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"l. Introduction

The steepest descent methodl is a commonly
used algorithm for finding the minimum of -a
differentiable cost functional. At each itera-
tion a descent is made at the direction of the
negative gradient according to some step size
selection scheme. Convergence of the algorithm
to a point satisfying the necessary conditions for
a local minimum can be proved under quite general
agsgumptions. Cost functionals which are not
differentiable arise natural%y in some situations
including minimax problems? ®. In addition some
constrained minimization problems can be converted
into unconstrained minimization problems with a
nondifferentiable cost functional.
the problem

For example2 »8

m:,l!n fo(x) subject to fi(x) <0, 1=1,2,4..N (1)

is equivalent to the unconstrained problem

N
min{f (x) + K ]| max[0, fi(x)]) (2)
x ° i=1

whenever Kuhn-Tucker multipliers {Xl,kz,... ,XN)
for problem (1) exist and it is K > max{kl,...,AN}.

However the cost functional in (2) is nondifferen-
tiable even if the functions f 4 are differentiable.

This paper has two objectives. First to
examine the natural extension of the steepest
descent algorithm for minimizing a directionally
differentiable function mapping R™ (n-dimensional
Euclidean space) into the real line. For the case
where this function is convex we demonstrate a new
characterization of the direction of steepest
descent of the cost function at a point in terms
of the subdifferential9 of the function at this
point. Using this characterization we generilize
some results recently obtained by Luenberger
which concern optimal control problems. We also
discuss the difficulties for proving convergence
of this method to a minimum which are due to the
nondifferentiability of the cost function. The
second objective of the paper is to propose a new
descent algorithm for minimizing an extended real
valued convex function. This algorithm is a large
step, double iterative algorithm and it is conver-
gent under the sole assumption that the cost
function is bounded below. The algorithm is based
on the notton of the £-subgradient of a convex
function’ and contains as g gpecial case the
algorithm of pshenischnyi®. I

*This research was carried out at the Decisfon and
Control Sciences Group of the M.I.T. Electromic
Systems Laboratory with support extended by the
Air Force Office of Scientific Research under
grants AFOSR 70-1941 and by NASA NGL-22-009-124.

2. Steepest Descent for a Directionally Differen-
tiable Cost Function

The problem that we consider in this section
is to find inf £(x) where £f: R® -+ R is a direction-
. x
ally differentiable function. The function £ 1s
called directionally differentiable 1f the one-
sided directional derivative with respect to any
vector y € R®

f'(x;y) = Hnm SSEiAIlziﬁﬁl (3)
ot A
exists for all x eR". The direction of steepest

descent of £ at x is defined!0 by the vector y (%)
where

£'0x;y(x)] = min
4 Hyll<a o
The steepest descent algorithm is specified by the
iteration

£ (x;y) " (4)

X+l
where A_ > 0 is the step size of the iteration and
is chosen according to some scheme. Three prob-
lems of interest are: a) The characterization of
§(x). b) The gpecification of the method for
selecting the step size A,. c) the conditions
under which lim f (x:n) = min f(x). We examine

nhe X
these problems in turn in what follows.

-x + ln ;(x“) o (5)

We first consider the case where the function
f is convex, i.e. it is f[)‘xl-l-(l—ll)xz] < Af (xl) +
(1-1)£(x,) for all 0 < A <1, xp,x%,€ R". -Then f

13 directionally differentizble? and the functionm
£'(x;y) 1s a convex positively homogeneous convex
function. The subdifferential of f at a point x
i3 defined” as the set '

A (x) = {x*| £(2) > £(x) + <z-x,x*>,V zeR"}  (6)

and it is a convex and compact set. The support
function of 3f(x) {s given by »
oly|2£(x)] = max <x*,y> = f'(x;y) (7)
x*e of (x)

The subdifferential 3f(x) is a generalization of
the notion of the ordinary gradient. If f is dif-
ferentiable at x, then 3f(x) consists of a single
point, the gradient VE(x). At points where f is
not differentiable, the calculation of 3f(x) can
be facilitated by the following expressions

3(f1+£2+...+fH)(x) - afl(x)+'...+8fu(x) (8)
where fi: RP*R are convex functions for all i.

