Reinforcement Learning and Optimal Control

ASU, CSE 691, Winter 2019

Dimitri P. Bertsekas dimitrib@mit.edu

Lecture 8

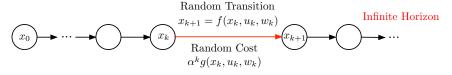
Outline

Review of Infinite Horizon Problems

Exact Policy Iteration

Approximations with Policy Iteration

Stochastic DP Problems



Infinite number of stages, and stationary system and cost

- System $x_{k+1} = f(x_k, u_k, w_k)$ with state, control, and random disturbance.
- Policies $\pi = \{\mu_0, \mu_1, \ldots\}$ with $\mu_k(x) \in U(x)$ for all x and k.
- Special scalar α with $0 < \alpha < 1$. If $\alpha < 1$ the problem is called discounted.
- Cost of stage k: $\alpha^k g(x_k, \mu_k(x_k), w_k)$.
- Cost of a policy

$$J_{\pi}(x_0) = \lim_{N \to \infty} E_{w_k} \left\{ \sum_{k=0}^{N-1} \alpha^k g(x_k, \mu_k(x_k), w_k) \right\}$$

- Optimal cost function $J^*(x_0) = \min_{\pi} J_{\pi}(x_0)$
- If $\alpha = 1$ we assume a special cost-free termination state t. The objective is to reach t at minimum expected cost. The problem is called stochastic shortest path (SSP) problem.

Main Results - Finite-State Notation - Discounted Problems

Convergence of VI

Given any initial conditions $J_0(1), \ldots, J_0(n)$, the sequence $\{J_k(i)\}$ generated by VI

$$J_{k+1}(i) = \min_{u \in U(i)} \sum_{j=1}^{n} p_{ij}(u) (g(i, u, j) + \alpha J_k(j)), \qquad i = 1, \ldots, n,$$

converges to $J^*(i)$ for each i.

Bellman's equation

The optimal cost function $J^* = (J^*(1), \dots, J^*(n))$ satisfies the equation

$$J^*(i) = \min_{u \in U(i)} \sum_{i=1}^n \rho_{ij}(u) (g(i, u, j) + \alpha J^*(j)), \qquad i = 1, \ldots, n,$$

and is the unique solution of this equation.

Optimality condition

A stationary policy μ is optimal if and only if for every state i, $\mu(i)$ attains the minimum in the Bellman equation.

Additional Results: Bellman Equation and Value Iteration for Policies

Fix a policy μ with cost function J_{μ} . Change the problem so the only control available at i is just $\mu(i)$ [not the set U(i)].

Apply our Bellman equation and VI convergence results:

• The VI algorithm (for policy μ),

$$J_{k+1}(i) = \sum_{j=1}^{n} p_{ij}(\mu(i)) \left(g(i,\mu(i),j) + \alpha J_k(j)\right), \qquad i = 1,\ldots,n,$$

converges to the cost $J_{\mu}(i)$ for each i, for any initial conditions $J_0(1), \ldots, J_0(n)$.

• J_{μ} is the unique solution of the Bellman equation (of policy μ)

$$J_{\mu}(i) = \sum_{j=1}^{n} p_{ij}(\mu(i)) \left(g(i,\mu(i),j) + \alpha J_{\mu}(j)\right), \qquad i = 1,\ldots,n$$

- Solving this linear system of n equations with n unknowns, the costs $J_{\mu}(i)$, is called evaluation of policy μ .
- Evaluation of μ can be done by exact solution of the Bellman equation (e.g., Gaussian elimination), or iteratively with the VI algorithm (most likely for large n).
- Similar results hold for SSP problems.

Bertsekas Reinforcement Learning 6/2'

Shorthand Notation

We introduce the DP operators

$$(T_{\mu}J)(i) = \sum_{i=1}^{n} p_{ij}(\mu(i)) \Big(g(i,\mu(i),j) + \alpha J(j)\Big), \qquad i = 1, \dots, n,$$

$$(TJ)(i) = \min_{u \in U(i)} \sum_{i=1}^{n} p_{ij}(u) \Big(g(i,u,j) + \alpha J(j)\Big), \qquad i = 1, \dots, n$$

- They provide convenience of notation AND a vehicle for unification.
- T_{μ} and T form the "mathematical signature" of a DP problem, and serve to unify the DP theory (extensions to minimax, games, infinite spaces problems, etc).
- Their critical property is monotonicity (as J increases so does $T_{\mu}J$ and TJ); see the "Abstract DP" book (DPB, 2018).

