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2. Steepest ~!cenEf2r a Directlona.llv Differen-
tiable Cost t:un~

The problem that: we consider in this .section
is to find inf f(x) where f: RU -+ R is a direction-

, x
ally differentiable function. Th4! function f is
called directionally different:iab:Le if the one-
sided directional derivative with respect: to any
vector y e: Rn

f' (XiY) -lim f(x+-Av)-:fl!l
>'-+0+ >. (J)

f'[XjY(X)} -miD f'(XjY)

.Ilyll~l...
TIle steepest descent algorithm is specified by the

ilteration

(4)

xn+1. -xii + An y(xn) (5)

where A > 0 is the ste p size of 1the iteration and
nis chosen according; to some schemj!. Three prob-

lems of interest are: a) The cha:["acterization of
y (x). b) The specification of thi! method for
sl!lecting the step size An. c) the conditions
under which 11m f (~: ) -min f (x) .We examine

0-- n x

these probleD8 in turn in what follows.

We first consider the case wlilere the function
f is convex. i.e. it is f[Axl+(1-:~)x2] ~ Af(xl) +

(.l-A)f(x?) for all 0 ~ A ~ 1. xl.:K2£ Rn. -Then f

is directionally di.fferentiable9 and the function
f' (x.y) is a conveJ; positively hollDOgeneous convex
function. The subdifferential of f at a point x

i:9 defined9 as the set

3f(x) -{x*1 f(z) ~ f(x) + <z-x.x*>.Vze:Rn} (6)

and it is a convex and compac~ set. The support

function of 3f(x) i~s given by

a[y1af(x)] -Max <x*.y> -f'(x;y) (7)

x*£af(x)

The subdifferential af(x) is a generalization of
the notion of the ordinary gradient. If f is dif-
ferentiable at x. 1:hen af (x) consists of a single
point. the gradient ''If(x). At points where f is
not differentiable" the calculation of af (x~ can

.be facilitated by Ir.he folll7"ing expressions

a(fl+f2+...+fN)(x) -3fl(x)+ +3fN(x) (8)

where fi: Rn+R are convex functi~'ns for all i.

3f(x) -{x*\ f*(x*) + f(x) -<x.x*> ~ O} (9)

1.. Introduction I

1The steepest descent method is a commonly
used algorithm for finding the minimum of a
differentiable cost functional. At each itera-
tion a descent is made at the direction of the
negative gradient according to some step size
selection scheme. Convergence of the algorithm
to a point satisfying the necessary conditions for
a local minimum can be proved under quite general
assumptions. Cost functionals which are not
differentiable arise naturalty in some situations
including minimax problems2-. In addition some
constrained minimization problems can be converted
into unconstrained minimization problems with a
nondifferentiable cost functional. For example2,8
the problem

min f (x) subject to f i (X) < 0, ial,2, ..N (1)x 0 -

is equivalent to the unconstrained problem

N
min ffo (x) + K I max[O, fi (x) J} (2)

x i=l

whenever Kuhn-Tucker multipliers {Al,A2'... ~J

for problem (1) exist and it is K ~ max{Al,...,ANJ.

However the cost functional in (2) is nondifferen-
tiable even if the functions fi are differentiable.

This paper has two objectives. First to
examine the natural extension of the steepest
descent algorithm for minimizing a directionally
differentiable function mapping Rn (n-dimensional
Euclidean space) into the real line. For the case
where this function is convex we demonstrate a new
characterization of the direction of steepest
descent of the cost function at a point in terllS
of the subdiff~rential9 of the function at this

point. Using this characterization we gener!lize
some results recently obtained by Luenberger
which concern optimal control problems. We also
discuss the difficulties for proving convergence
of this method to a minimum which are due to the
nondifferentiability of the cost funetion. The
second objective of the paper is to propose a new
descent algorithm for minimizing an extended real
valued convex function. This algorithm is a large
step, double iterative algorithm and it. is conver-
gent under the sole assumption that the cost.
function is bounded below. The algorithm is based
on the notion of the £-subgradient of a eonvex
function9 and contains as t speeial ease the
algorithm of l'shen:!.schnyi. ~

*This research was carried out at the Decision and
Control Sciences Group of the M.I.T. Electronic
Systems Laboratory with support extended by the
Air Force Office of Scientific Research under
grants AFOSR 70-1941 and by NASA NGL-22-009-l24.
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where f*(x*) -sup{<x,x*> -f(x)} is the Crnjugate
x 9

convex function of f .

