0 imum possible increase in power for unit i during  the time 

AT-1 I 

J ( u ,  g )  = c c { Ci( g:)+ Si( X;,.:)} (2.7) 
r = O  i = l  

subject to  the system  (2.1) and  the  constraints (2.3a)-(2.5). 
Ths problem involves N -  I continuous variables (g]) and 
N . 1  integer 0- 1 variables (uf). For the typical value 

I I I I I I 

0 Yi g i  
- - 9  

Fig. 2. Cost-power  generation  curve. 

depend  on  the  number of periods that the  unit has been 
down by introducing  additional  down  states in the state 
transition  graph. We make  the  natural assumption that 

s l ( l , l ) = S i ( o , o ) = o .  (2.2) 

The  constraints  on the output power generated for each 
unit i and period t are 

g, < g! 6 gi if uf = 1. (2.3a) 

gf = 0 if uf = 0. (2.3b) 

The cost-power generation function Ci( g) is assumed  to  be 
convex and piecewise linear in the  interval [ g j ,  gi] as shown 
in Fig. 2.  We also assume  that Ci(0) = 0. - 

The  demand  and reserve constraints  are expressed as 

- 

I 
g,! > D' (Vt = 0,l;  . . , N  - 1) (2.4) 

i = l  

I 
r , (u f )> ,R '  ( V t = O , I ; . * , N - l )  (2.5) 

i = l  

where D' is the expected average demand  (not met  by 
hydroelectric generation) in period t, and R' is a threshold 
chosen to ensure that, with high probability,  the  demand 
will be met  even if units fail or the actual  demand varies 
from  the expected demand.  The  quantity r,(u;) is the 
maximum power that  a  unit can provide within a specified, 
short  interval of time (e.g., 10 min). 

N = 24 and I being in the  hundreds, we are faced with a 
mixed-integer programming  problem with  several thou- 
sands of integer variables and  as  many  continuous  varia- 
bles.  Because of such large dimensionality, it appears  that  a 
direct  attack  on this problem with standard  methods (e.g., 
branch-and-bound) is hopeless.  However, we can  exploit 
the  separable  structure of this problem  and  pass  into  a  dual 
problem  that involves  only 2 N  variables. 

111. THE DUAL PROBLEM 

By assigning nonnegative Lagrange multipliers A' and p' 
to the  constraints (2.4) and (2.5):  respectively, we can 
consider the  corresponding  dual  functional 

{ u , g  r = O  [ ( i=lg') 

i 
N - l  I 

q ( A , p ) = m i n  J ( u , g ) +  A' D'- 

I 
+p' R'-  r i ( u ; )  (3.1) 

i = l  i l l  
where the minimization is subject to the constraints (2.1), 
(2.3a), and (2.3b). In view of the  separable  structure of J 
[cf. (2.7)], we can also write q as 

I N - 1 

q ( X , p ) =  q , ( X , p ) +  (A'Dr+prRr)  (3.2) 
r = l  r = O  

where 

N - 1 

qi(X,p)=rnin c [ c l (g : )+S i (x : ,u : ) -A 'g f -CL'r (u f ) ]  
u,.g, * = O  

(3.3) 

and the minimization in (3.3) is subject to the  constraints 
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(2.1), (2.3a), and (2.3b). This  minimization represents an 
optimal  control  problem involving a single unit and  a  state 
space with  only two  states which  can be readily solved  by 
dynamic  programming.  Thus  the value q( A. p )  for any 
given ( X ,  p) can be obtained relatively easily. The  dual 
problem is 

maxq(h.P) 
subject to A > 0 ,  p>O.  (3.4) 

It is well  known that, if J* is the  optimal value of 
J(  u,  g), we have q(X, p )  Q J* for all X 2 0, p > 0. Thus, if 
we denote by q* the dual  optimal value, we have 

p > O  

The difference ( J *  - q*) is termed the duality gap  and  can 
be expected to  be strictly positive in view  of the fact that 
the  constraint set for ( u ,  g) is  nonconvex. Our solution 
method consists of first solving the  dual  problem (3.4) and 
then using its  solution  to  obtain  a feasible solution (U. g )  
of the primal  problem. The criterion for accepting (E. g) as 
the final solution will be  the  magnitude of the  ratio 

J (  E ,  g ) -  q* 
4* 

For this approach  to have a  chance of success. it is neces- 
sary  that  the  “relative  duality gap,” i.e.. the ratio 

J* - q* 
4* (3.7) 

be small. We  will  show in Section VI  via analysis and in 
Section VI11 via computational experiment that indeed this 
ratio is relatively small and  tends  to become  smaller as the 
number of units I increases. 

