Bertsekas

Reinforcement Learning and Optimal Control

ASU, CSE 691, Winter 2019

Dimitri P. Bertsekas
dimitrib@mit.edu

Lecture 8

Reinforcement Learning

1/21

0 Review of Infinite Horizon Problems
e Exact Policy Iteration

e Approximations with Policy Iteration

Bertsekas Reinforcement Learning 2/21

Stochastic DP Problems

Random Transition
_ . Infinite Horizon
Tpr1 = f(og, ur, w) te Horizo

Random Cost

akg(xy, up, wy)

Infinite number of stages, and stationary system and cost
@ System xx.1 = f(Xk, Uk, wk) with state, control, and random disturbance.
@ Policies m = {0, p1, . . .} with ux(x) € U(x) for all x and k.
@ Special scalar o with 0 < o < 1. If & < 1 the problem is called discounted.
@ Cost of stage k: g (X, puk (Xk), Wk).
@ Cost of a policy

JW(XO) = Nle EWk {Zfakg(xkfuk(xk)7 Wk)}

k=0

@ Optimal cost function J*(xp) = min J-(xo)

@ If « = 1 we assume a special cost-free termination state ¢. The objective is to
reach t at minimum expected cost. The problem is called stochastic shortest path
(SSP) problem.

Bertsekas Reinforcement Learning 4/21

Main Results - Finite-State Notation - Discounted Problems

Convergence of VI

Given any initial conditions Jo(1), . .., Jo(n), the sequence {Jk(i)} generated by VI
s (i —u@mZp,, a(iu,)) + adk(j)), i=1,....n,

converges to J* (i) for each i.

Bellman’s equation
The optimal cost function J* = (J*(1),...,J*(n)) satisfies the equation

(i) = min Zp,, (g(i, u,j) + ad())). i=1,....n,

ueU(i)

and is the unique solution of this equation.

Optimality condition
A stationary policy u is optimal if and only if for every state /, u(i) attains the minimum
in the Bellman equation.

Bertsekas Reinforcement Learning 5/21

Additional Results: Bellman Equation and Value lteration for Policies

Fix a policy i with cost function J,,. Change the problem so the only control available at
i'is just u(i) [not the set U(/)].

v

Apply our Bellman equation and VI convergence results:
@ The VI algorithm (for policy),

Jesa () = 32 P () (90 (). d) + 0k(), i=1,....m,

converges to the cost J,, (i) for each i, for any initial conditions Jy(1), ..., Jo(n).
@ J, is the unique solution of the Bellman equation (of policy)

Jui) = " Py () (90 (D). J) + ad()), i =1,..e0m
j=1

@ Solving this linear system of n equations with n unknowns, the costs J,,(/), is
called evaluation of policy p.

@ Evaluation of i can be done by exact solution of the Bellman equation (e.g.,
Gaussian elimination), or iteratively with the VI algorithm (most likely for large n).

@ Similar results hold for SSP problems.

Bertsekas Reinforcement Learning 6/21

Shorthand Notation

We introduce the DP operators

i) = ZP@'(M(")) (9. u(i).J) + o)), i=1..o.m,

(TH() = mln Zp,/(u gli,u,j) +ad(j)), i=1,...,n

@ They provide convenience of notation AND a vehicle for unification.

@ T, and T form the “mathematical signature" of a DP problem, and serve to unify
the DP theory (extensions to minimax, games, infinite spaces problems, etc).

@ Their critical property is monotonicity (as J increases so does T,J and TJ); see
the “Abstract DP" book (DPB, 2018).

All the DP results/algorithms can be written in math shorthand using T and T,

@ VIl algorithm: Jkt1 = Tk, Jky1 = Tudk, K=0,1,. ..
@ Bellman equation: J* = TJ*, J, = T, J,..
@ w is optimal if and only if TJ* = T,J".

Bertsekas Reinforcement Learning

7/21

Contraction Property of 7 and 7,

In our discounted and SSP problems, T and T, are contractions

@ Introduce a (weighted max) norm for the vectors J = (J(1),...,J(n)):
IJ(i)!
J
1= max et
where v(1),..., v(n) are some positive scalars.

