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Abstract. We generalize theε-relaxation method of [14] for the single commodity, linear or separable
convex cost network flow problem to network flow problems with positive gains. The method maintains
ε-complementary slackness at all iterations and adjusts the arc flows and the node prices so as to satisfy flow
conservation upon termination. Each iteration of the method involves either a price change on a node or a flow
change along an arc or a flow change along a simple cycle. Complexity bounds for the method are derived.
For one implementation employingε-scaling, the bound is polynomial in the number of nodesN, the number
of arcsA, a certain constant0 depending on the arc gains, and ln(ε0/ε), whereε0 andε denote, respectively,
the initial and the final toleranceε.

1. Introduction

Consider a directed graphG = (N ,A) with node setN = {1, . . . , N} and arc set
A ⊂ N ×N . We denote byN the number of nodes and byA the number of arcs. (The
implicit assumption that there exists at most one arc in each direction between any pair
of nodes is made for notational convenience and can be dispensed with.) We are given,
for each nodei ∈ N , a scalarsi (supplyof i ) and, for each arc(i , j) ∈ A, a positive
scalarγi j (gain of (i , j)) and a convex, closed, proper functionfi j : < → < ∪ {∞}
(cost functionof (i , j)). The generalized separable convex cost network flow problem is

minimize f(x) :=
∑

(i, j)∈A
fi j (xi j ) (P)

subject to
∑

{ j |(i, j)∈A}
xi j −

∑
{ j |( j,i)∈A}

γ ji x ji = si , ∀ i ∈ N , (1)

where the real variablexi j is referred to as theflow of the arc(i , j) and the vector
x = {xi j | (i , j) ∈ A} is referred to as theflow vector. We refer to (P) as theprimal
problem. We assume that eachfi j is co-finite in the sense that limζ→−∞ f−i j (ζ) = −∞
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and limζ→∞ f +i j (ζ) = ∞, where f −i j (ζ) and f +i j (ζ) denote, respectively, the left and
right derivative of fi j at ζ [31, p. 116], [32, p. 315]. An important special case is the
linear costcase, where

fi j (xi j ) :=
{

ai j xi j if bi j ≤ xi j ≤ ci j

∞ otherwise
, (2)

for given scalarsai j ,bi j , ci j . This special case has been much studied (see [3, Chap. 15],
[9, Chap. 8], [25], [28, Chap. 8], and references therein) and has applications in many
areas including financial planning, logistics, hydroelectric power system control (see [2],
[4], [20], [22] and references therein). Another important special case is theordinary
networkcase, whereγi j = 1 for all (i , j) ∈ A (see [9], [32]). For the general case,
a range of applications is surveyed in [20]. A flow vectorx satisfying

fi j (xi j ) <∞, ∀ (i , j) ∈ A,
as well as the conservation-of-flow constraint (1) is calledfeasible. A feasiblexsatisfying

f −i j (xi j ) <∞ and f +i j (xi j ) > −∞, ∀ (i , j) ∈ A, (3)

is calledregularly feasible(see [32, p. 329], [9, p. 418]). We will assume thatthere exists
at least one regularly feasible flow vector. In the linear cost case of (2), the condition (3)
reduces to the standard capacity constraint:bi j ≤ xi j ≤ ci j for all (i , j) ∈ A.

There is a well-known duality framework for this problem (see [32] and also [9], [17],
[31]), involving a Lagrange multiplierpi for thei th conservation-of-flow constraint (1).
We refer topi as theprice of nodei , and to the vectorp = {pi | i ∈ N } as theprice
vector. Thedualproblem is

minimize q(p) (D)

subject to no constraint onp,

where the dual cost functionq is given by

q(p) :=
∑

(i, j)∈A
qi j (pi − γi j pj )−

∑
i∈N

si pi ,

andqi j is derived fromfi j by the conjugacy relation

qi j (ti j ) := sup
xi j ∈<
{xi j ti j − fi j (xi j )}.

The co-finite assumption onfi j implies thatqi j is real-valued and, together with the
existence of a regularly feasible solution, guarantees that both the primal problem (P)
and the dual problem (D) have optimal solutions and their optimal costs are the negatives
of each other ([32, p. 360], [9, p. 452]).

Following [13] and [34], we say that a flow vectorx and a price vectorp satisfy the
ε-complementary slackness(ε-CS for short) conditions, whereε is any positive scalar, if

fi j (xi j ) <∞, and

f −i j (xi j )− ε ≤ pi − γi j pj ≤ f +i j (xi j )+ ε, ∀ (i , j) ∈ A. (ε −CS)
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It is known ([32, p. 360], [9, p. 452]) that a feasible flow vectorx and a price vectorp
are primal and dual optimal, respectively, if and only if they satisfy 0-CS.

For the primal problem (P) and its dual (D), there are available a number of solution
methods, such as nonlinear variants of the primal simplex method, dual simplex method
[32, Sec. 11J], and relaxation method [34]. The primal simplex method iteratively
improves the primal cost function and the other methods iteratively improve the dual
cost function. For the ordinary network case (with convex cost), there have recently
been proposed other solution methods, based on minimum mean cycle canceling [26],
and onε-relaxation [9, Chap. 9], [14], [15], [21], [29]. For the linear cost ordinary
network case, further specialization and improvements of the preceding methods, as
well as many other methods, have been proposed (see the books [3], [16], [28], [32] and
references therein). Iff is twice differentiable (not necessarily separable), the primal
truncated-Newton method specialized to generalized network flow [2], [20] and the
general-purpose reduced gradient method using quasi-Newton updates [27] can also be
applied.

Here, we propose an extension of theε-relaxation method studied in [14], [15],
[21], [29] from the ordinary network case to the generalized network case of (P) and
(D), and we present a (computational) complexity analysis for the method. Our interest
in the ε-relaxation method stems from its good performance on linear/quadratic cost
ordinary network flow problems, as reported in the above references, and its suitability
for implementation on parallel computers [5], [6], [11]. However, the extension is highly
nontrivial due to the presence of nonunity arc gains. In particular, flow augmentations
along cycles of non-unity gain need to be considered and new techniques need to be
developed to deal with the presence of directed cycles in the admissible graph. In fact,
even for the linear cost case our method and the associated complexity bounds are
new to our knowledge. Previous complexity bounds for the linear cost case (other than
those obtained by specializing general linear programming complexity bounds [35]) are
further restricted to either the case of all nodes being supply nodes (i.e.,si ≥ 0 for all
i ∈ N ) or being demand nodes (i.e.,si ≤ 0 for all i ∈ N ), with zero lower capacity
on all arcs [1], [18], or the case of a generalized circulation (i.e., maximizing the flow
on a particular arc) [23], [30]. We also report some of our computational experience
with the method. Our experience indicates that, as in the ordinary network case (for
which extensive computational results are given in [14]), the method is not significantly
affected by ill-conditioning in the cost function. Furthermore, on nonlinear problems,
our method substantially outperforms a nonspecialized nonlinear programming code
such as MINOS.