IV. SOLUTION OF THE DUAL PROBLEM 

As mentioned earlier, it is possible to obtain the value of 
each component q , ( X , p )  [cf. (3.3)] of the dual  functional 
using  dynamic  programming. The corresponding  equations 
for unit i and fixed X 2 0 and p 2 0 are 

-X‘gj-p‘I;(u:)+Jr‘+’(.:;X.p)} 

(4.lb) 

where t = 0,l; . . , N - 1. xf  E (0, l}. and the constraint V 
is given  by 

= (o,o)u{(l, g:)Ig; Q g: E,}. (4.2) 

The value q i ( A ,  p )  is obtained from the  last  step of the 
algorithm as 

q i ( X , p )  = J,O(xP; b ) .  (4.3) 

For u: = 1 and g: E [g,. g,], the  function within  braces in 
(4.lb) is a  piecewise  linear convex function of  g! with 
breakpoints  denoted gj(1):. .,g;(n,) where g,(l) = gi  and 
gi(nl) = g,. AS a result. this  function  attains  its min-imum 
at one of these breakpoints. This leads  to  the following 
alternative form of (4.lb): 

where 

and a:. b: are  the  “costs to go” corresponding to  an  up 
decision and down decision, respectively, for unit i at time 
t .  It can be seen that, for each t and xf, the function 
Jr( x:; X, p )  is piecewise linear  and concave, and  the  same is 
true for the dual  functional q which is given  by [cf. (3.2), 
(4.31 

I ?i - I 
q ( h , p ) =  J , O ( x O ; X , p ) +  (X‘D‘+p‘R‘). (4.7) 

r = l  r = O  

Thus the dual problem of maximizing q subject to X > 0, 
p 2 0 is a  linear  programming problem. Its solution, how- 
ever.  by simplex-like methods seems hopelessly time con- 
suming. For the purposes of obtaining an approximately 
optimal  solution (whch is sufficient for our purposes), it 
appears  that  nondifferentiable  optimization  methods are 
far preferable. One possibility is to use Shor’s original 
subgradient  method  as in [ 11. The advantage of this method 
over other  competing  methods [ 161-[21] based on subgradi- 
ents is that  it  does  not  require  a  line  search or other 
operations which for the  problem of this paper  are  un- 
acceptably time  consuming. Another possibility is to use an 
approximation  method [8], [9] which has  the  advantage 
that, in addition to solving the  dual  problem,  it  also yields 
at  no  extra cost the solution  to  another problem  which  may 
be viewed both  as “dual-tc-the-dual” as well as  a relaxed 
version of the original unit  commitment  problem. 

The main idea of the  approximation  method we use is to 
recursively replace every function of the  form 

in the dynamic  programming algorithm, where h . . , h ,  
are some  generic functions, by a  function of the form 

(4.9) 

where d is a positive parameter  and yj are positive multi- 
pliers with Ey=, J; = 1. Thus  the  dynamic  programming 
algorithm  [(4.4)-(4.6)] is replaced  by the  “approximate 
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dynamic programming algorithm" 

+S,(x: , l ) -pL'gie+~+'( l ;A,p;y,~,d)  

(4.12) 

and 

~ f ( x f ; h , p ; y , z , d ) = ~ i ( x ! , O ) + ~ + ' ( O ; A , p ; y , z , d ) .  

(4.13) 

Here y ,  z, and d are  the vectors with components yi,, 
z:(xf), and dj, t=O; . . ,N- l ,   i= l ; - . ,Z ,   j= l ; . . ,n i ,  
x: E (0, l}, and for all t ,  i, j ,  and xf, we require 

0 < y;, 0 <.;(x;) < 1: 
n, 

0 < d:, y:J = 1. (4.14) 
j = 1  

Finally, the "approximate dual problem" is  given  by 

maxq(A,p; y :  z, d )  
I A- I 

= g , ( A , p ; y , z , d ) +  (A'D'+p'R') 
i = l  r = O  

subject to A 2 0, p 2 0 (4.15) 

where 

q j ( A , p ; y , z , d ) = ~ O ( x g ; A , y ; y , z , d ) .  (4.16) 

Note that  for each set of parameters ( y ,  z, d ) ,  problem 
(4.15) is a twice-differentiable constrained optimization 
problem which can  be solved by Newton-like methods. 

