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SUBJECT

e Approximate Dynamic Programming for large
and intractable problems.

e Context: Discounted infinite horizon Markov De-
cision Problems.

e Construct simulation-based approximations to
the cost-to-go function of a single stationary pol-

icy.

e Use the approximations in a policy iteration
scheme.

e Extensions: stochastic shortest path problems
(Bertsekas and loffe, 1996) and average cost prob-
lems (Yu and Bertsekas, 2006).



OUTLINE

e We discuss the Least Squares Policy Evalu-
ation Method (A-LSPE) a linear function approxi-
mation method for the cost function of a station-
ary policy (original proposal: Bertsekas and loffe,
1996)

It uses simulation and temporal differences
(TD)

Uses a Kalman filter-like recursion.

It bears to TD()\) the same type of relation as
the Kalman filter/Gauss-Newton algorithm bears
to the gradient method.

It converges with unit stepsize (Bertsekas,
Borkar, Nedic, 2004)

It converges dramatically faster than TD()).

e Explain the underlying contraction mapping and
its stochastic implementation via simulation.

e EXxplain the connection to value iteration with
function approximation.



BACKGROUND ON DP

e Consider a classical discounted problem.

e A system with states: = 1,...,n, and transition
probabilities p;;(u) that depend on the control w.

e Cost of a policy 7 = {uo, 1, ...}

N—1
Jr(zo) = lim F { > akg(ikaﬂk(ik)aik+1)}

k=0

where o < 1 (discount factor).
e Shorthand notation for the DP mapping

e Similarly, define for any stationary policy p

(TuT)(@0) = Y i (@) [90, (@), §) + @I ()], Vi



VALUE AND POLICY ITERATION

e Bellman’s equation for the optimal cost J* and
the cost of a policy pu:

Jr=TJ*,  J,=T.J,

e Value iteration: Start with any bounded J,
and repeatedly apply T

J+(i) = lim (T*.J)(5)

k— 00

Converges to J* because T’ is a contraction.

e Similarly, we can compute 7}, by value iteration:

Jui) = lim (T£T)()
e Policy iteration: Given u*,
— Policy evaluation: Find J x by value iteration
(or by solving the equation J x =T xJ )
— Policy improvement: Find pf+1 such that

Tpsr J e =T



VALUE ITERATION W/ FUNCTION APPROXIMATION

e Suppose we use linear approximations .J (i, r) =
¢(i)r,i=1,...,n,0r

J = or feature subspace approximation

where » = (r1,...,7s) IS @ parameter vector, and
® is a full rank n x s given matrix.

e Approximate value iteration method: Start
with initial guess ro and iterate:

®r.41 = Proj. of T'(®r;) on Feature Subspace

(with respect to some norm || - ||).

e Convergence Result: If T is a contraction with
respect to a weighted Euclidean norm (||J]|2 =
J'DJ, where D is positive definite, symmetric),
then r; converges to (the unique) r* satisfying

r* = arg minHCID'r — T (Pr*)



GEOMETRIC INTERPRETATION

e The approximate value iteration is
Tt4+1 — HT(Q)’I})
where II is projection on the subspace

S={Pr|reRs}

T(®r’)

T(®r)

or’ T(®r)~" nT(or)

or

Feature Subspace S

e Convergence Proof Idea: Since 7' is a con-
traction with respect to the norm of projection, and
projection is nonexpansive, IIT' is a contraction
over S (with respect to the same norm).



APPROXIMATE VALUE ITERATION BY SIMULATION

e The algorithm
rip1 = HT(Pry) = arg min||®r — T((I)”l“t)H2

IS deterministic, but is hard to implement for large
number of states [we must compute T'(®r)(7) for
all 1].

e We show, that with the right choice of norm,
we can use simulation to implement the algorithm
approximately, for a single policy.

e The simulation-based implementation solves a
least squares problem at each iteration.

e Temporal differences (TD) are used to simplify
the formulas of the algorithm.



JSING A DIAGONALLY WEIGHTED EUCLIDEAN NORM

e Consider the approximate value iteration using
a diagonally weighted Euclidean norm

res1 = argmin Y w(i) <¢<i>’r =D pii(alid) + a¢<j>’n)>
1=1

j=1

where the w(¢) are some positive weights.
e This is a special case of

rip1 = HT(Pry) = arg mrinHCI)r — T((I)Tt)HZ
corresponding to the norm defined by the w(7).

e Key fact: T is a contraction with respect to
the weighted Euclidean norm corresponding to
the weights

w(t) = the steady state probability of state ¢

(Bertsekas and Tsitsiklis, NDP book, 1996).