The remainder of this paper is organized as follows. In Sect. 2, we motivate and
formally describe theε-relaxation method for solving (P) and (D). In Sect. 3, we show
that the method has finite termination for any fixedε. In Sect. 4, we present one specific
implementation of the method which has a particularly favorable complexity bound. In
Sect. 5, we report some of our numerical experience with the method. In what follows,
by a pathP in G, we mean a sequence of nodes(i1, i2, ..., im) in N and an associated
sequence of(m− 1) arcs inA such that, for eachk = 1, ...,m− 1, either(i k, i k+1)

or (i k+1, i k) is an arc of the sequence. The set of forward arcs ofP (those of the form
(i k, i k+1)) is denoted byP+ and the set of backward arcs ofP (those of the form



88 Paul Tseng, Dimitri P. Bertsekas

(i k+1, i k)) is denoted byP−. We define the gain of the pathP by

γP :=
( ∏
(i, j)∈P+

γi j

)
/

( ∏
(i, j)∈P−

γi j

)
, (4)

with γP := 1 if P comprises a single node. We say that a pathP is forward if P− = ∅.
A cycleis a path whose starting node equals the ending node. A path is said to besimple
if it contains no repeated nodes except (in the case where the path is a cycle) for the
starting and the ending nodes.

2. Theε-relaxation method

In this section we formally describe anε-relaxation method, based onε-CS, for solving
(P) and (D). For a flow vectorx, we define thesurplusof nodei to be the difference
between the supplysi and the net outflow fromi :

gi := si +
∑

{ j |( j,i)∈A}
γ ji x ji −

∑
{ j |(i, j)∈A}

xi j . (5)

The idea of theε-relaxation method is to alternately adjust the price of the nodes and the
flow of the arcs so as to maintainε-CS while decreasing the surplus of the nodes toward
zero. Termination occurs when the surpluses of all the nodes are zero. We describe this
in more detail below.

The method uses two fixed scalarsε > 0 andθ ∈ (0,1). For any flow-price vector
pair (x, p) satisfyingε-CS, we say that an arc(i , j) ∈ A is activeif

pi − γi j pj > f +i j (xi j )+ θε (6a)

and isinactiveif

pi − γi j pj < f−i j (xi j )− θε. (6b)

In the ordinary network case, an arc being active (respectively, inactive) is equivalent
to, in the terminologies of [9], [14], [15], the arc being in the candidate/push list of its
starting (respectively, ending) node. For an active (respectively, inactive) arc(i , j), the
supremum ofδ for which

pi − γi j pj ≥ f+i j (xi j + δ)

(respectively,pi − γi j pj ≤ f−i j (xi j − δ)) is called theflow marginof the arc. An
important fact, shown below, is that the flow margins of these arcs are always positive.

Proposition 1. The flow margins of all active and inactive arcs are positive.
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Proof. We argue by contradiction. Assume that for an arc(i , j) ∈ A we have

pi − γi j pj < f+i j (xi j + δ), ∀ δ > 0.

Since the functionf +i j is right continuous, this yields

pi − γi j pj ≤ lim
δ↓0

f +i j (xi j + δ) = f +i j (xi j ),

and thus(i , j) cannot be active. A similar argument shows that an arc(i , j) ∈ A such
that

pi − γi j pj > f −i j (xi j − δ), ∀ δ > 0,

cannot be inactive.
ut

Theε-relaxation method starts with a flow-price vector pair(x, p) satisfyingε-CS.
The method comprises two phases. In the first phase, only “up” iterations (to be defined
shortly) are performed so as to adjust(x, p) until no node with positive surplus remains.
In the second phase, only “down” iterations (to be defined shortly) are performed so as
to adjust(x, p) until no node with negative surplus remains.

ε-relaxation method – general form (ε > 0)

Initialization : Choose any flow vectorx = {xi j | (i , j) ∈ A} and price vectorp =
{pi | i ∈ N } satisfyingε-CS. Fix any scalarθ ∈ (0,1).

First phase: Repeatedly choose a nodei with positive surplusgi and adjust(x, p)
by doing an up iteration at nodei , until all nodes have nonpositive
surplus.

Second phase: Repeatedly choose a nodei with negative surplusgi and adjust(x, p)
by doing a down iteration at nodei , until all nodes have nonnegative
surplus.

In an up iteration at a nodei with positive surplusgi , we perform one of the following
three operations:

(a) A price riseon nodei , which increases the pricepi by the maximum amount that
maintainsε-CS, while leaving all arc flows and all other prices unchanged.

(b) A flow push(also called aδ-flow push) along an arc(i , j) [or along an arc( j, i)],
which increasesxi j [or decreasesxji ] by a positive amountδ, while leaving all node
prices and all other arc flows unchanged.

(c) A flow push(also called aδ-flow push) along a cycleC containingi , which increases
xkl [respectively, decreasesxkl ] by a positive amountγCkδ for all (k, l) ∈ C+
[respectively, for all(k, l) ∈ C−], while leaving all node prices and all other arc
flows unchanged. [Here,Ck denotes the portion ofC from i to k, andγCk is given
by (4).]
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[The effect of operation (c) is to decrease the surplus of nodei by the amountδ/(1−γC)

(respectively, 0) ifγC 6= 1 (respectively, ifγC = 1), while leaving the surplus of all
other nodes unchanged.] Aδ-flow push along an arc (respectively, a cycle) is said to be
saturatingif it changes the flow margin of the arc (respectively, one of the arcs of the
cycle) from positive to zero. For a fixedε > 0 andθ ∈ (0,1), and a given flow-price
vector pair(x, p) satisfyingε-CS, an up iteration updates(x, p) as follows:

An up iteration at a nodei with gi > 0

Step 1: If i has no active outgoing arc and no inactive incoming arc, go to Step 3.
Otherwise, choose any active arc(i , j) or inactive arc( j, i). If this arc belongs
to some cycleC of G whose forward arcs are all active and whose backward
arcs are all inactiveand if no price rise nor saturating flow push has been
performed since the last up iteration at nodej , go to Step 2b. Otherwise, go
to Step 2a.1

Step 2a: Perform aδ-flow push along the chosen arc, where

δ =
{

min{flow margin of (i , j ), gi } if (i , j) is the chosen arc

min
{
flow margin of (j, i ), gi/γ ji

}
if ( j, i) is the chosen arc.

