Bertsekas

Reinforcement Learning and Optimal Control

ASU, CSE 691, Winter 2019

Dimitri P. Bertsekas
dimitrib@mit.edu

Lecture 5

Reinforcement Learning

1/21

° Review of Approximation in Value Space and Rollout
e On-Line Rollout for Deterministic Infinite Spaces Problems
e Model Predictive Control

° Parametric Approximation Architectures

Bertsekas Reinforcement Learning 2/21

Recall Approximation in Value Space

First Step “Future”

Approximate Min

\ N
min E{gk(xlm Uk, Wi)+ Jp 11 (%ﬂ)}
\

Uk
Approximate E{-} Approximate Cost-to-Go Jy 11
Certainty equivalence Problem approximation
Adaptive simulation Rollout, Model Predictive Control

Parametric approximation
Neural nets
Aggregation

ONE-STEP LOOKAHEAD

Monte Carlo tree search

At State zy,
DP minimization
First ¢ Steps “Future”
l = i -

k+o—1
min E < g (vg, ug, wi) + Z Gk (xzrm, tom (T, u:m) + Tt (Thsr)
Uk sHfe4-15+05 Hig+0—1 ka1

Cost-to-go

Lookahead Minimization Approximation

MULTISTEP LOOKAHEAD

Bertsekas Reinforcement Learning 4/21

The Pure Form of Rollout - A Review

At State z;

DP minimization

First ¢ Steps “Future”
l k4+£—1
min E 9k (l’k-, U, U'k) + Z Ik (wITIa ﬂm(wm)«, wm) + Jk+l(xk+[)
Yot Lol e—1 m=k+1
Lookahead Minimization Heuristic Cost

Run the Base Policy

Use a suboptimal/heuristic policy at the end of limited lookahead J

@ The heuristic is called base policy (or default policy).

@ The lookahead policy is called rollout policy.

@ Policy improvement; connection with policy iteration.

@ Involves simulation and on-line implementation; suitable for on-line replanning.
@ Deterministic rollout lends itself to on-line implementation.

Bertsekas Reinforcement Learning 5/21

General Structure of Deterministic Rollout

Next States

istic
Current State Heuristi

Heuristic

Heuristic

<
&

Q-Factors

@ At state x, for every pair (X, ux), ux € Uk(Xk), we generate a Q-factor
Qu(xk, Uk) = Gk (Xk, Ux) + Hi1 (Fe(Xk, Ux))

using the base heuristic [Hk+1(Xk+1) is the heuristic cost starting from x1].
@ We select the control ux with minimal Q-factor.
@ We move to next state xx. 1, and continue.

@ A key question for today’s lecture: What if we have a continuous/infinite control
set?

Bertsekas Reinforcement Learning 6/21

Classical Control Problems - Infinite Control Spaces

REGULATION PROBLEM
Keep the state near the origin

Fixed Mobile obstacles
obstacles

Velocity
sonstraints

Acceleration

PATH PLANNING (W comsians
A Keep State Close to a
Trajectory

Need to deal with state and control constraints; linear-quadratic is often inadequate)

Bertsekas Reinforcement Learning 8/21

On-Line Rollout for Deterministic Infinite-Spaces Problems

Next States States
Tp41 Tkt

Current State

Base Heuristic
Minimization

Stage k Stages
k+1,...,k+0-1

Suppose the control space is infinite
@ One possibility is discretization of Ux(xk); but excessive number of Q-factors.
@ Another possibility is to use optimization heuristics that look (¢ — 1) steps ahead.

@ Seemlessly combine the kth stage minimization and the optimization heuristic into
a single ¢-stage deterministic optimization.

@ Can solve it by nonlinear programming/optimal control methods (e.g., quadratic
programming, gradient-based).

Bertsekas Reinforcement Learning 9/21

Model Predictive Control for Regulation Problems

Next States
Tk+1

Current State State

(¢ — 1)-Stages Tt =0

Minimization

) Stage k B Stages
kE+1,...k+0-1

@ System: Xir1 = fi(Xk, Uk)

@ Cost per stage: gk(x«, ux) > 0, the origin 0 is cost-free and absorbing.

@ State and control constraints: xx € Xk, ux € Uk(xx) for all k

@ At x, solve an ¢-step lookahead version of the problem, requiring Xk, = 0 while
satisfying the state and control constraints.

® If {Uk, ..., Ukie—1} is the control sequence so obtained, apply .

Bertsekas Reinforcement Learning 11/21

Relation to Rollout

Next States
Th41

Current State State
Zrap =0
(¢ —1)-Stages Fhit

Minimization

‘ Stage k Stages
k+1,..., k+0-1

@ ltis rollout with base heuristic the (¢ — 1)-step min (0 is cost-free and absorbing).
@ This heuristic is sequentially improving (not sequentially consistent)

min) [k (Xk, Uk) + Hicer (Fe(Xk, uk)) | < Hie(X)

Uk € Uk (X

where Hi(xk), Hk+1(Xk+1): optimal heuristic costs starting at xx and Xi1.

@ Sequential improvement implies “stability": >~72 gk(Xk, Uk) < Ho(xo) < oo, where
{Xo, Uo, X1, U1, ...} is the state and control sequence generated by MPC.