All the DP results/algorithms can be written in math shorthand using ${\cal T}$ and ${\cal T}_\mu$

- VI algorithm: $J_{k+1} = TJ_k$, $J_{k+1} = T_{\mu}J_k$, k = 0, 1, ...
- Bellman equation: $J^* = TJ^*$, $J_{\mu} = T_{\mu}J_{\mu}$.
- μ is optimal if and only if $TJ^* = T_{\mu}J^*$.

Bertsekas

Contraction Property of T and T_{μ}

$$(T_{\mu}J)(i) = \sum_{j=1}^{n} p_{ij}(\mu(i)) (g(i,\mu(i),j) + \alpha J(j)), \qquad i = 1, \dots, n,$$

$$(TJ)(i) = \min_{u \in U(i)} \sum_{j=1}^{n} p_{ij}(u) (g(i,u,j) + \alpha J(j)), \qquad i = 1, \dots, n$$

In our discounted and SSP problems, T and T_u are contractions

• Introduce a (weighted max) norm for the vectors $J = (J(1), \dots, J(n))$:

$$||J|| = \max_{i=1,\ldots,n} \frac{|J(i)|}{v(i)},$$

where $v(1), \ldots, v(n)$ are some positive scalars.

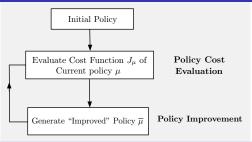
• Definition: A mapping H that maps $J = (J(1), \dots, J(n))$ to the vector $HJ = ((HJ)(1), \dots, (HJ)(n))$ is a contraction if for some ρ with $0 < \rho < 1$

$$||HJ - HJ'|| \le \rho ||J - J'||,$$
 for all J, J'

- For our discounted and SSP problems, under our assumptions, T and T_{μ} are contractions (in addition to being monotone).
- For the discounted problem, $\rho = \alpha$ and $v(i) \equiv 1$.
- This is the mathematical reason why our problems are so nice!

8 / 21

Policy Iteration (PI) Algorithm: Generates a Sequence of Policies $\{\mu^k\}$



Given the current policy μ^k , a PI consists of two phases:

• Policy evaluation computes $J_{\mu^k}(i)$, $i=1,\ldots,n$, as the solution of the (linear) Bellman equation system

$$J_{\mu^{k}}(i) = \sum_{i=1}^{n} \rho_{ij}(\mu^{k}(i)) (g(i, \mu^{k}(i), j) + \alpha J_{\mu^{k}}(j)), \quad i = 1, \dots, n$$

• Policy improvement then computes a new policy μ^{k+1} as

$$\mu^{k+1}(i) \in \arg\min_{u \in U(i)} \sum_{i=1}^{\infty} p_{ij}(u) (g(i, u, j) + \alpha J_{\mu^k}(j)), \quad i = 1, \dots, n$$

• Compactly (in shorthand): PI is written as $T_{\mu^{k+1}}J_{\mu^k} = TJ_{\mu^k}$.

Bertsekas Reinforcement Learning 10 / 21

Proof of Policy Improvement Property

PI finite-step convergence: PI generates an improving sequence of policies, i.e., $J_{\mu^{k+1}}(i) \leq J_{\mu^k}(i)$ for all i and k, and terminates with an optimal policy.