Exit.
Step 2b: Perform aδ-flow push alongC, where

δ =
{

min(k,l)∈C{(flow margin of (k, l ))/γCk} if γC≥1

min{min(k,l)∈C
{
(flow margin of (k, l ))/γCk}, gi/(1− γC)

}
if γC<1,

andCk denotes the portion ofC from i to k. Exit.
Step 3: Perform a price rise oni and exit.

In general, finding the cycleC in Step 1 is expensive. However, such a cycle can be
found without excessive overhead by using special implementations of the first phase
of the method. More precisely, consider the following implementation, which aims at
performing a flow push along a cycle for as long as no price rise or no saturating flow
push is performed.

(a) Select any nodei0 with positive surplus. If no such node exists, terminate the first
phase of the method. Else letk := 0 and go to (b).

(b) If i := i k has no active outgoing arc and no inactive incoming arc, perform a price
rise on nodei k and go to (a). Otherwise, choose any active arc(i , j) or inactive arc
( j, i). If j = i l for somel < k, go to (c). Else perform aδ-flow push along this arc
as in Step 2a, and if this saturates the arc or if the surplus ofj remains nonpositive,
go to (a); else leti k+1 := j , incrementk by 1 and go to (b).

(c) A cycle whose forward arcs are all active and whose backward arcs are all inactive
is C : i l , i l+1, ..., i k, i l . Perform aδ-flow push alongC as in Step 2b, and go to (a).

1 In variants of the method, instead of always going to Step 2a at this point, we go to Step 2b if we had
encountered a cycleC containing this arc and whose forward arcs are all active and whose backward arcs
are all inactive; and go to Step 2a if no such cycle was encountered. These variants have similar termination
properties and admit the same complexity bound as the stated method.
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A down iteration at a nodei with gi < 0 is defined analogously to an up iteration,
but with “active” and “inactive” switched and with “increase” and “decrease” switched.
In addition, “up”, “rise”, “gi ” are replaced by, respectively, “down”, “drop”, “−gi ”.

There is also an important modification of the above implementation, called the
auction/sequential-shortest-path algorithm(see [8], [9], [15], [29] for special cases
of this algorithm that apply to the ordinary network case), in which we refrain from
performing a flow push until we encounter a nodej with negative surplus, at which time
we push flow fromi0 along the pathi0, i1, ..., i k, j towards j by an amount that either
saturates an arc or zeroes out the surplus ofi0 or j . With this modification, it is possible
to mix up and down iterations without affecting the termination or the complexity of
the method. Finally, we note that, in contrast to the ordinary network case (see [14]),
we need to consider not only flow pushes along arcs, but also flow pushes along cycles.
The intuition for this is that a cycleC with γC < 1 is “flow absorbing” when flow is
pushed alongC and thusC acts like a node with negative surplus; similarly, a cycleC
with γC > 1 is “flow generating” when flow is pushed alongC and thusC acts like
a node with positive surplus.

We make the following observations about the up iterations in theε-relaxation
method. (Analogous observations can be made for the down iterations.)

1. The iterations preserveε-CS and the prices are monotonically nondecreasing. This
is evident from the initialization and Step 3 of the up iteration.

2. Once the surplus of a node becomes nonnegative, it remains nonnegative for all
subsequent up iterations. The reason is that a flow push at a nodei cannot make the
surplus ofi negative (cf. Steps 2a, 2b), and cannot decrease the surplus of any other
node.

3. If at some iteration a node has negative surplus, then its price must be equal to its
initial price. This is a consequence of observation 2 above and the fact that price
rises occur only on nodes with positive surplus.

Notice that the surpluses of all nodes are nonpositive at the beginning of the second
phase. Moreover, the surpluses remain nonpositive throughout the second phase (since
a down iteration does not change the surplus of any node from nonpositive to positive).
Therefore, it follows that, at the end of the second phase, the surplus of all nodes are
zero, i.e., the flow vectorx is feasible.

3. Termination of the ε-relaxation method

To prove the termination of theε-relaxation method of Sect. 2, we first have the following
proposition which bounds from below the price rise/drop increments.

Proposition 2. Each price rise (respectively, price drop) increment in theε-relaxation
method is at least(1− θ)ε/γ̄ , whereγ̄ := max

{
1,max(i, j)∈A γi j

}
.

Proof. We note that a price rise on a nodei occurs only when it has no active outgoing
arc nor inactive incoming arc. Thus for every arc(i , j) ∈ A we havepi − γi j pj ≤
f +i j (xi j ) + θε, and for every arc( j, i) ∈ A we havepj − γ ji pi ≥ f −ji (xji ) − θε. This
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implies that we can increasepi by an amount of at least(1− θ)ε/γ̄ and still maintain
ε-CS. A similar argument applies to a price drop.

ut
Next, we have the following technical lemma, obtained by specializing the Con-

formal Realization theorem in [32, Chap. 10] to circulations in a certain augmented
generalized network.

Lemma 1. Consider any flow vectory = {yi j | (i , j) ∈ A} and let hi :=∑
{ j |( j,i)∈A} γ ji yji −∑{ j |(i, j)∈A} yi j for all i ∈ N . Then, for anys ∈ N with hs < 0,

there exist at ∈ N and a simple pathH in G from s to t that conforms toy; that is,
yi j > 0 for all (i , j) ∈ H+ and yi j < 0 for all (i , j) ∈ H−. Moreover, eitherht > 0 or
t belongs to a simple cycleC in G that conforms toy and satisfiesγC < 1.

Proof. Let S := {i ∈ N | hi < 0} andT := {i ∈ N | hi > 0}. Define the augmented
directed graphG′ = (N ′,A′), whereN ′ := N ∪{0},A′ := A∪ ({0}×S)∪ (T ×{0}),
and define the scalars:

γ ′i j :=


γi j if (i , j) ∈ A
−∑k∈S hk/

∑
k∈T hk if i ∈ T , j = 0

1 if i = 0, j ∈ S
,

y′i j :=


yi j if (i , j) ∈ A
hi if i ∈ T , j = 0

−h j if i = 0, j ∈ S
.