@ Definition: A mapping H that maps J = (J(1),...,J(n)) to the vector
HJ = ((HJ)(1),-..,(HJ)(n)) is a contraction if for some p with 0 < p < 1

|HS = HJ'|| < p||J = |, forallJ,J’

@ For our discounted and SSP problems, under our assumptions, T and T, are
contractions (in addition to being monotone).

@ For the discounted problem, p = « and v(i) = 1.

@ This is the mathematical reason why our problems are so nice!

Bertsekas Reinforcement Learning

8/21

Policy Iteration (P1) Algorithm: Generates a Sequence of Policies {<}

Initial Policy

Evaluate Cost Function J,, of Policy Cost
Current policy p Evaluation

Generate “Improved” Policy 1z Policy Improvement

Given the current policy 1%, a Pl consists of two phases:

@ Policy evaluation computes J,«(f), i = 1,..., n, as the solution of the (linear)
Bellman equation system

J(i) = 3 Py (1)) (g(i, 1 (),) + aJ#k(j)), i=1,....n
j=1

@ Policy improvement then computes a new policy p**' as

n
W0 e arg min B py(u) (g0,) + adk(i), i=1,.n
j=1

@ Compagctly (in shorthand): Plis written as T, x1J,x = TJ .

Bertsekas Reinforcement Learning 10/21

Proof of Policy Improvement Property

Pl finite-step convergence: Pl generates an improving sequence of policies, i.e.,
J 1 () < J (i) for all i and k, and terminates with an optimal policy.

= Yy

We will show that J; < J,,, where i is obtained from 1. by Pl

@ Denote by Jy the cost function of a policy that applies x for the first N stages and
applies u thereafter.

@ We have the Bellman equation J..(i) = 37 pj (u(l))((i, (i),) + aJH(j)), S0
) =3 py(a()) (90, 0).) + ah()) < i) (by policy improvement eq.
j=1

@ From the definition of J, and J, monotonicity, and the preceding relation, we have

b(i) = Zp;j(ﬁ(i))(i, 710,) +ads (j) Zp,, ((i)7f)+aJu(/)) = Ji(f)
j=1

50 (i) < Ji (i) < Jo(i) for all i.

@ Continuing similarly, we obtain Jy.1 (/) < Jn(i) < J,.(i) for all i and N. Since
JIv — Jg (VI for @ converges), it follows that Jz < J,..

Bertsekas Reinforcement Learning 11/21

Optimistic PI: Like Standard PI, but Policy Evaluation is Approximate,

and Based on a Finite Number of VI

Generates sequences of cost function approximations {Jx} and policies {.*}
Given the typical function Jx:
@ Policy improvement computes a policy ¥ such that

n
pi(i) € arg min > py(u)(9lis us) + adk(), i=1,..n
j=1

@ Optimistic policy evaluation starts with jk,o = Jk, and uses my VI iterations for
policy ;X to compute Jk1s -, Jk,m, according to

Jiams (i) = - Py (D) (9 (i, 1(1),) + adem(l))
j=1

foralli=1,...,m,m=0,...,mx — 1, and sets k11 = Ji,m, -

Convergence (using a cost improvement argument similar to standard PI)

For the optimistic PI algorithm, we have Jx — J* and Ik = J

Bertsekas Reinforcement Learning 12/21

Multistep Policy Iteration: Policy Improvement with Multistep Lookahead

Motivation: It may yield a better policy p**" than with one-step lookahead, at the
expense of a more complex policy improvement operation.

Given the typical policy j*:

@ Policy evaluation computes J,«(f), i = 1,..., n, as the solution of the (linear)
system of Bellman equations

Jurli) = 32 pa (D) (91 (1)) + s (), T=1,0m

@ Policy improvement with ¢-step lookahead then solves the /-stage problem with
terminal cost function J «. If {fio, . .., fie—1} is the optimal policy of this problem,
then the new policy " is fo.

Convergence (using similar argument to standard PI)

Exact multistep Pl has the same solid convergence properties as its one-step
lookahead counterpart.