Our method for maximizing the (exact) dual  functional q 
consists of solving the  approximate  dual  problem (4.15) for 
some initial set of  parameters ( y ,  z, d )  and  then  updating 
these parameters according to  the  formulas 

y;j + 7'. ' J  ' z f (  x:) + ?f( x;), df +- wd: (4.17) 

where w is a scalar greater than unity and j$ and F,!( x:) are 
given  by 

. ( z ~ ( x : ) ~ - d : ~ : ( x ~ : A , ~ ; ~ , z , d )  

+ [ 1 - z f ( x : ) ] e - d : ~ ( x : ; h , l * : y . 2 , d )  ) - I  (4.19) 

and these expressions are evaluated at the solution ( A ,  p) 
of the corresponding approximate  dual problem. This pro- 
cedure is repeated  as many times as is necessary for  the 
difference between the  optimal value of the  approximate 
dual  functional  and  the corresponding value of the exact 
dual  functional  to become sufficiently small. 

Convergence of this method to a solution of the  dual 
problem  can  be readily shown based on  the fact df + m, 
provided a mechanism is incorporated  that keeps all 
parameters zf(xf), y:j bounded away from zero. However, 
the method is capable of convergence even  when d,! is kept 
constant on the power of the multiplier updating  formulas 
(4.18), (4.19) alone. This is a generic property of the 
exponential method of multipliers on.which  the method is 
based (see [ 101, [ 141, and [15]). Typically, the  number of 
approximate  dual problems that need to be solved to 
obtain acceptable convergence is around four, and each 
one of these needs only to be solved approximately with 
the convergence tolerance becoming progressively more 
stringent with each new approximate  dual problem. 

The multipliers j$, ?;(x:) obtained via  (4.18),  (4.19) at 
the end of each maximization of the  approximate  dual 
functional form sequences which typically converge' to 
values $:j, z f̂( X:) satisfying 

,f!(x;)=l i f a : ( x f ; > ; , I - i ) > b f ( x : ; ) ; , P )  (4.20) 

i f (xf)=O ifaf(xf;);,P)<b:(xf;);,Ifi) (4.21) 

g / j > > - j = a r g  min {~;[g~( , ) ] -Pg;( j ) ]}  
. .  . '.n, 

(4.22) 

where (X, a )  is the maximizing vector of the  dual func- 
tional  obtained  in  the limit via the algorithm, and af, bf are 
given by (4.3, (4.6). 

Regarding the numerical solution of  the  approximate 
dual problem, we have been using a recently developed, 
quadratically convergent, constrained version of Newton's 
method [ l l ]  which makes use of the gradient and Hessian 
matrix of the  approximate  dual  functional. As will be 
discussed in the next section, it is possible to  compute 
recursively (and quite efficiently) these quantities,  and this 
is another key factor for the success of the overall method. 
Typically, the  number of Newton iterations needed to solve 
with sufficient accuracy the  dual  problem  is  around ten, 
and this number  appears  to  be insensitive to the number of 
units I. This fact is the basis of our claim that the computa- 

'It is only possible to show rigorously that all limit points of these 
sequences satisfy (4.20)-(4.22). but it appears  that the possibility of the 
sequences (x>) and (?,'(x:)) having more than one limit point is remote. 
and in any case. i t  has never been observed by us. 
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tional  requirements for solving both  the  dual problem and 
(within a practically acceptable tolerance) the unit commit- 
ment  problem grow linearly with the  number of units. 

V. GRADIENT  COMPUTATION AND THE RELAXED 
PROBLEM 

We first derive an expression for  the  gradient of the 
approximate  dual  functional with respect to ( X ,  p). It is 
straightforward to verify from (4.10)-(4.13) that for each 
state x:,  we have 

+ [ 1 - q ! (  x;)] 
a<,+ ( 0 )  

aPT 
if T > t (5 .5)  

where F,' and 1:. are  as in (4.18). (4.19) and for notational 
convenience, we have dropped all the arguments of x r  
except for xf. From these equations. it is possible to 
calculate recursively all first partial derivatives of J0 and 
hence also of the  approximate  dual  functional 4 [cf. (4.15). 
(4.16)]. 

An interesting  and relevant observation  is that  the 
parameter F,'(x:) may be viewed as  a transition probability 
of going from  state x: to the  up  state 1 when the states of 
the  unit  are viewed as  states of a  (nonstationaryj Markov 
chain.  as shown in Fig. 3. With this interpretation, it is 
easily seen  from  (5.1)-(5.5) that  for all i. r ,  and T >, r ,  we 
have 

a$( x;) 17 1 

ax = - p,(x,!; t , ~ )  JGgi( j )  (5.6) 
j =  I 

axt(  .f) 
dPT 

= - pi(x;; t. . )g;  ( 5  -7) 

where is given  by (4.18), and p,(x:; t. T j is the probabil- 
ity that  an  up decision for unit i will  be made  at time T 
(u: = 1) when the  state  at time t is X:. Thus  the  gradient of 
q, can  be calculated by propagating forward the  state 
probability vector as  in 