Then, the vectory′ := {y′i j | (i , j) ∈ A′} is a circulation for the generalized networkG′
with arc gainsγ ′i j , (i , j) ∈ A′. For anys ∈ S, sincey′0s > 0, we have from the Conformal
Realization theorem [32, p. 456] and the characterization of elementary primal supports
for generalized networks [32, p. 463] that there exist inG′ either (i) a simple cycleC
with γC = 1 or (ii) two disjoint simple cyclesC1 andC2, with γC1 > 1 andγC2 < 1,
and a simple pathH from a node inC1 to a node inC2 or (iii) two simple cyclesC1
andC2, with γC1 > 1 andγC2 < 1, that have a (single) joint portion or meet in exactly
one node. Moreover, in case (i),C conforms toy′ and uses(0, s); in case (ii),C1,C2, H
conform toy′ and one of them uses(0, s); in case (iii),C1,C2 conform toy′ and one
of them uses(0, s). It can be verified that, in all cases, there exists inG a simple path
that conforms toy and goes froms to either a node inT or a node in a simple cycle that
conforms toy and whose gain is less than 1.

ut
For a pathP in G, define

0P :=
∑
i∈P

γPi , (7)

where, for each nodei ∈ P, Pi denotes the portion of the pathP from the starting node
of P to i . By using Prop. 2 and Lemma 1, we obtain the following proposition which
bounds the total number of price rises in terms of0P and other network parameters.
The proof is patterned in part after the proofs for the linear cost ordinary network case
[7], [12], and for the convex cost ordinary network case [14], [29].
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Proposition 3. Let K be any nonnegative scalar such that the initial price vectorp0

for theε-relaxation method satisfiesKε-CS together with some feasible flow vectorx0.

Then, theε-relaxation method performs at most(K + 1)0/(1− θ) price rises on each
node and at most(1+ 0)(K + 1)0/(1− θ) price drops on each node, where

0 := γ̄ · max
H: simple path

{
γH

(
max

C: simple cycle withγC<1

0C

1− γC

)
+ 0H

}
,

andγH, γC, 0C, 0H are given by Eqs. (4), (7) and̄γ := max
{
1,max(i, j)∈A γi j

}
.

Proof. Consider the pair(x, p) at the beginning of an up iteration in theε-relaxation
method. Since the flow vectorx0 is feasible, we have upon applying Lemma 1 to
y := x0− x (for which hi = −gi ) that, for each nodes with gs > 0, there exist a node
t and a simple pathH in G from s to t that conforms tox0− x, i.e.,

xi j < x0
i j , ∀ (i , j) ∈ H+, (8a)

xi j > x0
i j , ∀ (i , j) ∈ H−. (8b)

Moreover, eithergt < 0 or t belongs to a simple cycleC in G with γC < 1 and
conforming tox0 − x, i.e.,

xi j < x0
i j , ∀ (i , j) ∈ C+, (9a)

xi j > x0
i j , ∀ (i , j) ∈ C−. (9b)

From Eqs. (8a) and (9b), and the convexity of the functionsfi j for all (i , j) ∈ A,
we have

f +i j (xi j ) ≤ f−i j (x
0
i j ), ∀ (i , j) ∈ H+, (10a)

f −i j (xi j ) ≥ f+i j (x
0
i j ), ∀ (i , j) ∈ H−. (10b)

Since the pair(x, p) satisfiesε-CS, we also have that

pi − γi j pj ∈
[

f −i j (xi j )− ε, f+i j (xi j )+ ε
]
, ∀ (i , j) ∈ A. (11a)

Similarly, since the pair(x0, p0) satisfiesKε-CS, we have

p0
i − γi j p0

j ∈
[

f −i j
(
x0

i j

)− Kε, f+i j
(
x0

i j

)+ Kε
]
, ∀ (i , j) ∈ A. (11b)

Combining Eqs. (10a)–(11b), we obtain

pi − γi j pj ≤ p0
i − γi j p0

j + (K + 1)ε, ∀ (i , j) ∈ H+,

pi − γi j pj ≥ p0
i − γi j p0

j − (K + 1)ε, ∀ (i , j) ∈ H−.

Applying the above inequalities for all arcs of the pathH , we obtain

ps− γH pt ≤ p0
s − γH p0

t + (K + 1)
(∑

i∈H

γHi

)
ε, (12)
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whereHi denotes the portion of the pathH from s to i ∈ H . We observed earlier that if
a node has negative surplus at some time, then its price is unchanged from the beginning
of the method until that time. Thus ifgt < 0, then

pt = p0
t . (13)

On the other hand, ift belongs to some simple cycleC satisfying Eqs. (9a) and (9b),
a similar argument shows that

pi − γi j pj ≤ p0
i − γi j p0

j + (K + 1)ε, ∀ (i , j) ∈ C+,

pi − γi j pj ≥ p0
i − γi j p0

j − (K + 1)ε, ∀ (i , j) ∈ C−,
which when applied for all arcs of the cycleC yields

pt − γC pt ≤ p0
t − γC p0

t + (K + 1)

(∑
i∈C

γCi

)
ε,

whereCi denotes the portion of the cycleC from t to i ∈ C. UsingγC < 1, we obtain

pt ≤ p0
t + (K + 1)

(∑
i∈C γCi

)
1− γC

ε. (14)

Therefore, ifgt < 0, then Eqs. (12) and (13) yield

ps ≤ p0
s + (K + 1)

(∑
i∈H

γHi

)
ε ≤ p0

s + (K + 1)0ε,

and if t belongs to some simple cycleC satisfying (9a) and (9b), then Eqs. (12) and (14)
yield

ps ≤ p0
s + (K + 1)γH

(∑
i∈C γCi

)
1− γC

ε + (K + 1)
(∑

i∈H

γHi

)
ε ≤ p0

s + (K + 1)0ε/γ̄ ,

(15)

where the second inequality follows from the definition of0. Since only nodes with
positive surplus can increase their prices and, by Prop. 2, each price rise increment is at
least(1− θ)ε/γ̄ , we conclude from Eq. (15) that the total number of price rises that can
be performed for nodes is at most(K + 1)0/(1− θ).

Now we estimate the number of price drops on each node. Letp1 = {p1
i | i ∈ N }

denote the price vector at the end of the first phase of theε-relaxation method. From
Eq. (15) we see thatp0

i ≤ p1
i ≤ p0

i + (K + 1)0ε/γ̄ for all i ∈ N , so that

p0
i − γi j p0

j − (K + 1)0ε ≤ p1
i − γi j p1

j ≤ p0
i − γi j p0

j + (K + 1)0ε, ∀(i , j) ∈ A.
Since(x0, p0) satisfiesKε-CS, this implies that(x0, p1) satisfies(K+(K+1)0)ε-CS.
Since, by Prop. 2, each price drop increment is at least(1−θ)ε/γ̄ , an argument analogous
to the one above, but withp0 replaced byp1 and with Lemma 1 applied toy := x− x0

instead, yields that the number of price drops that can be performed on each node is at
most(K + (K + 1)0+ 1)0/(1− θ) = (1+ 0)(K + 1)0/(1− θ).

ut
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The preceding proposition shows that the bound on the number of price changes is
independent of the cost functions, but depends only on the arc gains and the scalarK0

given by

K0 := inf{K ∈ [0,∞) | (x0, p0) satisfiesKε-CS for some feasible flow vectorx0 },
which is the minimum multiplicity ofε by which 0-CS is violated by the initial price
together with some feasible flow vector. This result will be used later to prove a par-
ticularly favorable complexity bound for theε-relaxation method. Note thatK0 is well
defined for anyp0 because, for allK sufficiently large,Kε-CS is satisfied byp0 and
any feasible flow vectorx.