3 (x) = {x*] EX(x*) + £(x) ~<x,x*> < 0} (9)
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where £*(x*) = sup{<x,x*> - £(x)} is the ¢ njugate
x

convex function of f9. ﬁ,
The direction of steepest descent y(x) can be
converdently characterized in terms of the seét 9f(x).

where x* is

- *
Proposition 1: It is y(x) = - —=
T [ 1]}
the vector of minimum (Euclidean) norm in the sub-
differential 3f(x). i

mnin

Proof:
Hyll<2

By (7) £'(x5y) =

<x*,y> and since the condtraint

min max
Hyllst x*e3£)

sets are convex and compactll we can interchange
max and min in the above relation

min  £'(x;y) = max mn  <xt,y> =
Hyllsa x*edf () ||y]|<1
x
**Zg:(x) <x%, - Tﬁ;ﬂ* =-- x*tu:%tfl(x) ”x*”H -
= - | x|
and the minimum in (4) is attained for
T = - =X k.E.D.

BN

When the function f is not convex but instead
it 13 of the form f = g-h where g: R®+R 1is a con-
vex function and h 1s a differentiable mapping
h: R®*+R™ with the value of its (Frechet) deriva-
tive at a point x denoted as gﬂ = H: RR+RE, £ ig

directionally differentiable with direction 1
derivative given by the equation

£'(x;y) = g'[h(x); H y] ' (8

The above equation i3 a generaiization of the well
known chain rule and follows from Th. 3.2 and p. 48
in!? and Th. 10.4 in 2. From equation (8) 1t can
be proved similarly as in Proposition 1 that the
direction of steepest descent of the function

f = g-h at a point x is y(x) = - __x__whet:e x* 13

the vector of minimum norm in the set H '3g{h(x)]

(where prime denotes transposition of the matrix).
Since at an optimal point X it must be F(X) = 0 we
have the necessary condition for optimality

OeH’ ag[h(x)]

The characterization of the direction of steep-
est descent in terms of the subdifferential:is
particularly useful for optimal control problems.
Consider the minimization of the functional

N

JCu yuppeeeyuy () = k-z-l g (xou _y)

where g, : R™ xR™® +R are convex functions, sgbject
to the system equation constraints
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where the initial state x, is given and £, are dif-

k
X RPxR™ *R, with the val-

ues of their derivatives denoted as 3f, /ox, = F
; K % xy’

ferentiable functions, f

Z)Eklauk - Fuk.' Then by using arguments very sim-

ilar to the above we obtain that the direction of
steepest descent at a point {u o2 Upseeeaty 1} with
corresponding system trajectory {x ,xl,...,xN} is
specified by

u*

Huxl}

;(uo,ul,.. .e ’uﬂ-l) = -

Xv*' qN-l) }

where u* e RNm i3 the vector

ak = {(r' X +q) (F, 12+ ql),...,(F
Y o |

vhere XI,XZ,...,XN, 50’51"“'5}:_1 are vectors such
that
N-1
IoHEL %, +q 017 = ma
k=0 K RS L A CRR
N-1

T 11T, hy e )12
subject to the adjoint equatiom
L]

A = xkxk+1+pk’ Ay =y
where the derivatives are evaluated along the
point {u S ITTRRI 1} and the corresponding
trajectory {x ,xl,...,xN} A necessary condition
for optimality of the control sequence {u ’“1""
”"“N 1} with corresponding trajectory {x ,xl,...
...,xN} is that there exist vectors Xl,)\z,...,xu
such that

s < -
Fuk"k-u +aq

- F "Hl""k
"N = PN

ffr fome vectots-aoial,...,q—N_l, ;1"’2”"’5}( with
(Pkqu_l) € 3gk(xk,“k_1), k=1,2,...,N.