Fig. 3. Transition probability graph for the  relaxed problem 

where p:  is the row vector of probability  distribution of xf 
given the initial  distribution py  where 

pp = (1,O) if x: = 1 or (5 .sa) 

pp=(O,I) i fxp=O (5.9b) 

and P: is the  transition  probability  matrix 

if( 1) 1 - Ff( 1) 

q ( 0 )  1 - z;(o) P,' = I -  (5.10) 

A further  differentiation of the expressions d[x.o(xO)]/ 
ax, a[xo(x:)]/ap7, T > 0 as given  by (5.6), (5.7) yields an 
expression for  the Hessian  matrix of qi. The  details  for  this 
are  straightforward  but lengthy and will not  be given (see 
[13]). We mention  that it is possible to develop a recursive 
scheme for  computing  this Hessian matrix  by  taking  ad- 
vantage of the transition  probability  graph.  It is also 
possible to show that  each Hessian matrix v2qi is negative 
definite (see [ 131). It follows from (4.15) that 0'4 is also 
negative definite which  is an essential requirement  for good 
performance of the Newton-like method  that we have  been 
using for maximization of 4. 

The  connection with the probabilistic  state  transition 
graph of Fig. 3 can  be carried further by considering  the 
following  relaxed  version of the unit commitment  problem. 

Consider the unit  commitment  problem of Section 11, 
where at each  time  period t and  state { x f l i =  I ; . - , Z } ,  we 
choose for each unit i (instead of 0 - 1 decision variables u: 
and  generation variables g,!) a  probability z:( x f )  according 
to which u: = 1, and  probabilities I;: according to which 
g,' = g, ( j )  when u: = 1. In other words, the decision varia- 
bles in the relaxed problem  are 

zf( x:) = P{ Uf = 11x;} (5.11a) 

y;j=P{gf=g,(j)lu:=l) .  (5.11b) 

The  problem is to find z:( xf ) and y/j that solve the  problem 

m i n . f ( y , z ) = ~ %  / [C,(~~)+S,(X: ,U:)]  
"'- I 

\ r = O  i = l  

(5.12) 

> D l ,  t = O , I ; - - , N - l  

(5.13) 
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Droblem 

where E { - )  denotes expected  value, and the  probabilistic 
evolution of x f  is specified by the  transition  probability 
graph of Fig. 3. 

This  problem is the  same  as  the  unit  commitment  prob- 
lem  except that we have expanded  the set of feasible 
decisions to allow for randomized decisions. 

Suppose  that we have obtained  an  optimal  solution 
(A,  f i )  of the  dual  problem (3.4)  via the  approximation 
method of the previous section, and  a  corresponding set of 
multipliers ( 9 , i )  satisfymg (4.20)-(4.22).  We  will  show 
that (9 ,2)  is a solution of the relaxed unit commitment 
problem. 

generated by the  approximation method. Then ( A k , p k )  
solves the  approximate  dual  problem  corresponding  to 
( y k ,  zk, d k ) ,  so from  a necessary condition  for  optimality, 
we obtain 

Indeed, let { ( h k ,  p k ) }  and { ( y k ,  zk, dk)) be the SC3ClUenCeS 

(5.16) 

(5.17) 

where all partial derivatives above are evaluated at 
(hk, pk,  y k ,  zk, d k ) .  Using the expression for @/aAt, 
a q / a p *  obtained via  (4.15),  (4.16),  (5.6), and (5.7), and  the 
fact ( h k , p k )  + (A ,  f i ) ,  (ykr zk) + (j,Z^), we obtain  from 
(5.15) 

I n, 

c p i ( x ! ; O , t )  9 ; j g i ( j ) - D ‘ > 0  (5.18) 
i = l  j = l  

I 
p i ( x ! ; O , t ) g f - R ‘ > , O  (5.19) 

i = l  

where pi (x ! ;  0, t )  is the  probability  that  the decision made 
for unit i at time t corresponding  to  the randomized 
decision variables (p,Ẑ ) will be  to have the unit up (uf = 1). 
Thus (5.18),  (5.19)  simply  say that ( 9 , i )  satisfies the 
constraints (5.13),  (5.14) of the relaxed problem. Similarly, 
(5.16), (5.17)  can be written as 

I 
(5.20) 

i = l  

I 
(5.21) 

Finally, if we form the Lagrangian  function of the relaxed 

we can verify  easily  using  (4.20)-(4.22) that  it is minimized 
at (9,Z).  It follows from  a well-known saddle-point theo- 
rem  (see  [5, pp. 144-1451) that ( 9 , 2 )  is an  optimal  solution 
to the relaxed problem,  and  furthermore  the  optimal value 
of this problem is equal to  the  dual  optimal value q*. 