We will now derive a bound on the number of flow pushes required by theε-relaxation
method. By our choice ofδ (see Steps 2a and 2b of the up iteration), a nonsaturating
flow push always exhausts (i.e., sets to zero) the surplus of the node being iterated on.
In what follows, for anyε > 0 andθ ∈ (0,1), and any flow-price vector pair(x, p)
satisfyingε-CS, we define the arc set

A∗ := {(i , j) | (i , j) ∈ A is active} ∪ {( j, i) | (i , j) ∈ A is inactive}
and theadmissible graphG∗ := (N ,A∗). By analyzing changes in the admissible
graph, we have the following proposition, which bounds the number of flow pushes
between successive price rises in the first phase.

Proposition 4. The number of flow pushes along arcs (respectively, cycles) between two
successive price rises (not necessarily at the same node) performed by theε-relaxation
method is at mostN2 A (respectively,NA).

Proof. Consider the flow pushes between two successive price rises. First, we observe
that the number of arcs in the admissible graphG∗ is nonincreasing after a flow push,
and is strictly decreasing after a saturating flow push. Thus, the number of saturating
flow pushes is at mostA.

Consider the flow pushes between changes in the admissible graphG∗ (which must
all be nonsaturating). Each flow push along an arc, being nonsaturating, does not increase
the number of nodes with positive surplus, while each flow push along a cycle, being
nonsaturating, decreases this number by one. (For a flow push from nodei along a cycle
C to be nonsaturating, we must haveγC < 1 and the surplus ofi must be set to zero,
while the surplus of all other nodes must be left unchanged.) Thus, there can be at
most N flow pushes along cycles. By the logic of an up iteration, a flow push along
an arc (oriented in the direction of flow change) belonging to a forward cycle ofG∗ is
performed only if the ending node of this arc has not been iterated upon in an earlier
flow push. Thus, there can be at mostN flow pushes along arcs belonging to forward
cycles ofG∗. There remains to estimate the number of flow pushes along arcs (oriented
in the direction of flow change) not belonging to any forward cycle ofG∗. These arcs
form an acyclic directed graph, sayG∗∗. Moreover, a flow push can repeat at an arc,
say(i , j), in G∗∗ only if there is an arc inG∗∗ pointing intoi along which a flow push
was performed earlier. Since any forward path inG∗∗ has length at mostN − 1 (so the
surplus of a node can be propagated to successors along the arcs ofG∗∗ by at mostN−1
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flow pushes) and originally at mostN nodes have positive surplus, this implies that the
total number of flow pushes along arcs inG∗∗ is at most(N − 1)N.

Thus, between two successive price rises, the admissible graph can change at most
A times and, between successive changes in the admissible graph, there are at mostN
flow pushes along cycles and at mostN2 flow pushes along arcs.

ut
It follows from Props. 3 and 4 that the first phase of theε-relaxation method

terminates after at mostO(NK0) price rises, and at mostO(N3 AK0) flow pushes along
arcs, and at mostO(N2 AK0) flow pushes along cycles, whereK is any nonnegative
scalar such that the initial price vector satisfiesKε-CS together with some feasible flow
vector. A similar result can be shown for the second phase, though the bounds increase
by a multiplicative factor of0 (cf. the estimates of Prop. 3). In Sect. 4, a specific
implementation of the method with sharper complexity bound will be presented. Upon
termination of theε-relaxation method, we have that the flow-price vector pair(x, p)
satisfiesε-CS and thatx is feasible since the surplus of all nodes is zero. The following
result from [34, Props. 7 and 8] shows that this flow vector and price vector are within
a factor that is essentially proportional toε of being optimal for, respectively, the primal
problem (P) and the dual problem (D).

Proposition 5. For eachε > 0, let x(ε) and p(ε) denote any flow and price vector pair
satisfyingε-CS withx(ε) feasible and letξ(ε) denote any flow vector satisfying0-CS
with p(ε) [ξ(ε) need not be feasible]. Then

0≤ f
(
x(ε)

)+ q
(
p(ε)

) ≤ ε ∑
(i, j)∈A

∣∣xi j (ε)− ξi j (ε)
∣∣ . (16)

Furthermore, f
(
x(ε)

)+ q
(
p(ε)

)→ 0 asε→ 0.

Proposition 5 does not give an a priori estimate of how smallε has to be in order
to achieve a certain degree of approximate optimality, as measured by the duality gap.
However, in the common case where finiteness of the arc cost functionsfi j imply lower
and upper bounds on the arc flows:

−∞ < bi j := inf
ξ
{ξ | fi j (ξ) <∞} ≤ sup

ξ

{ξ | fi j (ξ) <∞} =: ci j <∞,

as in the linear cost case of (2), the right-hand side of (16) is bounded above by
ε
∑
(i, j)∈A |ci j − bi j |, which gives an a priori estimate of the duality gap betweenx(ε)

and p(ε).

4. A sweep implementation of theε-relaxation method

We say that a strongly connected component (abbreviated as SCC) of the admissible
graphG∗ is a predecessorof another SCC ofG∗ if there is a forward path inG∗ from
a node in the first SCC to a node in the second SCC (and we say that the second SCC is
a successor of the first SCC). [An SCC ofG∗ is a subgraphG′ of G∗ with the properties
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that (i) there is a forward path inG′ from every node inG′ to every other node inG′ and
(ii) G′ is not properly contained in any other subgraph ofG∗ with property (i).] Observe
that flow is pushed towards the successors of a SCC and that flow cannot be pushed
from a SCC to any of its predecessor SCC. We say that an SCC ispositiveif it contains
at least one node with positive surplus; otherwise the SCC is callednonpositive.

Thesweep implementationof theε-relaxation method, introduced in [7] and further
analyzed in [12], [17], and [10] for the linear cost ordinary network case, selects a node
for an up iteration as follows (an analogous rule holds for selecting a node for a down
iteration): LetG∗ denote the current admissible graph. Choose any positive SCC ofG∗
whose predecessor SCC are all non-positive. In Step 1 of an up iteration, selecti to be
any node in the chosen SCC with positive surplus. Also, in Step 1, always go to Step 2b
when(i , j) belongs to some forward cycleC of G∗.