~1 -fk(~'~> k-o,l,...,N-l

where the initia1 state Xo is gi'yen and fk are dif-
n mferentiable functions, fk: R XR +R, with the val-

tIeS of their d~rivative9 denoted as 3fk /3x. -F ,k xk
(lfk/3~ -F~. Then by using arguments very sim-

:llar to the above we obtain that the direction of
steepest descent ctt a point {uo,ul"..'~-l} with

correspondiag syst:em trajectory {xo'Xl'...""N} 1s

specified by

The direction of steepest descent y(x) can be
conveniently characterized in terms of the s.t 3f(x).

-x* -
ProposiEion 1: It is y(x) --whete x* is

.11i*11
the vector of minImum (Euclidean) norm in Jhe sub-
differential 3f(x). ~

u*) --y(uo.ul' ~-l Ilu*11

11sets are convex and compact we can interdhange
max and min in the above relation

min
Ilyll~l

<x*.y> -

max <;x-. -Tr':::zrr> --min Ilx.llll.
X*£af(x) II~II x*£af(x)

--Ilx.11
and the minimum in (4) is attained for

-X*y(x) --.
Ilx*) I

f
-Nm

"here u* e; R is t:he vector

ii* -{(F~ Xl+qo).(F~ A2+ ql) (F~~ ~+ qN-l)}
0 1 N-l.

"here Xl'X2""'~~ qo.ql CiN-l are vectors such

that

N-l
2l IIF' ~l+qkll -min

k~O ~ (~l.qk)e;3~l(~l'~)

N-l 2
I IIF' Ak+l+qk11

k-o 1.Ij[{.

subject to the adjoint equation

,
Ak -F ~l+Pk' ~ -PH~

where the derivatives are evaluated along the
point {uo,ul"" .uN-1} and the cl~rresponding

trajectory {Xo'Xl"'.~~}' A nell:essary condition

for optimality of the control sequence {iio.iil""

""~-l} with corresponding tra:lectory {xo,xl""

~} is that there exist vectors X1'X2"'.'~

such that

p.E.D.

,

When the function f is not convex but ins tead
it is of the form f -goh vhere g: Rm+ R is a con-
vex function and h is a differentiable mapping
h; Rn+Rm with the value of its (Frechet) deriva-
tive at a point x denoted as dh -H ; Rn + Rm. f is

OX x
directionally differentiable vith direction rl derivative given by the equation

f'(x;y) -g'[h(x); H;xY] (8)

The dbove equation is a generaLization of ttte well
known chain rule and follows from Th. 3.2 and p. 48
inl2 and Th. 10..4 in 9. From equation (8) it can
be proved similarly as in Proposition I that the
direction of steepest descent of the functi~n-
f -goh at a point x is y(x) --x* _vhete x. is

Ilx*11
the vector of minimum norm in the set H 'dg(h(x)]

(where prime denotes transposition of t~e ~trix).
Since at an optimal point x it must be y(~) -Owe
have the necessary condition for optimality

iOEH'dg[h(x)].x

k80,l,...,N-l

~- F ~l+Pk k-l.2 N-l~
~ -PN

for some yectors Qo.Ci1,...,QN-l' Pl,P2,...,PN vith

(Pk,'iik-l) e: a~(~'~~l). k-l.2"...,N.

The above equat:ions generaljlze to a larger
Cl~s of problems the results obt:ained by Luenber-
ger. For related necessary conditions see also13.
In the case vhere in the above p]~oblem there are
state and control constraints a ]~eformulation of
the problem to an unconstrained problem is possi-
ble, vhenever Kuhn-Tucker multipJliers exist, as in
equation (2).