It is important  to  note  that  to  find  a  solution of the 
relaxed problem, it  is  not sufficient to find  a  solution ( A ,  f i )  
of the  dual  problem  and  then minimize the  Lagrangian 
function (5.22) with respect to ( y ,  z ) .  This is due  to  the  fact 
that minimizing pairs ( y ,  z )  of (5.22)  need not satisfy the 
conditions (5.18)-(5.21). Thus solving the  dual  problem is 
by  itself of little help in  solving the relaxed problem. The 
point of  view advanced in this paper  is  that  the  solution of 
the relaxed problem is far  more  important  than  the  solu- 
tion of the  dual  problem ( see  Section VII). Therefore,  a 
dual  problem  solution  method such  as the  subgradient 
method used in [ 13, which does  not simultaneously solve 
the relaxed problem, is inadequate  for  our  purposes, while 
the  approximation  method  that we have been using is fully 
satisfactory. 

VI. AN ESTIMATE OF THE DUALITY GAP 

In this section, we reformulate  the relaxed version of the 
unit  commitment  problem as a  linear  programming  prob- 
lem.  We then utilize basic linear programming  results  to 
show  that there exists an  optimal  solution  in which the 
number of units which have “relaxed”  controls (i.e., unit 
commitment decisions that are  noninteger) is at most equal 
to the  number of demand  and reserve constraints.  This 
result is used to derive a  bound  on  the  duality  gap associ- 
ated with dualizing  the unit commitment problem. This is 
done by bounding  the increase in cost associated with 
modifying the relaxed solution into  a feasible solution.2 
Finally, since this increase in cost is independent of the 
number of units, we  show that  the  duality gap goes to  zero 
(in relative terms) as the  number of units increases. An 
alternative  and  more general method  for  estimating  the 
duality gap is  given in [24]. 

To reformulate  the relaxed problem as a  linear  program- 
ming problem, we show that selecting the z:(x!)  and they:j 
is equivalent to assigning a  probability to every possible 
sequence of controls (u i ,  g!)  and that  the cost and  con- 
straints can be formulated in terms of these sequences. 

Let us enumerate all possible sequences of  controls  for 
each unit (this can be done since the values of uj are zero 

must be zero or one; when applied to the unit commitment schedule it 
’The term “feasible” when applied to a uni t  means that the uf(.xf) 

means that each unit’s schedule is feasible and that all constraints are 
satisfied. 
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and one, and the only values we  allow g: to assume are 
those of the  breakpoints g i ( j ) )  and  denote the k th such 
sequence by w:. Define 

N - I 

c,,= C { c i ( g : ) + S 1 ( x : , u f ) )  

g:, = g:l(g;.u:)=%f? and  (6.2) 

(6.1) 

6, = r ~ ( ~ ; ) l ( g : , u : ) = w : .  (6.3) 

t = O  (g: .  u:, = 5,; 3 

Assign a  “probability” pi ,  to each  sequence .;” so that 

C P i k = l .   ( 6 . 4 )  
k 

If the z:(-xf) and  the y:J have  been selected, then the pix 
assigned to each  sequence can  be  computed  from 

A- 1 

P i k  = ’:( xf)y:~ (6 3 )  
t = O  {g ; .  u:, = h,! 

where the xf correspond to the  control sequence .;” and J,’~ 

is defined to  be  one if u: is zero. 
Equivalently, if thep,,  are assigned to each  sequence, we 

can  compute  a  consistent set of z:(x:)  and J:~. This can be 
done recursively by computing  the zp(xp) first, then the 
y:., then z!(xf>. etc. To  compute zp(xp), simply add all the 
p f k  which correspond to trajectories leaving x: via a deci- 
sion of up = 1.  If zp( x:) = 0, then the y: can be  assigned 
arbitrarily; otherwise  they  can be  computed by summing 
over all trajectories leaving x:, having up = 1. and having 
g: = g, ( j ) ,  and  then normalizing  by the probability zp( x; ). 

Similarly. zf(xf) can be  computed  for  any  state whch 
can  be reached via nonzero  probability decisions: sum  over 
the trajectories leading through that  state  and decision. and 
normalize  by the probability of being in that  state.  This 
procedure leads to a set of z : ( x : )  and J:~ which are  con- 
sistent with any assignment of pi,. The conclusion  is that 
selecting the p l k  is  equivalent to selecting the {=:(x:). .I?‘ >. 

Thus the relaxed unit  commitment problem can be writ- 
ten as 

,! 