For the sweep implementation, we can improve on Prop. 4 as shown in the proposition
below. The intuition for this improvement is that an up iteration at a nodei having
a positive predecessor SCC may be wasteful since its surplus may be set to zero through
a flow push and become positive again by a flow push at a node in the predecessor SCC.
The sweep implementation avoids performing such an up iteration. Our proof follows
the corresponding line of analysis for the ordinary network case in [14], [29].

Proposition 6. For the sweep implementation of theε-relaxation method, the number
of nonsaturating flow pushes between two successive price rises (not necessarily at the
same node) is at mostN+NÃ, whereÃ denotes the maximum number of arcs contained
in any SCC of the admissible graph.

Proof. Consider the flow pushes between two successive price rises. Each nonsaturating
flow push at a nodei changes the surplus ofi to zero. Sincei , by selection, does not
have any predecessor node in a different SCC with positive surplus, the surplus ofi will
remain at zero until the SCC containingi changes (due to the removal of a saturated arc
from this SCC). Thus, the number of nonsaturating flow pushes between changes in the
SCC of the admissible graph is at mostN. Since at least one arc is removed from an
SCC of the admissible graph each time the latter changes, the number of changes in the
SCC of the admissible graph is at mostÃ.

ut
By using Props. 3 and 6, we obtain the following improved complexity bound for

the sweep implementation of theε-relaxation method.

Proposition 7. Let K be any nonnegative scalar such that the initial price vector
for the sweep implementation of theε-relaxation method satisfiesKε-CS together
with some feasible flow vector. Then, the method requiresO(K0N) price rises and
O(K0N2(1 + Ã)) flow pushes in the first phase andO(K02N) price drops and
O(K02N2(1+ Ã)) flow pushes in the second phase.

Proof. It suffices to analyze the first phase of theε-relaxation method, which involves
up iterations only. According to Prop. 3, there areO(K0) price rises on each node, so
the number of price rises isO(K0N). Furthermore, whenever a flow push is saturating,
it takes at least one price rise on one of the end nodes before the flow on that arc can be
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changed again. Thus the total number of saturating flow pushes isO(K0A). Finally, by
Prop. 6, the number of nonsaturating flow pushes between successive price rises is at
mostN(1+ Ã), so the total number of nonsaturating flow pushes isO(K0N2(1+ Ã)).
SinceA ≤ N2, the result for the first phase follows. An analogous analysis applies for
the second phase.

ut
In the ordinary network case where0 = O(N) and the second phase is not needed,

it was shown in [15, Prop. 5] (also see [14, Prop. 4] for the case ofθ = 1/2) that if
the initial admissible graph is acyclic, then the admissible graph will remain acyclic
at all iterations of theε-relaxation method, in which casẽA = 0 (each SCC always
comprises an individual node and hence contains no arc at all) and, since0 = O(N),
Prop. 7 would yield a complexity bound ofO(KN2) price changes andO(KN3) flow
pushes. In general, we havẽA ≤ A. We can further improve the complexity of the
ε-relaxation method by usingε-scaling as is described in [14]: initially setε = ε0

for someε0, run theε-relaxation method until it terminates with some(x0, p0), then
decreaseε by a fixed fraction (e.g., a half) and rerun theε-relaxation method withp0

as the starting price vector, and so on, tillε reaches some target valueε. Assuming that
ε0 is chosen sufficiently large so that the initial price vector satisfiesε0-CS together
with some feasible flow vector, this yields an improved complexity bound in whichK is
replaced by ln(ε0/ε), that is, a bound ofO(ln(ε0/ε)0N) on the number of price changes
and a bound ofO(ln(ε0/ε)0N2(1+ Ã)) on the number of flow pushes in the first phase.
A similar bound, though higher by a multiplicative factor of0, holds for the second
phase. To our knowledge, this is the first complexity result for the generalized network
flow problem with nonlinear cost function.

5. Computational experimentation

We have developed an experimental Fortran code implementing theε-relaxation method
for the case of problems (P) and (D) with quadratic arc cost functions. The code, named
QE-RELAXG (“Q” stands for quadratic and “G” stands for generalized), implements
the version of theε-relaxation method whereby the cycleC in Step 1 of each iter-
ation is found using the technique described in Sect. 2 andε is adjusted using the
ε-scaling technique of Sect. 4. In this section, we report on our computational experi-
ence with the code on some test problems. (We have also implemented a version of the
auction/sequential-shortest-path algorithm mentioned in Sect. 3. This work is still very
preliminary, although the initial results are encouraging.)

First we describe the test problems. In these problems, the cost function of each
arc(i , j) is quadratic of the form

fi j (xi j ) =
{

ai j xi j + bi j x2
i j if 0 ≤ xi j ≤ ci j ,

∞ otherwise,

for someai j ∈ < andbi j ∈ [0,∞) andci j ∈ [0,∞). We call ai j , bi j , andci j the
linear cost coefficient, the quadratic cost coefficient, and the capacity, respectively,
of arc (i , j). The test problems are created using the public-domain Fortran problem
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generator NETGENG [24], which is an extension of the popular generator NETGEN
that creates linear-cost generalized assignment/transportation/transshipment problems
having a certain random structure. (See Tables 1 and 2 for the NETGENG parameters that
we used to create the test problems.) As NETGENG creates only linear-cost problems,
we modified the created problems as in [13] and [14] so that, for a user-specified fraction
(taken to be a half in our tests) of the arcs, the quadratic cost coefficient is randomly
generated from a user-specified range of consecutive integers (taken to be{1,2,3,4,5}
in our tests) according to a uniform distribution, and, for the remaining arcs, the quadratic
cost coefficient is set to a user-specified valueb. Whenb = 0, the cost functionf is
mixed linear/quadratic. Whenb > 0, the cost functionf is strictly convex quadratic
and, asb→ 0, the dual problem (D) becomes increasingly more ill-conditioned in the
traditional sense of unconstrained nonlinear programming.