The characterization of the direction of ste~
est descent in terms of the subdifferentialis
particularly useful for optimal control pro~lems.
Consider the minimization of the functional

N

tJ(uo.ul'...'~-l) -I ~(~'~-l)
k-l

n IIIwhere gk: R xR -+R are convex functions. s bject
to the systelll equation ~onstraints
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nf(z) ~ f(x)-£ + <z-):,x*>, ~ z£R

The set aEf(x) of all E-subgradj.ents at x will be
called the E-subdifferential at x. The set
aEf(x) is a nonempty closed convex set and is

characterized by the equation9

aEf(x) -{x*1 f*(x*) + £ (X)I ~ <x.x*> ~ E} (9)

where f*(x*) -sup{ <x.x*> -f(x)]f is the conjugate
x

convex function of f. It is evj.dent that for
0 < £1 < EZ it is 3E f(x) c aE fv~). The support

1 Z
function of aEf(x) is given by9

<x*.y> ..inf f(~}.y):f~x~
A>O A

a[yl3 f(x)] 8
e: sup

x*e3£f(x) (10)

The set dEf(x} has some interesl:ing properties from
the algorithmic point of view a!1 shown by the fol-
lowing two proposi tioos.

We now turn our attention to various methods
for selecting the step size An in equatioq (5).
The natural method would be to choose A Srom

n
f[x +A y(x)] -min f[x +Ay{x )] assumiqg that

n n n A>O n n

such a A exists. -Despite the fact that Uhe value
n

of the cost function decreases at each iteration
this method of selection of A may not lead to
convergence to the optimum ev~n when the function
f is convex. As reported for some minimax pro-

blems4. this is due to the fact that the direc-
tional derivative f'(x;y) is not in general a con-
tinuous function of x for any fixed y. and the
algorithm may "jam" at points where f 18 not

differentiable. For thia reason in the minimax
algorithms of4.5,6 antijamming techniques are
used to make the corresponding algorithms conver-
gent. A different method of selection of fhe
step size is to select a prio.ri a sequen~ {~n}

~
where ~ > O. {~ }+ O. r A -~. With d,is

n n I n T
no

selection of A it can be Proved that if f,i is con-
"D

!vex and if the points {x } generated bye ation

n
(5) are in some bounded set or if the funq ion f
is Lipschitz continuo~q. then for every £> there
exists an N such that If{x)-f{~)1 < £ whe,e
f(X) a min f(x). The resulting algorithm Is an

x 7
adaptation of an algorithm reported by Ermolev
and attributed to Shor. The co~vergence proof
follows similar arguments as in. The drawback
of this algorithm is that a decrease of the value
of the cost function is not generally observed at
each iteration. possibly resulting to slow con-vergence. 

and that there is no good criterion for
terminating the iterations. These drawbacks are
avoided in the algorithm we describe in the nextsection.

3. A Descent. Al orit.hm for Hinimizin Con' ex Cost.
Funct.ionals

Proposition 2: Let x be such that f(x) <~. Then

0 ~ f(x) -inf f(x) ~ £ -c~ 0£3£f(x)
x

Proof: Let 0 < f(x) -inf f(x) < £. Then for any

-:->0 d -Rn i i x ~')-f(x)~
>" an any y£ t s A -

inf f(x)-f(x)-ff:.
x h ~ O. Taking thE! infimum over A>O

f(xi-Ay)-f(x)+£. nwe have inf A ~ 0 f:or all y£R .or
A>O

using (10) o(y /3£f (x)) ~ 0 for ~ul fERn which
implies OE3£f (x). Conversely lE!t 0£3£f (x) from

f (xi-A" )-f (x)*which inf .,~, "" X' '~I. -~ 0 fo]~ all y. Then

A>O
f(xi-y)-f(X}+E> 0 for all y and l:aking the infimum
over y we obtain inf f(x)-f(X}-f-£: ~ O. Q.E.D.

x -
Propos!t!on3: Let x be point Iluch that t'(:t) < ~
and 0 4 3£f (x). Let y be any VE!ctor such tha~

sup <Y.x*> <: O. Then

x*&3Ef(x)

In this section we present a new descent
algorithm for minimizing an extended real valued
convex function. We will consider a convex func-
tion f: R~(-,ml which is lCNer semicontinuous
and such that f(x)< ~ for at least one xE an, i.e.
f is a closed proper convex function accordins to9.
The problem is to find inf f(x) and a vectfr ~ (if

x
it exists) sucll that f(2) -min f(x). Thelonly

x '
assumption that we will need is that -ao<inf f (x).