I 

c P i k c l k  (6 .6)  
P$A 1 = 1 k 

subjectto C p i x = l ,  i = l ; . - . I  (6.7) 
k 

pi, > 0 (6.8) 
I 

C p i k g : , > D r ,   t = O ; - .  .N-1 (6.9) 
i = l  k 

I 
E p i k r / ,  2 R‘, t = 0, -  . . . N  - 1. (6.10) 

i = l  k 

This  reformulation is clearly a  linear  programming  prob- 
lem  with I + 2 N constraints. 

If I > 2 N ,  then  (compare with [5 ,  p.  1721) any basic 
feasible solution of the abme linear program  has  the propert) 

that at least I - 2 N of the indexes i have precise& one pik 
positioe (and hence unity). To see this. note  that  any  basic 
solution  has  at most I + 2 N variables positive. Each of the 
I constraints (6.7) requires at least one positive variable to 
satisfy it. The remaining 2 N  basic variables are  then associ- 
ated with at most 2hr different  units, leaving at most 
( I  - 2 N )  units i with exactly one positive variable p lk .  If 
we consider  the set of multipliers { z ; ( x f ) ,  y,:} correspond- 
ing  to  a basic feasible solution { p ik}  as discussed earlier, we 
also find. based on the argument above, that at most 2 N  of 
the multipliers z!(x:) ,  which correspond  to  states x: along 
which  some variable p,, is positive, are  neither zero or one. 

If there exists any feasible solution to the linear  program 
(6.6)-(6.10) (i.e., if operating all units at maximum output 
will satisfy demand  and reserve constraints),  then by not- 
ing that every feasible solution  has  finite  cost? we can  apply 
the  fundamental theorem of linear  programming  to  con- 
clude  that there exists an optimal basic solution to  the 
linear  program above. 

Therefore it follows that  there exists an optimal  solution 
to the relaxed problem for which the schedules associated 
with I - 2N units  are feasible with respect to the orignal 
unit  commitment problem  (i.e.. for whch the values of u: 
are zero or one). The  important  point  to  note is that at 
most 2 N  units have schedules which do not meet  the original 
integrality constraints and this bound is independent of the 
number of units. In fact,  at most 2 N multipliers z!( x:) in an 
optimal  solution to the relaxed unit  commitment  problem 
are  noninteger,  and thus a feasible solution to the  unit 
commitment  problem can  be obtained by  modifying the 
schedules of at most 2 N  units. 

Since the cost of t h s  feasible solution  overbounds  the 
optimal  unit  commitment cost. and since the difference in 
the cost of the feasible and  optimal relaxed solutions is 
constant. we can  compute  a  bound  on the duality  gap 
which  is independent of the  number of units. The cost of 
the  optimal  unit  commitment schedule  grows as  the  num- 
ber of units increases. Thus the duality gap, in relative 
terms, goes to zero as  the  number of units increases. 

To determine  the  duality  gap more precisely, we need to 
overbound the cost of modifying 2N relaxed schedules into 
2 N feasible schedules. Clearly this cost is bounded by 2 N 
times the most  expensive cost of modifying any  one sched- 
ule. In Fig. 4, we plot the costs associated with operating  a 
real unit (solid line) and  the relaxed cost of operation 
(dashed line). Note  that  a  demand  and reserve feasible 
schedule  which satisfies unit constraints  can be obtained 
by  turning  the  unit  on as soon as possible and  operating  it 
at either  the minimum output (if gf E [0, g , ] )  or at g! (if 
gff  E [g, ,  E,]). The maximum cost associated-with this  mod- 
ificatiin. since the  generation  cost is  convex and increasing 
on [g, ,  E;]. is N times that associated with producing  the 
minimum output instead of E > 0, where E is  very small, 
plus the cost of starting  up the unit. 

If  we define 

S* = maxS,(O, 1) (6.1 1) 

C* = max { C, ( g i ) } :  (6.12) 

r 

I - 

~ ~ _ _ _ ~  ~ 
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Fig. 4. Real and relaxed unit operation costs. 

then  the cost of modifying any unit schedule is less than 
S* + NC* and  the cost of the feasible schedule is  less than 

4=4*+2N(S*+NC*)  (6.13) 

where q* is the cost of the relaxed (or dual) solution. The 
relative duality gap is thus bounded by 

4 - q* 2N( s* + A T * )  
-= (6.14) 

4* q* 

and since 

limq* = + m ,  (6.15) 

we have that the relative duality gap ( J *  - q*)/q* [cf. 
(3.7)J goes to zero as the  number of units I increases. 

I -* x. 