Bertsekas Reinforcement Learning

13/21

Policy Iteration for Q-Factors (Can be Used in Model-Free/Monte Carlo

Contexts)
Initial Policy
v
Evaluate Q-Factor @, of Policy Q-Factor
Current policy Evaluation

Generate “Improved” Policy 1 Policy Improvement

Given the typical policy p*:
@ Policy evaluation computes Q,«(i,u), foralli=1,...,n, and u € U(i), as the
solution of the (linear) system of equations

Qi (i, u) = Zp,, ((i u,j)+a0uk(/,uk(j)))

@ Policy improvement then computes a new policy pf*' as

k+1/: . . .
i rg min i,u i=1,...,n
W) € arg min Qi (i,), s

Bertsekas Reinforcement Learning 14/21

A Working Break: Think About Approximate PI

Initial Policy

'

Evaluate Cost Function J, of Policy Cost
Current policy p Evaluation

y

Generate “Improved” Policy 7z | Policy Improvement

How would you introduce approximations into P1? J

What would make sense for:
@ Approximation in policy evaluation?
@ Approximation in policy improvement?

Give examples (problem approximation, rollout, MPC, neural nets ...))

Bertsekas Reinforcement Learning 16/21

Approximation in Value Space for Infinite Horizon Problems

Approximate minimization
First Step “Future”
- —>

mineo Yy i () (90, u.) + T (7))

.

Approximations: Computation of J:
Replace E{-} with nominal values Problem approximation
(certainty equivalence) Rollout

Approximate PI
Parametric approximation
Aggregation

Adaptive simulation
Monte Carlo tree search

We will focus on rollout, and particularly on approximate Pl schemes, which
operate as follows:
@ Several policies 1%, 1!, ..., ™ are generated, starting with an initial policy 1°.

@ Each policy i is evaluated approximately, with a cost function J‘_Lk, often with the
use of a parametric approximation/neural network approach.

@ The next policy ;™" is generated by policy improvement based on J ,«.

@ The approximate evaluation j“m of the last policy in the sequence is used as the
lookahead approximation J in a one-step or multistep lookahead minimization.

V.
Bertsekas Reinforcement Learning 17/21

Rollout

The pure form of rollout : Approximation in value space with J = Ju

@ u is called the base policy, and is usually evaluated by Monte-Carlo.
@ The rollout policy is the result of a single policy improvement using .

@ So the rollout policy improves over the base policy.

>0
Terminal Cost
Approximation J

Lookahead Tree

—f————————— fmm——

. —— {mmmer®
States ijof

Variants of rollout (¢-step lookahead, truncated rollout, terminal cost approx)

@ (-step lookahead, then rollout with policy p for a limited number of steps, and
finally a terminal cost approximation.

@ This is a single optimistic policy iteration combined with multistep lookahead.

Bertsekas Reinforcement Learning

Approximate (Nonoptimistic) Policy lteration - Error Bound - Stability

oy

Error Zone

ol 1 2 Pl favitese

Assume an approximate policy evaluation error satisfying
max ‘J K Juk(i)’ <9

.....

— min Zp,, g(i, u,j) + ad k()| <

ue U(/)

Bertsekas Remforcemem Learning

19/21

Error Bound for the Case Where Policies Converge

Error Zone

PI index k

@ A better error bound (by a factor 1 — «) holds if the generated policy sequence
{1¥} converges to some policy.

@ Convergence of policies is guaranteed in some cases; approximate Pl using
aggregation is one of them.

Bertsekas Reinforcement Learning 20/21

About the Next Lecture

We will cover:
@ Pl with parametric approximation methods
@ Linear programming approach
@ Q-learning
@ Additional methods; temporal differences

PLEASE READ AS MUCH OF SECTIONS 4.7-4.10 AS YOU CAN
PLEASE DOWNLOAD THE LATEST VERSIONS FROM MY WEBSITE

Bertsekas Reinforcement Learning 21/21

	Review of Infinite Horizon Problems
	Exact Policy Iteration
	Approximations with Policy Iteration