The above equations generalize to a larger
clags of problems the results obtained by Luenber—
ger“. For related necessary conditions see alsol3.
In the case where in the above problem there are
state and control constraints a reformulation of
the problem to an unconstrained problem is possi-
ble, whenever Kuhn-Tucker multipliers exist, as in
equation (2).

=0 k=0,1,...,N-1

k=1,2,...,N~1



We now turn our attention to various methods
for selecting the step size Xn in equation (5).
The natural method would be to choose An rom

f[xnd-ku y(xn)] = ;;ig f[xn+Xy(xn)] assuming that
such a A_ exists. Despite the fact that the value
of the cost function decreases at each iteration
this method of selection of A may not lead to
convergence to the optimum even when the function
f 1s convex. As reported for some minimax pro-
blem.sl‘, this is due to the fact that the direc-
tional derivative f'(x;y) is not in general a con-
tinuous function of x for any fixed y, and the
algorithm may "jam" at points where f is not
differentiable. For this reason in the minimax
algorithms of 43, antljamming techniques are
uged to make the corresponding algorithms conver-
gent. A different method of selection of the
step size is to select a prior:l. a sequence {l }

vwhere X >0, {1 }+o0, Z A= Wich tPis
n=1

selection of A it can be proved that if f 1s con-
vex and if the"points {x_} generated by quation
(5) are in some bounded set or if the fundtion f
is Lipschitz continuous, then for every £>0 there
exists an N such that |f(x)-f( )| < € where
f(%) = min £(x). The resulting algorithm is an

x
adaptation of an algorithm reported by Ermolev7
and attributed to Shor. The c09vergence proof
follows similar arguments as in The drawback
of this algorithm is that a decrease of the value
of the cost function is not generally observed at
each iteration, possibly resulting to slow con-
vergence, and that there is no good criterion for
terminating the iterations. These drawbacks are
avoided in the algorithm we describe in the next
section.

3. A Descent Algorithm for Minimizing Conﬁtex Cost
Functionals

In this section we present a new descent
algorithm for minimizing an extended real valued
convex function. We will consider a convex func-
tion f: RO>(-» o} yhich is lower semicontinuous
and such that f(x)<= for at least one xt€ R®, i.e.
f 1s a closed proper convex function according tod.
The problem is to find '.lnf f(x) and a vect?r % (1f

it exists) such that f(k) = min f(x).
agsumption that we will need is that —°°<1nf £(x).

The| ! only

It should be noted that the use of the extended
real line permits the incorporation of constraints
into the cost functional. Thus the problem of
finding the minimum of a function f over a set X
is equivalent to finding the unconstrained minimum
of the function £(x) + &(x|X) where 8(-|X) is the
indicator function of X, i.e. 8(x|X) = 0 for xe X,
8(x|X) = = for x¢X. A basic concept for the
algorithm that we present is the notion of | the
-subgtadient9 . H

Let x be a point such that £(x) <« an{d >0
any positive number. A vector x*:¢R  1is called an

€-subgradient of f at x 1f

£(z) 2_ f(x)-£ + <z-x,x*>, ¥V z eR®

The set 3.f(x) of all g-subgradients at x will be
called the €-subdifferential at x. The set
d¢f(x) is a nonempty closed convex set and is
characterized by the equation

A E(x) = {x*| £2(x*) + £(x) ~ <x,x*> <€} (9)

where f*(x*) = sup{<x,x*> -£(x)} is the conjugate
x

convex function of £f. It is evident that for
0<£1< €, it is ae f(x) < 3€ f(x). The support
1 2 )

function of aef(x) is given by9

olyla £0] =  sup  <xh,y> = gnf ZOSPAYL-ECRE

x*€d £ (x) A>0
(10)

The set 9:.£(x) has some interesting properties from
the algorithmic point of view as shown by the fol-
lowing two propositions.