VII. OBTAINING A FEASIBLE UNIT  COMMITMENT 
SCHEDULE 

The preceding analysis has established that by solving 
the  dual proljlem using the  approximation method of Sec- 
tion IV, we obtain  an optimal solution ($,i) of the relaxed 
unit commitment problem and  that  the corresponding opti- 
mal value is equal to the  dual  optimal value q*. We know 
from  the analysis of Section VI that  the  duality  gap is 
expected to be small and in fact becomes smaller in relative 
terms as the number of units increases. Therefore it foilows 
that the difference in  the  optimal values of the unit com- 
mitment problem and  its relaxed version is.smal1. Thus if 
we  were able to  perturb slightly the relaxed optimal solu- 
tion (p,ẑ ) and  obtain a feasible unit commitment schedule, 
then we could expect that this schedule would be close to 
being optimal. We next observe that  once  the decision 
variables uf are selected, then the up or down status of all 
units  at each time is determined and  the generation vari- 
ables g,! can be chosen optimally by means of a simple 
standard economic dispatch calculation. Thus  the variables 
$:, are  not needed to provide near  optimal values for the 
generation variables g,!. 

There  are two issues that arise in selecting the uf on the 
basis of the solution to  the relaxed unit commitment prob- 
lem  [i.e., on  the basis of the i : ( x f ) ] .  The  first is that, since 
we do not solve the  dual problem exactly, many of the 
.2f(xf) may not have converged to zero or  one, so there 
arises a question of deciding whether a  particular unit i is 
“relaxed”  or not at any particular time t on  the basis of 
approximately optimal values of zf(x:). The second is that 
of how to modify a  “relaxed” unit schedule. These issues 

are resolved  by treating a value of i f (x f )  which is within 
some small z of zero (one) as indicating  that if unit i is in 
state xf at time l ,  then it should be  up (down) in  the next 
time period. Typically, less than 2N units  are  “relaxed” 
and for  the remaining units, the if($) have converged to 
within 0.001 of zero or one by the time we have a satisfac- 
tory solution to  the  dual problem. An exception is  when 
there is a class of units which are identical, in which case if 
one of these units is “relaxed,” all are  “relaxed” and a 
large number of .’:(x;) may be far from zero or one. The 
solution to this type of problem falls under  the second 
issue. 

We modify a  “relaxed”  unit schedule into a feasible 
schedule by setting u f ( x f )  to  one (zero) if z f (x f )  is over 
(under)  a selected threshold. This threshold is selected so 
that the power generated by the  units  turned  on is roughly 
equal to the “expected” power generated by these units  in 
the relaxed solution. Note  that this strategy handles classes 
of identical “relaxed”  units in an intuitive manner: it turns 
on  that fraction of units indicated by the if(x:). 

VIII. COMPUTATIONAL RESULTS 

A more sophisticated version of the preceding algorithm 
has been implemented in  a  Fortran  code3  and was used to 
generate the results of this section. The implemented algo- 
rithm differs from the  one discussed in this paper  in two 
ways. First, we allow the imposition of minimum up  and 
down time constraints  on the operation of generators. The 
implemented algorithm produces a  unit  commitment 
schedule which satisfies all these constraints. Second, the 
implemented algorithm includes a variety of safeguards 
(e.g., against the Hessian. becoming indefinite due  to  finite 
precision arithmetic) and rules (e.g., step-size selection, 
convergence criteria for  the  approximate problems, etc.) 
which speed up convergence to  the  solution. 

These safeguards and rules introduce  parameters which 
allow one to  tune  the algorithm to  the  problem  at  hand. 
However, the overall method is quite insensitive to vari- 
ations in these parameters within a  broad range. It should 
also  be noted that  the  same  parameters have been used for 
each combination of demand curve and  generator  set  in 
Table  I  and  that  the  same  initial set of dual multipliers 
have been used for each example. 

The  data describing the generators and  demand curves 
were taken from an EPRI report [22]. The  units range in 
size from 50 MW to 1200  MW and include combustion 
turbine, oil- and coal-fired, and nuclear units. The  demand 
curves for summer and winter (Figs. 5 and 6, respectively) 
have been scaled so that  the peak demand is 0.7, 0.8, or 0.9 
of the  total generator capacity. 

This  information,  denoted D/G, and  the  number of 
units  in each example is given in the two leftmost columns 
of Table I. The  top two rows of Table I indicate  the 
number of time periods in the example (12 two-hour 
periods or 24 one-hour periods) as well as  the type of 

3 0 n  a VAX-I 1/780 without a floating-point accelerator. 
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TABLE I 
SUMMARY OF COMPUTATIONAL RESULTS 

--_______--_____==_=-_-_-=-.=_____.I-~ .= 

XO. Cf 
12 Tlrne Per iods  

t i2ltS o's 
24 Tine Periods 

scnrer k'inter Summer n l n t e r  

0.7  12,   3 .32%.  :36 9, 0.35%,  :2?  12,  0.36\,   1:46 11, 0.25%.  1:35 

3 0 0.E 12,  5.60%. :34  9, 0.358,  :27 1 C .  0.31%.  1:32 13,  0.15%.  1:57 

0. 3 7 .  0 . 3 l P .  :i2 9, 5 .12%.   :26  -e, .~ 0.225.  2:13 10, 0.13%.  1:27 