x
It should be noted that the use of the extended
real line permits the incorporation of constraints
into the cost functional. Thus the problem of
finding the minimum of a function f over a set X
is equivalent to finding the unconstrained minimum
of the function f(x) + 6(xIX) where 6('IX) is the
indicator function of X, i.e. 6(xlx) -0 for xe:x,
6(xIX) -~ for xltX. A basic concept for t~e
algorithm that we present is the notion of I t hee:-subgradient9. 

I

f(x) -inf f(xt-Ay) > e:.

A~O
~: AsSUU8 the contrary. i.t!. inf f(xt-Ay) -

),>0
f(x)+E: .?:. O. Then for any A>O it: will be

f(X+-).y)-f(x)+e: > I" i f ~')-f(x)+e: > 0A-" or n e: -or
A>O

or using (10) sup <x*.y> ~~ 0 a contradiction.
x*e:3e:f(x) Q.E.D.

It should be noted that if O~ 3e:f(x) a vector
y such that sup <y. x*> < () is the vector

-~e:3£f(x)
y--x* where x* is the (unique) vector of minimUIII
Euclidean norm of 3e:f(x). since it is <x*.x*> ~
Ilx*112>0 foE all x*£d~f(x) ~r()mwhich

sup -<x*.x*> 5.. -,lx*11 -: O.

x.£~£f(x)

Let x be a point such that £ (x) < m an~ £>0

any positive number. A vector x*£Rn is ca~led an
£-subgradient of £ at x i£
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The Prop. 1 provides a termination criterion
for any iterative minimization algorithm. The
Prop. 2 states that if the value f(x) exceeds the
optimal value by more than E. then by a descent
along the negative vector of minimum norm in the
g-subdifferential 3gf(x) we can decrease the value
of the cost by at least E. This fact provides the
basis for the following algorithm.

f(~) ~ N£ or f(xo)-N£ ~ f(~) > inf f(x) for all
x

N>O. If it were £>0 then the left hand side of
the last inequality would decrease without bound.
Therefore £-0 and a) is proved. To prove d)
notice that x £F where F -{xl f(x) < f(x)} and

n 0 0 -0

since M is nonempty and bounded, F 0 is compact
(see9 Cor. 8.7.1). Therefore the seqllelce {x } has
at least one convergent subseque,nce. The fac¥ that
the limits of all convergent sub,sequences belong
to M follCNs from a) and Cor. 2/'.2.1 tn9. Part e)
fOllCNs from a) and Th. 27.2 ing,. Part f) follCNs
from a) and Cor. 27.2.2 in9.

Q.E.D.

It can be seen that at eacl1~ step of the above
algorithm a double iteration mustt be done. The
first iteration is to determine En+l and Yn from

E and x. The vector of minim1;lm norm on the sets
n n

a f (x ). a f (x ). d 2 f(x) 1'... is detel:mined
E n aE: n ~ nn n a ~ .

and for the first k for ~ich CI k f(xn) does not
a E

n
contain the origin we set Elrfol ..akgn and take Yn

to be t.he negative vector of mixlimum norm on
a f(x). This can be done b), using standard
En+l n

techniques provided that set aE f(xn) can be
It

characterized. The second iteration is a one
di~nsional search along the di1~ection of y. At
each iteration the cost is decr'!3Sid by at 'feast
En+l and if in fact the scalar I(a- -1) is select~d

to be sufficiently small. it Call be seen from c)
in Prop. 4 that we can get arbi1:rarily close to
the optimal value in a single s1tep. This would
of course result in a large nuw)er of iterations
to find En+l. The condition c) can serve as a

termination criterion of the all~oritha.