We will show that $J_{\overline{\mu}} \leq J_{\mu}$, where $\overline{\mu}$ is obtained from μ by PI

- Denote by J_N the cost function of a policy that applies $\overline{\mu}$ for the first N stages and applies μ thereafter.
- We have the Bellman equation $J_{\mu}(i) = \sum_{j=1}^{n} p_{ij}(\mu(i)) \Big(g(i,\mu(i),j) + \alpha J_{\mu}(j)\Big)$, so

$$J_1(i) = \sum_{i=1}^n p_{ij}(\overline{\mu}(i)) \Big(g\big(i,\overline{\mu}(i),j\big) + \alpha J_{\mu}(j)\Big) \leq J_{\mu}(i) \qquad \text{(by policy improvement eq.)}$$

ullet From the definition of J_2 and J_1 , monotonicity, and the preceding relation, we have

$$J_2(i) = \sum_{j=1}^n \rho_{ij}(\overline{\mu}(i)) \left(g(i,\overline{\mu}(i),j) + \alpha J_1(j)\right) \leq \sum_{j=1}^n \rho_{ij}(\overline{\mu}(i)) \left(g(i,\overline{\mu}(i),j) + \alpha J_{\mu}(j)\right) = J_1(i)$$

so
$$J_2(i) \le J_1(i) \le J_{\mu}(i)$$
 for all *i*.

• Continuing similarly, we obtain $J_{N+1}(i) \leq J_N(i) \leq J_\mu(i)$ for all i and N. Since $J_N \to J_{\overline{\mu}}$ (VI for $\overline{\mu}$ converges), it follows that $J_{\overline{\mu}} \leq J_\mu$.

Optimistic PI: Like Standard PI, but Policy Evaluation is Approximate, and Based on a Finite Number of VI

Generates sequences of cost function approximations $\{J_k\}$ and policies $\{\mu^k\}$ Given the typical function J_k :

• Policy improvement computes a policy μ^k such that

$$\mu^{k}(i) \in \arg\min_{u \in U(i)} \sum_{j=1}^{n} p_{ij}(u) (g(i, u, j) + \alpha J_{k}(j)), \quad i = 1, \dots, n$$

• Optimistic policy evaluation starts with $\hat{J}_{k,0} = J_k$, and uses m_k VI iterations for policy μ^k to compute $\hat{J}_{k,1}, \dots, \hat{J}_{k,m_k}$ according to

$$\hat{J}_{k,m+1}(i) = \sum_{j=1}^{n} p_{ij}(\mu^{k}(i)) \Big(g(i,\mu^{k}(i),j) + \alpha \hat{J}_{k,m}(j)\Big)$$

for all $i = 1, ..., n, m = 0, ..., m_k - 1$, and sets $J_{k+1} = \hat{J}_{k,m_k}$.

Convergence (using a cost improvement argument similar to standard PI)

For the optimistic PI algorithm, we have $J_k \to J^*$ and $J_{\mu^k} \to J^*$.

Bertsekas Reinforcement Learning 12

Motivation: It may yield a better policy μ^{k+1} than with one-step lookahead, at the expense of a more complex policy improvement operation.

Given the typical policy μ^k :

• Policy evaluation computes $J_{\mu^k}(i)$, $i=1,\ldots,n$, as the solution of the (linear) system of Bellman equations

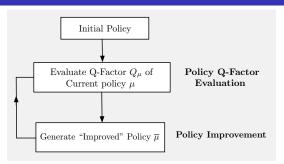
$$J_{\mu^{k}}(i) = \sum_{j=1}^{n} \rho_{ij}(\mu^{k}(i)) \left(g(i, \mu^{k}(i), j) + \alpha J_{\mu^{k}}(j)\right), \quad i = 1, \dots, n$$

• Policy improvement with ℓ -step lookahead then solves the ℓ -stage problem with terminal cost function J_{μ^k} . If $\{\hat{\mu}_0,\dots,\hat{\mu}_{\ell-1}\}$ is the optimal policy of this problem, then the new policy μ^{k+1} is $\hat{\mu}_0$.

Convergence (using similar argument to standard PI)

Exact multistep PI has the same solid convergence properties as its one-step lookahead counterpart.