3.7 10,  0.29%. 1 :33   12 ,  0.19%, 1:16 10, 0.319,  2:55  12, 0.295, 3:12 

65 ' 2.8 L,;, 0.175, 1:Z'2 11, 0.168, 1 :56  8, 0.41%.  2:25  17, 0.16%. L:32 

' 3.9 9, 0.313. : 5 5  7 ,  0.135, :48 16. 0.131.  1:16 16. 0.21%. 4:36 

0.7 10. 0 .06%.  2 : o :  6 ,  0.17%. 1:41 11, 0.24%.  6:28 9, 0.24%. 5:21 

12.2 ' 0.2   3 .   0 .26%.  1 :50  a, 0.349,  1:42 3 ,  0.17%. 4:57 1 4 ,  0.115.  7:26 

0.3 7, 3.31%.  1:34 8 ,  0.26%.  1:LO 1 5 ,  0.09%. 7 :53  14, 0.10%. 7:21 

0.7 8, 0.31%. 2:16 7, 0.09%. 2:38  12.  0.10€, 1O:57 13,  0.27%. 11:49 

2 SJ 3.9 11, 0.3CS, 3:43 LC, 0.21%,  3:30  12,  C.26b.  11:32 17, 0.09%, 12:12 

- _ _ ~ _ _ _ - - - ~ ~  
' 0.0 9 ,  3.C65. 3:OE 6 ,  3.065.   2 :50  12,  0.47%. 15:43 il, 0.156, 9 :L8  _ _ _ ~ _ _ ~ ~ _ _ _ _  
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Fig. 5 .  Summer demand curve. 
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Fig. 6 .  Winter demand c u n c  

demand curve (i.e., summer or winter). Each entry  in  the 
table is a triple of numbers:  the  number of Newton steps 
required to solve the problem. an  upper  bound  on  subopti- 
mality of the  unit commitment schedule as given  by ( j - 
Q)/Q where j is the cost of the feasible schedule computed 
and Q is the highest value of the  dual  functional  obtained, 
and  the CPU time required to solve the problem (min: s). 

From this table we conclude that for large problems 
(over 100 units), we typically require 8 Newton steps or less 
and  that  the CPU time required to solve large problems 
(with 24 time steps) with this experimental (and as yet not 
optimized) code is roughly 4-6 &/lo0 units. The  num- 
ber of Newton steps required is an  important  quantity. 
since the computation of the Hessian matrix of the  ap- 
proximate dual  functional  dominates  the  computation time. 
Ths number ranges from 3- 14 steps and varies mainly 

with the  number of approximate  dual  problems  that need 
to  be solved (3 steps for 3 problems, 5-8 steps  for 4 
problems, and 9-14 steps for 5 approximate problems). 
The variation of computation time with problem data is 
quite small, however, and is not  a cause for concern. 

Table  I also indicates the  dependence of the  computa- 
tion time on problem size: roughly linear in the  number of 
units  and between linear and  quadratic in the number of 
time steps. The dependence of the  duahty gap on the 
problem size  is somewhat less clear, but  does roughly 
decrease with increasing numbers of units or time steps. 
Actually, the percentages shown in Table I are  rather loose 
upper  bounds on the  actual value of the  ratio ( j - J*)/J* 
which characterizes the degree of suboptimality of the 
feasible suboptimal schedule obtained. This is true  not only 
because of the presence of a duality gap, but also because 
the  dual  functional q is maximized only approximately, 
and therefore the best dual value of 4 obtained is lower 
than  the maximal value q* (and a fortiori J*). We found by 
experimentation  that  the difference ( q *  - 4) can  account 
for  a  substantial  portion of the percentages shown in  Table 
I. 

The success achieved with our methodology in solving 
the  optimal unit commitment problem is apparent  from 
Table 1. Even the smallest problem in  the  table (30 units, 
12 time periods) is twice as large as  the largest optimal  unit 
commitment problem that to our knowledge has ever been 
solved using other  methods [ 11. 

IX. SUMMARY AND EXTENSIONS 

In t h s  paper, we have introduced an algorithm for  the 
solution of large ( loo+) unit commitment problems and 
shown that it can compute very accurate  solutions (typi- 
cally within 0.5 percent of optimal) very quickly (typically 
4-6  min of CPU time per 100 units for 24-time-period 
problems). Whle the algorithm presented in Sections 
II-VI1 is valid only for state  transition  diagrams involving 
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