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SUBJECT

• Approximate Dynamic Programming for large
and intractable problems.

• Context: Discounted infinite horizon Markov De-
cision Problems.

• Construct simulation-based approximations to
the cost-to-go function of a single stationary pol-
icy.

• Use the approximations in a policy iteration
scheme.

• Extensions: stochastic shortest path problems
(Bertsekas and Ioffe, 1996) and average cost prob-
lems (Yu and Bertsekas, 2006).



OUTLINE

• We discuss the Least Squares Policy Evalu-
ation Method (λ-LSPE) a linear function approxi-
mation method for the cost function of a station-
ary policy (original proposal: Bertsekas and Ioffe,
1996)

− It uses simulation and temporal differences
(TD)

− Uses a Kalman filter-like recursion.

− It bears to TD(λ) the same type of relation as
the Kalman filter/Gauss-Newton algorithm bears
to the gradient method.

− It converges with unit stepsize (Bertsekas,
Borkar, Nedic, 2004)

− It converges dramatically faster than TD(λ).

• Explain the underlying contraction mapping and
its stochastic implementation via simulation.

• Explain the connection to value iteration with
function approximation.



BACKGROUND ON DP

• Consider a classical discounted problem.

• A system with states i = 1, . . . , n, and transition
probabilities pij(u) that depend on the control u.

• Cost of a policy π = {µ0, µ1, . . .}

Jπ(x0) = lim
N→∞

E

{
N−1∑
k=0

αkg
(
ik, µk(ik), ik+1

)}

where α < 1 (discount factor).

• Shorthand notation for the DP mapping

(TJ)(i) = min
u∈U(i)

n∑
j=1

pij(u)
[
g(i, u, j) + αJ(j)

]
, ∀ i

• Similarly, define for any stationary policy µ

(TµJ)(i) =

n∑
j=1

pij

(
µ(i)

)[
g(i, µ(i), j) + αJ(j)

]
, ∀ i



VALUE AND POLICY ITERATION

• Bellman’s equation for the optimal cost J∗ and
the cost of a policy µ:

J∗ = TJ∗, Jµ = TµJµ

• Value iteration: Start with any bounded J ,
and repeatedly apply T :

J∗(i) = lim
k→∞

(T kJ)(i)

Converges to J∗ because T is a contraction.

• Similarly, we can compute Tµ by value iteration:

Jµ(i) = lim
k→∞

(T k
µ J)(i)

• Policy iteration: Given µk,

− Policy evaluation: Find Jµk by value iteration
(or by solving the equation Jµk = TµkJµk )

− Policy improvement: Find µk+1 such that

Tµk+1Jµk = TJµk



VALUE ITERATION W/ FUNCTION APPROXIMATION

• Suppose we use linear approximations J̃(i, r) =
φ(i)′r, i = 1, . . . , n, or

J̃ = Φr feature subspace approximation

where r = (r1, . . . , rs) is a parameter vector, and
Φ is a full rank n × s given matrix.

• Approximate value iteration method: Start
with initial guess r0 and iterate:

Φrt+1 = Proj. of T (Φrt) on Feature Subspace

(with respect to some norm ‖ · ‖).

• Convergence Result: If T is a contraction with
respect to a weighted Euclidean norm (‖J‖2 =
J ′DJ , where D is positive definite, symmetric),
then rt converges to (the unique) r∗ satisfying

r∗ = arg min
r

∥∥Φr − T (Φr∗)
∥∥



GEOMETRIC INTERPRETATION

• The approximate value iteration is

rt+1 = ΠT (Φrt)

where Π is projection on the subspace

S = {Φr | r ∈ �s}

Feature Subspace S

Φr

Φr’

Τ(Φr’)

Τ(Φr)

ΠΤ(Φr’)

0

ΠΤ(Φr)

• Convergence Proof Idea: Since T is a con-
traction with respect to the norm of projection, and
projection is nonexpansive, ΠT is a contraction
over S (with respect to the same norm).



APPROXIMATE VALUE ITERATION BY SIMULATION

• The algorithm

rt+1 = ΠT (Φrt) = arg min
r

∥∥Φr − T (Φrt)
∥∥2

is deterministic, but is hard to implement for large
number of states [we must compute T (Φrt)(i) for
all i].

• We show, that with the right choice of norm,
we can use simulation to implement the algorithm
approximately, for a single policy.

• The simulation-based implementation solves a
least squares problem at each iteration.

• Temporal differences (TD) are used to simplify
the formulas of the algorithm.



USING A DIAGONALLY WEIGHTED EUCLIDEAN NORM

• Consider the approximate value iteration using
a diagonally weighted Euclidean norm

rt+1 = arg min
r

n∑
i=1

w(i)

(
φ(i)′r −

n∑
j=1

pij

(
g(i, j) + αφ(j)′rt

))2

where the w(i) are some positive weights.

• This is a special case of

rt+1 = ΠT (Φrt) = arg min
r

∥∥Φr − T (Φrt)
∥∥2

corresponding to the norm defined by the w(i).

• Key fact: T is a contraction with respect to
the weighted Euclidean norm corresponding to
the weights

w(i) = the steady state probability of state i

(Bertsekas and Tsitsiklis, NDP book, 1996).