Let x be such that f£(x) < ®, Then

Proposition 2:
02 f(x) - inf £(x) < € «=> 0€3_£(x)
x

Proof: Let 0 < f(x) - inf £(x) < €. Then for any
x -
A>0 and any yeR" it is ﬁ——" £Gte

inf f(x)-f(x)+c .
, > 0. Taking the infimum over A>0

we have inf £ Getd ;-f X)TE > 0 for all yt»:Rn, or
A>0

using (10) ofy|3¢£(x)] > 0 for all yER which

implies Oeaef(x). Conversely let 0cd f(x) from

which inf £ Get) )-f x)+e > 0 for all y. Then

A>0
f(xty)-f(x)+€> 0 for all y and taking the infimum
over y we obtain inf £(x)-f(x)+€ > 0. Q.E.D.
x —
Proposition 3: Let x be point such that £(x) <=
and 0 ; dcf(x). Let y be any vector such that

sup <y,x*><Q0. Then
x*ed_f(x)
€
£(x) - inf £0xHAy) > € -
A>0
Proof: Assume the contrary, i.e. inf f(x+iy) -~

>0
f£(x)4€ > 0. Then for any A>0 it will be

£GehAy)f a)de if x)¥e >0 or inf £0eb)y '-LL-f (x)te >0 or

A>0
<x*,y> > 0 a contradiction.
Q.E.D.

or using (10) sup
x*eaef (x)

It should be noted that if O § 9£(x) a vector
y such that sup <y,x*> < ( 13 the vector
x*€d_f£ (x)
y=-x* where x* 1s the (unique) vector of minimum
Euclidean norm of Bef(x), since it 1is <X¥x x*> >
“x*H >0 for all x*e3_f(x) grom which
sup - <xk x*> < —T]x*
x*e3 £(x)
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The Prop. 1 provides a termination criterion
for any iterative minimization algorithm. ' The
Prop. 2 states that if the value £(x) exceeds the
optimal value by more thaa €, then by a descent
along the negative vector of minimum norm in the
g-subdifferential 3cf(x) we can decrease the value
of the cost by at least €. This fact provides the
basis for the following algorithm.

1) Select initially a scalar e°>0, a vectpr x
such that f(xo) <o  and a number a, 0<a<l.

2) Given €n>0 and X, if 0¢ 3En(xu) set € 1™ En.
If 0e3_ (x ) implying f(x )-inf £(x) < € multiply
e n n’ Tx ~n

. ki

€ consecutively by a and set E 41 ™2 €, for the

smallest integer k>0 for which O é BE £f(x| ). If
wtl

f(xn) # min f(x) there exists such a k. T*len set
x "
X 41~ xn+knyn vwhere 'y is a vector su+ that

* * < - ;
sup{< ¥, 0% >| x €3€n+1f(xn)} 0 (-y_ can pe the
vector of minimum norm in 3 f(x)), and A_> 0
€4y P n

is such that f(xn)—f(xu*-lnyn) > € - By [the fact
that 043 f(x ) and Proposition 3 such la scalar
€ot1 M !

A exists and can be found by a one-dimensional
search., Another possible method is to select A
such that f(xn-l-lnyn) = 1;11)3 f(xn+lyn) proviﬂded
the minimum is attained. It can be easily proved
that this can be guaranteed wherever the get of
optimal points M = {x| £(X) = min £(x)} 18 non-
empty and bounded. x H

The following proposition gives the «#onver—
gence properties of the algorithm: 1

|

Proposition 4: Consider the vectors x? g&nerated

by the above algorithm. Then either f ) =

min £(x) for some N > 0, or the following|state-
X i

ments hold: a) lm £(x ) = inf £(x) b) ﬁ(xn) -

nee i
_1- - p
f(xn+1) > €n+1>0 c) (a -l)Euz_f(xn) 1r):f £{x) >En+1

for all n such that en <E°. If in addition the
set M = {x| £(%) = min £(x)} is nonempty and
x

bounded then: d) Every convergent subsequence of
{x } has its limit i{n M, and at least one such
subsequence exists. e) For every €>0 there
exists an N>0 such that x eM+eB for. all n>N where
B = {x| ||x[] < 1} 1s the™unit ball in R%} f) If
the minimum of f is attained at a single ¢oint: x
then {x } + %. |
" I
Proof: b) and c¢) follow directly from the con-
struction of the scalars £, and Prop. 2 and 3.
To prove a) in view of ¢) it is sufficlent to
prove {en} + 0. Wehavee >€ ., > 0 for all n.