Table 1.Solution times (in seconds) for QE-RELAXG. Problems are created using NETGENG withSEED=
13502460, No. sources= No. sinks= (No. nodes)/2, Supply= 500× (No. nodes), and Linear Cost Coeff.
∈ [1, 1000]. Quadratic Cost Coeff. is randomly generated from{1,2,3,4,5} for half of the arcs and is equal
to the valueb shown in column six for the remaining arcs

No. No. Gain Quad. Optimal QE-RELAXG
nodes arcs range coeff.b cost Soln. times

Symmetric No. 400 2000 .5–1.5 0 153309205 1.21
Capacitated nodes 400 6000 .5–1.5 0 65375508 2.12
Transhipment fixed 400 8000 .5–1.5 0 62536366 3.14
cap∈ [500,1000] 400 10000 .5–1.5 0 59481317 8.24
Symmetric No. 400 2000 .5–1.5 0 84626835 .92
Uncapacitated nodes 400 6000 .5–1.5 0 38725118 1.94
Transportation fixed 400 8000 .5–1.5 0 38421522 5.52

400 10000 .5–1.5 0 28760650 8.89
Symmetric No. 400 7000 .5–1.5 0 65894687 4.10
Capacitated arcs 600 7000 .5–1.5 0 123247677 5.37
Transhipment fixed 800 7000 .5–1.5 0 220246167 4.31
cap∈ [500,1000] 1200 7000 .5–1.5 0 404739277 5.42
Symmetric No. 400 7000 .5–1.5 0 34137013 5.29
Uncapacitated arcs 600 7000 .5–1.5 0 77835120 3.64
Transportation fixed 800 7000 .5–1.5 0 121479983 4.52

1200 7000 .5–1.5 0 245152297 3.95

Next, we describe the implementation details for QE-RELAXG. This code usesθ =
1/2 and is initialized withpi = 0 for all nodesi and withε = 1

5 max(i, j)∈A{ai j+2bi j x̂i j },
wherex̂i j = min{ci j ,maxi∈N |si |}. The initial flow vectorx is then chosen to satisfy
ε-CS with the initial price vector. The code terminates when the node surpluses and
the duality gapf(x)− q(p) are below 10−5 times, respectively, maxi∈N |si | and| f(x)|.
A further enhancement, adapted from theε-relaxation codes for the ordinary network
case [14], is the use of a surplus threshold whereby only nodes whose surplus exceeds
this threshold in magnitude are selected for up/down iterations. This threshold is initially
set to 1

4 maxi∈N |si | and is decreased at the rate1
4 each timeε is decreased, until this

threshold reaches 10−5 ·maxi∈N |si |. (We also experimented with a stricter termination
criterion where 10−5 is replaced by 10−8. The code did not change its qualitative
behavior, though the solution times increased by a factor between 1 and 4.) After some
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experimentation, we settled on 1/5 as the fraction used inε-scaling. Otherwise, we have
not fine-tuned the parameters in the code.

Table 2.Solution times (in seconds) for QE-RELAXG. Problems are created using NETGENG withSEED=
13502460, No. sources= No. sinks= (No. nodes)/2, Supply= 500× (No. nodes), and Linear Cost Coeff.
∈ [1, 1000]. Quadratic Cost Coeff. is randomly generated from{1,2,3,4,5} for half of the arcs and is equal
to the valueb shown in column six for the remaining arcs

No. No. Gain Quad. Optimal QE-RELAXG
nodes arcs range coeff.b cost Soln. times

Symmetric No. 1200 7000 1.0–1.0 0 394520079 4.37
Capacitated nodes, 1200 7000 .9–1.1 0 399896552 52.03
Transhipment arcs 1200 7000 .5–1.5 0 404739277 5.42
cap∈ [500, 1000] fixed 1200 7000 .2–4.0 0 482554996 4.38
Symmetric No. 400 10000 1.0–1.0 0 27910212 4.32
Uncapacitated nodes, 400 10000 .9–1.1 0 29439130 12.42
Transportation arcs 400 10000 .5–1.5 0 245152297 3.95

fixed 400 10000 .2–4.0 0 38990680 2.14
Symmetric No. 1200 7000 .5–1.5 1 727711866 7.47
Capacitated nodes, 1200 7000 .5–1.5 .01 409727972 3.90
Transhipment arcs 1200 7000 .5–1.5 .0001 404789495 4.14
cap∈ [500, 1000] fixed 1200 7000 .5–1.5 0 404739277 5.42
Symmetric No. 400 10000 .5–1.5 1 474088846 4.77
Uncapacitated nodes, 400 10000 .5–1.5 .01 249634201 2.57
Transportation arcs 400 10000 .5–1.5 .0001 245197678 3.21

fixed 400 10000 .5–1.5 0 245152297 3.95

Now we describe our computational tests and experience. Our tests were designed
to study the performance of theε-relaxation method relative to the earlier relaxation
methods, and the dependence of this performance on network topology, arc gains, and
problem ill-conditioning. We experimented with three sets of test problems generated
using NETGENG as described above: the first set comprises mixed linear/quadratic
cost problems with varying topology and arc capacities (Table 1); the second set com-
prises mixed linear/quadratic cost problems with varying ranges of arc gains (top half
of Table 2); the third set comprises strictly convex quadratic cost problems with varying
degrees of ill-conditioning (bottom half of Table 2). The solution time for QE-RELAXG
on these problems are shown in the last column of the tables. These times were obtained
by compiling and running QE-RELAXG on a Sun Ultra-1 workstation and under the
Solaris operating system, Version 2.5.1. The -O option was invoked when compiling.
From the solution times we see that the performance of QE-RELAXG is not signifi-
cantly affected by changes in the number of nodes (see bottom half of Table 1) or
problem ill-conditioning (see bottom half of Table 2). A possible explanation for the
latter is that, by its use ofε-CS, quadratic cost coefficients that are small are effec-
tively treated as zeros by theε-relaxation method. Thus, in contrast to the relaxation
methods of [13] and [34], theε-relaxation method is well suited to handle ill-conditioned
problems (also see [14] for analogous observations in the ordinary network case). On
the other hand, the performance of QE-RELAXG is adversely affected by increases in
the number of arcs (see top half of Table 1) and, more significantly, by the presence
of non-unity arc gains near 1 (see top half of Table 2). The reason for the latter is
not well understood, though it seems to be related to the way in which NETGENG
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generates problems with arc gains near 1, namely, the generated problems tend to be
infeasible or nearly infeasible, with many flow generating cycles needed to meet the
flow demands and many flow aborbing cycles needed to absorb the flow supplies.
For these nearly infeasible problems, a large number of price rises/drops are required
to direct flow from flow generating cycles to sinks and from sources to flow aborb-
ing cycles. (The value of0 does not appear to be a factor since, according to the
proof of Prop. 3,0 affects complexity of theε-relaxation method only through upper
and lower bounds on the prices generated by the method. In our tests, these bounds
did not change significantly, nor did the average price increment.) Also, we observed
that, on all runs, the computation was dominated by price rises/drops and flow pushes
along arcs, with less than 0.1 percent of flow pushes being made along cycles (and
the cycles were typically short). In other words, QE-RELAXG behaves much like its
counterpart for the ordinary network case where flow pushes are made only along
arcs.