SIMULATION-BASED IMPLEMENTATION

• Generate an infinitely long trajectory (i0, i1, . . .)
using a simulator, and iteratively update r by

rt+1 = arg min
r

t∑
m=0

(
φ(im)′r − g(im, im+1) − αφ(im+1)′rt

)2︸ ︷︷ ︸
squared value iteration error at time m

Feature Subspace S

Φrt

Τ(Φrt)

0
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Φrt
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Simulation error

Value Iteration with Linear
Function Approximation

Simulation-Based
Value Iteration with Linear
Function Approximation

• The iteration yields the (deterministic) approx-
imate value iterate [i.e., the projection of T (Φrt)]
plus stochastic simulation error.



FROM λ = 0 TO λ > 0 – M -STEP VALUE ITERATION

• For M ≥ 1, consider the equation

J(i) = E

[
αMJ(iM ) +

M−1∑
k=0

αkg(ik, ik+1)
∣∣∣ i0 = i

]

• This is the equation J = T (J) for a modified
Markov chain where each transition corresponds
to M transitions of the original.

• This equation has the same solution as the or-
dinary (one-step) equation

J(i) = E
[
g(i, j) + αJ(j)

]
• The corresponding value iteration method is

Jt+1(i) = E

[
αMJt(iM ) +

M−1∑
k=0

αkg(ik, ik+1)
∣∣∣ i0 = i

]

and can be similarly approximated by simulation.



SIMULATION-BASED M -STEP VALUE ITERATION

• The corresponding simulation-based least-squares
implementation is

rt+1 = arg min
r

t∑
m=0

(
φ(im)′r − αMφ(im+M )′rt

−
M−1∑
k=0

αkg(im+k, im+k+1)

)2

• Introduce the temporal differences,

dt(ik, ik+1) = g(ik, ik+1) + αφ(ik+1)′rt − φ(ik)′rt,

to write this iteration as

rt+1 = arg min
r

t∑
m=0

(
φ(im)′r − φ(im)′rt

−
m+M−1∑

k=m

αk−mdt(ik, ik+1)

)2



USING RANDOM STEP VALUE ITERATION

• Consider a version of Bellman’s equation where
M is random and geometrically distributed with
parameter λ, i.e.,

Prob(M = m) = (1 − λ)λm−1, m = 1, 2, . . .

• This equation is obtained by multiplying both
sides of the M -step Eq. with (1−λ)λm−1, for each
m, and adding over m:

J(i) =

∞∑
m=1

(1−λ)λm−1E

[
αmJ(im) +

m−1∑
k=0

αkg(ik, ik+1) | i0 = i

]

• The corresponding value iteration method is

Jt+1(i) =
∞∑

m=1

(1 − λ)λm−1E

[
αmJt(im)

+
m−1∑
k=0

αkg(ik, ik+1) | i0 = i

]



TEMPORAL DIFFERENCES IMPLEMENTATION

• We can write the random step value iteration as

Jt+1(i) = Jt(i)+

∞∑
k=0

(αλ)kE
[
g(ik, ik+1)+αJt(ik+1)−Jt(ik) | i0 = i

]

• By using φ(i)′rt to approximate Jt, we obtain the
λ-least squares policy evaluation method, pro-

posed by Bertsekas and Ioffe (1996)

rt+1 = arg min
r

t∑
m=0

(
φ(im)′r − φ(im)′rt

−
t∑

k=m

(αλ)k−mdt(ik, ik+1)

)2

• Role of TD: They simplify the formulas.



GENERIC PROPERTIES

• The limit r∗ depends on λ, and Φr∗ tends to be
closer to J as λ ≈ 1.

• But as λ ≈ 1, the simulation noise is magnified,
and convergence can be very slow.

• Using λ < 1 is essential for some “high noise”
problems.

• Connection with TD(λ): We can view TD(λ) as
a gradient-like iteration for minimizing the least-
squares sum in the λ-least squares method.



CONVERGENCE ANALYSIS

• The method converges for all λ ∈ [0, 1] and with
a stepsize equal to 1! (or any constant stepsize in
(0, 1]).

• This is the first TD method that does not require
a diminishing (1/k) type of stepsize.

• It bears to TD(λ) the same type of relation as
the Kalman filter/Gauss-Newton algorithm bears
to the gradient method.

• Converges dramatically faster than TD(λ), based
on experimental and theoretical analysis (Yu and
Bertsekas, 2006).



RATE OF CONVERGENCE ANALYSIS

• Konda (Ph.D. Thesis, MIT, 2002) has estab-
lished the optimal convergence rate for TD meth-
ods.

• Konda has shown that λ-LSTD, a nonincremen-
tal method proposed by Bradtke-Barto (1996), Boyan
(2002) attains the optimal rate.

• Yu and Bertsekas (2006) show that the iterates
of λ-LSPE and λ-LSTD converge to each other
faster than to the common limit.

• Hence λ-LSPE also attains the optimal rate.

• λ-LSPE has the advantage that it is an incre-
mental method, and hence is more suitable for pol-
icy iteration contexts where there is limited simula-
tion between policy updates (e.g., optimistic policy
iteration).