Therefore {€_} + € where £>0 is some scalar and
€ >t for all'n. From b) we have f(x )-f ) >
{xﬂ) 2

s
€,2¢ f(xl)-f(xz) 2€,2 s:,...,f(xﬂ__l)
> € and by adding these relations f(x|]) -

N
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f(xﬂ) > Ne or f(xo)-Ne > f(xN) > i?‘f f(x) for all

N>0., If it were €>0 then the left hand side of
the last inequality would decrease without bound.
Therefore €=0 and a) is proved. To prove d)
notice that x €F vhere F_ = {x] £(x) < f(xo)} and

since M is nonempty and bounded, F_ is compact

(see’? Cor. 8.7.1). Therefore the sequeace {x_} has
at least one convergent subsequence. The facg that
the limits of all convergent subsequences belong

to M follows from a) and Cor. 27.2.1 in?. Part e)

follows from a) and Th. 27.2 in’. Part £f) follows
from a) and Cor. 27.2.2 ir. o

Q.E.D.

It can be seen that at each step of the above
algorithm a double iteration musit be done. The
first iteration is to determine €+l and Y from

sn and x . The vector of minimum norm on the sets

n
aenf(xn), Basnf(xn), 382e f(xn),..... 13 determined
and for the first k for which x f(xn) does not
act
n

contain the origin we set € o+l aken and take Ya

to be the negative vector of minimum norm on

Be f(x_ ). This can be done by using standard
S

techniques provided that set 35 £ (xn) can be

characterized. The second iteration 1s a one
dimensional search along the direction of y . At
each iteration the cost is decreagid by at Reast
€41 and 1f in fact- the scalar (a "-1) is selected

to be sufficiently small, it can be seen from c)
in Prop. 4 that we can get arbitrarily close to
the optimal value in a single step. This would
of course result in a large number of fiterations
to find R The condition ¢) can serve as a

termination criterion of the algoritha.

A question which requires extensive discus-
sion and cannot be examined within the space
limit of this paper is the convenient characteri-
zation of the set 9.f(x). The characterization
of 3 £(x), or some suitable approximation of it,
is possible for a large class of functions. Ve
will only mention here that, if necessary, the
algorithm can be modified so that it is not
necegsary to calculate exactly the set 38 £ (xn)
but instead it is possible to find the ctil?e%tion
of descent y_ from the vector of minimm norm in
a set S where 3 n+1f (xn) = l..v. amsm-]_f(x“)
where m>1 is some scalar. Convergence of the
algorithm will still be maintained. An important
application of this modification of the algorithm
is when f is of the form f = £ -kf2+...+fN. Then,
under some inessential assumpt}ons, it can be
proved that 3_f(x) < Befl(x) e +3E(x) <

] ef(x). In this case if the sets Bef (x) can be
mofe easily characterized, the algoritﬁn may be
easier to apply in its modified form.

€

As an example consider now the minimization
of the function £(x) = 0(x|X) + & (x|A) where



a(- IX) is the support function of a given set X
and 8(+]A) 1s the indicator function of a given
hyperplane A. This is the problem considered by
Pshenichayi”. It can be proved that def(x) =
{x*|x*eX, 0(x]|X) - <x,x*> < €} + A where A" 1is
the one-dimensiogal subspace orthogonal to A.
The algorithm in” then becomes identical tio the
algorithm of this section as applied to this
particular problem. H
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