To assess the efficiency of our coding, we compared QE-RELAXG with two spe-
cialized Fortran codes: theε-relaxation code NE-RELAXF from [14] for mixed lin-
ear/quadratic cost ordinary network flow problems, and the primal-simplex code NET2
from [19] for linear cost generalized network flow problems (also see [33]). In our tests,
we found QE-RELAXG to be slower than NE-RELAXF, though not beyond a factor
of 1.5 in solution time. QE-RELAXG was typically slower than NET2, by a factor be-
tween 1.2 to 4. NET2 was also adversely affected by the presence of non-unity arc gains
near 1, as well as by wider gain range. And on two problems with gain range of .2–4.0,
NET2 was unable to find a feasible solution even with double-precision arithmetic (see
Table 3). Thus, although QE-RELAXG is not as fast as the specialized codes, as might
be expected, it can serve as a good all-around code, since it can handle arcs that involve
gains as well as nonlinear cost.

Table 3. Solution times (in seconds) for QE-RELAXG, NET2 and MINOSL on a Dec Alpha–linear cost
case. Problem parameters are as in Table 2, with the linear cost coefficientsai j , capacitiesci j , gainsγi j , and

suppliessi truncated to 3 decimal places. The quadratic cost coefficientsbi j are set to zero. [1NET2 exited

with unsatisfied demand of−6.73 at node 507 and 12.65 at node 1170.2NET2 exited with unsatisfied demand
of −2.13 at node 14 and 1.47 at node 304.]

No. No. Gain Optimal QE-RELAXG NET2 MINOSL
nodes arcs range cost Soln. times Soln. times Soln. times

Symmetric 1200 7000 1.0–1.0 206232923 2.26 1.00 25.19
Capacitated 1200 7000 .9–1.1 206357872 7.63 3.71 25.06
Transhipment 1200 7000 .5–1.5 205287384 2.74 3.23 18.19
cap∈ [500, 1000] 1200 7000 .2–4.0 227083686 1.42 infeas1 11.67
Symmetric 400 10000 1.0–1.0 15745545 1.31 .07 2.37
Uncapacitated 400 10000 .9–1.1 15778149 4.54 0.34 2.80
Transportation 400 10000 .5–1.5 16052702 1.35 0.30 2.38

400 10000 .2–4.0 20672078 0.36 infeas2 1.61

While this paper was under review, the referees suggested that we compare QE-
RELAXG with popular linear programming (LP) or nonlinear programming (NLP)
codes such as MINOS or CPLEX. Although we did not have CPLEX, we did have
MINOS 5.4 by Murtagh and Saunders [27], which we ran on a common set of test
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problems as QE-RELAXG. The test results with MINOSL, a version MINOS adapted
for LP, are tabulated in Table 3. The test results with MINOS, the NLP code, are
tabulated in Table 4. The tests were run on a Dec Alpha as the Sun Ultra-1 was not easily
accessible to us at this time. The test problems were generated using NETGENG with
the same settings as in Table 2, although, to simplify input into MINOS, we truncated
the real dataai j , ci j , γi j , andsi to 3 decimal places. Due to the large problem size,
some care was needed to set parameters in MINOS so that it has sufficient workspace.
After some experimentation, we settled on nwcore= 15000000 and Superbasics limit
= min{3000, A+1}. The objective function and gradient were defined in the subroutine
funobj, with the quadratic cost coefficientsbi j stored in a common block inside funobj.
We consulted with Michael Saunders to ensure that these MINOS settings and data
inputs were reasonable. To make a fair comparison of QE-RELAXG with MINOS,
we changed 10−5 in the termination criterion for QE-RELAXG to 10−8 and 10−7,
respectively, for the first eight and the last eight problems in Table 4. This ensured that
the accuracy of the solutions generated by QE-RELAXG, as measured by cost, is similar
to that generated by MINOS. The solution times for MINOSL and MINOS, as reported
under “Time for solving problem”, do not include the problem input time. As can be seen
from Tables 3 and 4, QE-RELAXG is significantly faster than MINOSL and MINOS on
most of the test problems. The exceptions are the linear cost uncapacitated transportation
problems in Table 3 and the two quadratic cost problems in Table 4 with non-unity arc
gains near 1, for which QE-RELAXG is at most twice as fast as MINOSL or MINOS
(and slower than MINOSL on one problem). Changing the termination criterion for
MINOSL and MINOS does not appear to improve their solution times appreciably.
Workspace allocation is also an issue for MINOS on the quadratic cost problems. For
example, setting Superbasics limit too low (e.g., 2000) caused early exit, while setting
it too high (e.g., 10000) resulted in workspace requirement exceeding the available disk
space.

Table 4.Solution times (in seconds) for QE-RELAXG and MINOS on a Dec Alpha. Problem parameters are
as in Table 2, with the linear cost coefficientsai j , capacitiesci j , gainsγi j , and suppliessi truncated to 3

decimal places. [1The costs obtained by the two codes differ from the optimal cost only slightly in the least
significant digit.]

No. No. Gain Quad. Optimal QE-RELAXG MINOS
nodes arcs range coeff.b cost1 Soln. times Soln. times

Symmetric 1200 7000 1.0–1.0 0 399436018 3.85 212.11
Capacitated 1200 7000 .9–1.1 0 399896578 112.95 233.69
Transhipment 1200 7000 .5–1.5 0 404739276 6.08 223.72
cap∈ [500, 1000] 1200 7000 .2–4.0 0 482554994 5.83 104.72
Symmetric 400 10000 1.0–1.0 0 29359255 6.73 82.99
Uncapacitated 400 10000 .9–1.1 0 29439130 37.95 87.42
Transportation 400 10000 .5–1.5 0 28760650 17.99 92.45

400 10000 .2–4.0 0 38990680 5.44 95.83
Symmetric 1200 7000 .5–1.5 1 727712182 19.35 945.69
Capacitated 1200 7000 .5–1.5 .01 409727971 6.79 254.10
Transhipment 1200 7000 .5–1.5 .0001 404789494 6.78 228.46
cap∈ [500, 1000] 1200 7000 .5–1.5 0 404739276 6.08 223.72
Symmetric 400 10000 .5–1.5 1 84149783 5.35 5185.96
Uncapacitated 400 10000 .5–1.5 .01 30373637 3.99 108.98
Transportation 400 10000 .5–1.5 .0001 28777090 12.99 103.53

400 10000 .5–1.5 0 28760650 17.99 92.45
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