1) Select initially a scalar £ >0, a vect ~ x such that f (x ) <~, and a numbe~ a, O<a<l. 0

0

2) Given e:n>O and xn' if 0 ~ 3e: (xn) set £ 1 -e:n.
n

If 0E0e: (x) implying f(x )-inf f(x) ~ £ ultiply
n n x n i

n k
e: consecutively by a and set £-L l -a £ i or the

n ...n

smallest integer k>O for which 0 ~ o£ f(). If
n+l "

f(xn) ~ m~n f(x) there exists such a k. *en set

X-L l -x +). y where"y is a vector su~l that
...n un n ~'

sup{< y ,x*>! x*£o e: f(x)} < 0 (-y can e the
n n+l n n

vector of minimum norm in 3 f(x », an > 0
£rr+-1 n n

is such that f(x )-f(x +). y ) > e:--'- l .By e fact
:'"1 n n n II;.-

that 0 ~ 3e: f(x) and Proposition 3 such scalar
n+1 n

). exists and can be found by a one-dimensional
nsearch. Another possible method is to select).such that f (x +). y ) -min f (x +).y ) prov~lded n

n n n ),>0 n n

the minimum is attained.- It can be easil ~ proved
that this can be guaranteed wherever the et of
optimal points M -{xl f(x) -min f(x)} i non-
empty and bounded. x Ii

The following proposition gives the ~onver-
gence properties of the algorithm: i

i

Proposition 4: Consider the vectors xn gdnerated
by the above algorithm. Then either f(XN) -

m;n f(x) for snme N ~ 0, or the followingi!state-
ments hold: a) ~ f(X~~- i~f f(x) b) ~(~) -

f(xrr+-l) > E:rr+-l> 0 c) (a -I>E:~f(xn)-i~f fix) > E:n+l

for all n such that E: < E. If in addition the
set H -{xl f(x) -mig f(~)} is nonempty and

x
bounded then: d) Every convergent subsequence of
{x } has its limit in H, and at least one such
suRsequence exists. e) For every E>O there
exists an N>O such that x EMt-E:B for all n>N where
B -{xiII x TI 5. U is tbenunit ball in Rn-t f) If
the minimum of f is attained at a single oint x

then {x }"':i.
n ii

A question which requires ~~xtensive discus-
sion and cannot be examined within the. space
limit of this paper is the convt~nient dlaracteri-
zation of the set 3£f (x). fhe 4:haraccerization
of 3£f(x). or some suitable app1~oximatiCB1 of it.
is possible for al large class oJE functioos. We
will only mention: here that. if necessary. the
algorithm can be modified so th;~t it is not
necessary to calc.ulate exactly ithe set 3£ f (x )

0+1 n
but instead it is possible to f:Lnd the direction
of descent Yn from the vector o:E mini- norm in
a set S where 3 f(x ) C S C::: 3_.. f(x)

n £0+1 n n "~rrt-l n

where m>l is some scalar. Conv,argence of the
algorithm will still be maintai1l1ed. An important
application of this modificati0111 of the algorithm
is when f is of the form f -fil:f2+...+fN' Then.
under SOD)e inessential assumptf,ons. it can be
proved that 3£f(X) C 3£fl (x) + ...+ 3£fN(x) C

oN f (x). In this case if the s,ets 3£f.1 (x) can be
mofe easily characterized. the algoritlilR may be
easier to apply in its modified form.

~: b) and c) follO\l directly from the con-
struction of the scalars £n and Prop. 2 and 3.
To prove a) in view of c) it is sufficient to
Prove {£ }... O. We have £ > £-.L l > 0 for all n.

n n -..,
Therefore {£ }... £ where £>0 is some sca} r and n -
£ >£ for all n. From b) we have f(x )-f ) >
Er~ E. f(xl)-f(x2) ~ E2 ~ E .f(~-l) t~) ~
EN ~ E and by adding these relations f (x ) "'-

As an example consider UC711 the Ddnimization
of the function f(x) = a(xlx) + 0 (xl A) were
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a(.lx) is the support function of a given set X
and o(.IA) is the indicator function of a given
hyperplane~. This is the problem considered by
Pshenichnyi -.It can be proved thtt 3tf(x)j.-
{x* I x*e:X. a(xlx) -<x.x*> < e:} + A where A: is
the one-diUlensiogal subspaCe orthogonal to A.
The algorithUl in then becomes identical liP the
algorlthUl of this section as applied to ~iLs
particular problem. :

I
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