SIMULATION-BASED IMPLEMENTATION

e Generate an infinitely long trajectory (io, i1, - - .)
using a simulator, and iteratively update » by
t

Tt41 = argmin Z (qb(’im)”'“ — g(im,im+1) — a¢(im+1)"'“t)2

r G _
m=0 ] v ]
squared value iteration error at time m

T(Drt) T(Pry)
Dri41 \
Dri+1
0 0 Simulation error

eature Subspace S eature Subspace S

Simulation-Based
Value lteration with Linear
Function Approximation

Value lteration with Linear
Function Approximation

e The iteration yields the (deterministic) approx-
imate value iterate [i.e., the projection of T'(®r;)]
plus stochastic simulation error.



FROM A =0TO )\ > 0—- M-STEP VALUE ITERATION

e For M > 1, consider the equation

M—1
J(Z) = F CYMJ(ZM) + Z akg(ik,ik+1) 10 = Z:|
k=0

e This is the equation J = T'(J) for a modified
Markov chain where each transition corresponds
to M transitions of the original.

e This equation has the same solution as the or-
dinary (one-step) equation

J(i) = E|g(i,§) + aJ(j)]

e The corresponding value iteration method is

M—1
Jir1(i) = E |aM Je(ipr) + Z akg(ig,ikt1) | 10 = 7}
k=0

and can be similarly approximated by simulation.



SIMULATION-BASED M-STEP VALUE ITERATION

e The corresponding simulation-based least-squares
Implementation is

¢
ri11 = arg mgn Z (gb(z‘m)/r — aM¢(im+M)/rt

m=0

M—1 2
— > aFglimyr, Z'm+k+1)>

k=0
e Introduce the temporal differences,

de(ik, ik41) = (i, tht1) + aP(ip41)'re — Gik)'Te,

to write this iteration as

m=0

ri41 = arg mrin Z <¢(im)’7° — @) 11

m—+M-—1 2
— Z Oékmdt(ik,ik_|_1)>

k=m



USING RANDOM STEP VALUE ITERATION

e Consider a version of Bellman’s equation where
M is random and geometrically distributed with
parameter A, i.e.,

Prob(M =m) = (1 — M)Am=1, m=1,2,...

e This equation is obtained by multiplying both
sides of the M-step Eq. with (1 —X)\m—1 for each
m, and adding over m:

oo m—1
J(i) = Z(l—A)Am_lE [amJ(im) n Z aFg(in,ini1) | G0 = z:|

m=1 k=0

e The corresponding value iteration method is

am . J; (’Lm)

Jt_|_1(i) = Z (1 — )\))\m—lE

1

m—1
+ Y akg(ip, k) | io = ’&}

k=0



TEMPORAL DIFFERENCES IMPLEMENTATION

e \We can write the random step value iteration as

Jt_|_1(’i) — Jt(i)—FZ(Oé)\)kE[g(ik,ik_|_1)—|—OéJt(ik_|_1)—Jt(ik) | ’i() — ’L
k=0

e By using ¢(¢)'r; to approximate .J;, we obtain the
A-least squares policy evaluation method, pro-
posed by Bertsekas and loffe (1996)

m=0

¢
ri+1 = arg mgn Z (gb(im)’r — O(im )1

t

- Z(a)\)kmdt(ik,ikﬂ))

k=m

e Role of TD: They simplify the formulas.



GENERIC PROPERTIES

e The limit 7* depends on A, and ®r* tends to be
closerto J as A =~ 1.

e Butas )\ ~ 1, the simulation noise is magnified,
and convergence can be very slow.

J

e Using A < 1 is essential for some “high noise’
problems.

e Connection with TD(X\): We can view TD()\) as
a gradient-like iteration for minimizing the least-
squares sum in the \-least squares method.



CONVERGENCE ANALYSIS

e The method converges for all A € [0, 1] and with
a stepsize equal to 1! (or any constant stepsize in

(0, 1]).

e Thisis the first TD method that does not require
a diminishing (1/k) type of stepsize.

e [t bears to TD()\) the same type of relation as
the Kalman filter/Gauss-Newton algorithm bears
to the gradient method.

e Converges dramatically fasterthan TD()\), based
on experimental and theoretical analysis (Yu and
Bertsekas, 2006).



RATE OF CONVERGENCE ANALYSIS

e Konda (Ph.D. Thesis, MIT, 2002) has estab-
lished the optimal convergence rate for TD meth-
ods.

e Konda has shown that \-LSTD, a nonincremen-
tal method proposed by Bradtke-Barto (1996), Boyan
(2002) attains the optimal rate.

¢ Yu and Bertsekas (2006) show that the iterates
of A-LSPE and A-LSTD converge to each other
faster than to the common limit.

e Hence )\-LSPE also attains the optimal rate.

e )\-LSPE has the advantage that it is an incre-
mental method, and hence is more suitable for pol-
icy iteration contexts where there is limited simula-
tion between policy updates (e.g., optimistic policy
iteration).