Policy Iteration for Q-Factors (Can be Used in Model-Free/Monte Carlo Contexts)



Given the typical policy μ^k :

• Policy evaluation computes $Q_{\mu^k}(i, u)$, for all i = 1, ..., n, and $u \in U(i)$, as the solution of the (linear) system of equations

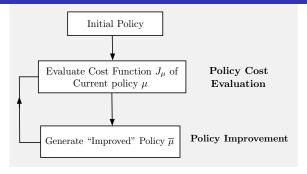
$$Q_{\mu^k}(i,u) = \sum_{j=1}^n p_{ij}(u) \Big(g(i,u,j) + \alpha Q_{\mu^k}(j,\mu^k(j)) \Big)$$

• Policy improvement then computes a new policy μ^{k+1} as

$$\mu^{k+1}(i) \in \arg\min_{u \in U(i)} Q_{\mu^k}(i, u), \qquad i = 1, \dots, n$$

Bertsekas Reinforcement Learning 14 / 21

A Working Break: Think About Approximate PI



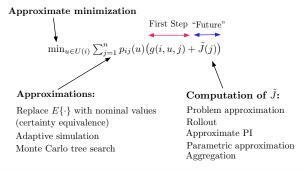
How would you introduce approximations into PI?

What would make sense for:

- Approximation in policy evaluation?
- Approximation in policy improvement?

Give examples (problem approximation, rollout, MPC, neural nets ...)

Approximation in Value Space for Infinite Horizon Problems



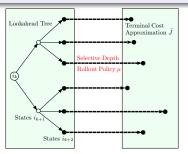
We will focus on rollout, and particularly on approximate PI schemes, which operate as follows:

- Several policies $\mu^0, \mu^1, \dots, \mu^m$ are generated, starting with an initial policy μ^0 .
- Each policy μ^k is evaluated approximately, with a cost function \tilde{J}_{μ^k} , often with the use of a parametric approximation/neural network approach.
- The next policy μ^{k+1} is generated by policy improvement based on \tilde{J}_{μ^k} .
- The approximate evaluation \tilde{J}_{μ^m} of the last policy in the sequence is used as the lookahead approximation \tilde{J} in a one-step or multistep lookahead minimization.

Rollout

The pure form of rollout : Approximation in value space with $\widetilde{J}=J_{\mu}$

- ullet μ is called the base policy, and is usually evaluated by Monte-Carlo.
- The rollout policy is the result of a single policy improvement using μ .
- So the rollout policy improves over the base policy.

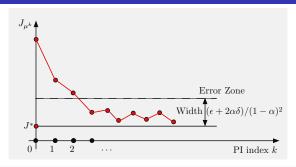


Variants of rollout (ℓ-step lookahead, truncated rollout, terminal cost approx)

- ℓ -step lookahead, then rollout with policy μ for a limited number of steps, and finally a terminal cost approximation.
- This is a single optimistic policy iteration combined with multistep lookahead.

Bertsekas

Approximate (Nonoptimistic) Policy Iteration - Error Bound - Stability



Assume an approximate policy evaluation error satisfying

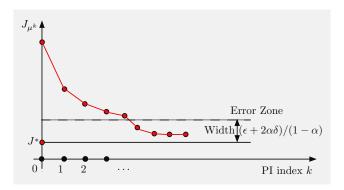
$$\max_{i=1,\ldots,n} \left| \tilde{J}_{\mu^k}(i) - J_{\mu^k}(i) \right| \leq \delta$$

and an approximate policy improvement error satisfying

$$\begin{aligned} \max_{i=1,...,n} \bigg| \sum_{j=1}^{n} p_{ij} (\mu^{k+1}(i)) (g(i,\mu^{k+1}(i),j) + \alpha \tilde{J}_{\mu^{k}}(j)) \\ - \min_{u \in U(i)} \sum_{i=1}^{n} p_{ij}(u) (g(i,u,j) + \alpha \tilde{J}_{\mu^{k}}(j)) \bigg| \leq \epsilon \end{aligned}$$

Bertsekas Reinforcement Learning 19

Error Bound for the Case Where Policies Converge



- A better error bound (by a factor 1 $-\alpha$) holds if the generated policy sequence $\{\mu^k\}$ converges to some policy.
- Convergence of policies is guaranteed in some cases; approximate PI using aggregation is one of them.

About the Next Lecture

We will cover:

- PI with parametric approximation methods
- Linear programming approach
- Q-learning
- Additional methods; temporal differences

PLEASE READ AS MUCH OF SECTIONS 4.7-4.10 AS YOU CAN PLEASE DOWNLOAD THE LATEST VERSIONS FROM MY WEBSITE

21 / 21