@ Major issue: How do we know that the optimization of the base heuristic is
solvable (e.g., there exists £ such that we can drive xi., to 0 for all xx € Xx while
observing the state and control constraints).

Bertsekas Reinforcement Learning 12/21

Reachability of Target Tubes (DPB, 1969, PhD Thesis)

—

Target Tube {Xo, X1,..., Xn}
must be reachable

0/ k

@ The tube of state constraint sets {Xo, X1, ..., Xy} is reachable if the state xx can
be kept within it for all kK when the initial state xo belongs to Xp.

@ If {Xo, Xi,..., Xn} is not reachable, MPC will not work; if it is reachable MPC will
“typically” work. We may try to exiract a reachable subset { Xo, X1, ..., Xn}, with
Xk C Xk, for all k. Then use X in place of Xk.

@ Reachability algorithm: Start with Xy = Xy, and proceed backwards

Xy = {x« € Xx | for some ux € Ux(xk) we have fi(X, Ux) € X1}

@ Generally, it is difficult to compute the sets X of the target tube, but algorithms
that produce inner approximations have been constructed.

Bertsekas Reinforcement Learning 13/21

A Working Break: Challenge Question

—

System: zp+1 = 2Tk + ug
Control constraint: |ug| <1

O/ k= Cost per stage: z7 + u?

Largest reachable tube

@ Isittrue that {(—1,1),(1,1),...,(—1,1)} is the largest reachable tube?

@ Is the tube
{[_27 2]7 [_2a 2]a 0009 [_27 2]}

reachable? How about the tube

@ How will MPC with ¢ = 2 work starting from xo = 1/2 and from xo = 2?

Bertsekas Reinforcement Learning 14/21

Some Answers (see the textbook for details)

—

Largest reachable tube

System: xpi1 = 22k + ug
Control constraint: |ug| <1

0/ k:= Cost per stage: 27 + u?

@ If |xk| > 1 the state cannot be brought back towards 0; if |xx| < 1 it can.

@ If |xx| < 1/2 the state can be driven to 0 in one step; if 1/2 < |xk| < 1 the state can
be driven to 0 in finitely many steps (the number increases as | x| is closer to 1).

@ If |xk| = 1 the state can at best be kept where it is.

e {[-1,1],[-1,1],...,[—1, 1]} is the largest reachable tube.

e {(—1,1),(1,1),...,(=1,1)} is the largest tube from within which the state can be
driven to 0 in a finite number of steps.

@ For ¢ =2, MPC must start from |xo| < 1/2. It has the form dx = —(5/3)x«. Itis
stable and drives the state to 0 asymptotically (not in a finite number of steps).

Bertsekas Reinforcement Learning 15/21

Parametric Approximation in Value Space

Approximation Architectures
@ A class of functions J(x, r) that depend on x and a vector r = (ri, ...,) of m
“tunable" scalar parameters (or weights).
@ We adjust r to change J and “match" the cost function approximated.
@ Training the architecture: The algorithm to choose r (typically use data/regression).

@ Architectures are linear or nonlinear, depending on whether J(x, r) is linear or
nonlinearin r.

@ Architectures are feature-based if they depend on x via a feature vector ¢(x),
J(x,r) = J(é(x), r),

where J is some function. Idea: Features capture dominant nonlinearities.
@ A linear feature-based architecture:

J(x,r) = Z ride(x

where r, and ¢.(x) are the ¢th components of r and ¢(x).
@ Local vs global: Change in a single weight affects J locally vs globally.

Bertsekas Reinforcement Learning 17/21

Generic Example Architectures

@ Piecewise constant approximation (local): Partition the state space into subsets
S1,...,Sm. Let the ¢th feature be defined by membership in the set Sy, i.e.,
de(x) =1if s € S, and ¢¢(x) = 0if s ¢ S,. The architecture

J(x,r) = ZQ(M

is piecewise constant with value r; for all x within the set S,.
@ Quadratic polynom|al approximation (global): J(x, r) is quadratic in the
components x' of x. Consider features
¢0(X):17 ¢i(X):Xi7 ¢i/(X):Xin7 ivj:17"'>n~

A linear feature-based approximation architecture:

J(x, r)_ro+Zr,x +ZZr,jxx’

i=1 j=i

The parameter vector r has components ry, r;, and rj.

@ General polynomial architectures: Polynomials in the components x', ..., x".
Another possibility: Polynomials of features.

Bertsekas Reinforcement Learning 18/21

Examples of Domain-Specific Feature-Based Architectures

LY

qax™ Feature
e | Extraction
B sws ox

Features:

Material Balance,
Mobility,

Safety, etc

Weighting of
Features

Approximate
score

Chess

Bertsekas

Tetris

Reinforcement Learning

19/21

Neural Nets: An Architecture that does not Require Knowledge of

Features

T,V
> 7|4 ¢1(,v) A Cost
oximatio
State x y(a:l Ay(z) +b ¢2(z,v) pgfgzs)({;: v) o
- 7|¢ Pm(z,v)
State Linear Nonlinear Linear
Encoding Layer Layer Weighting
Parameter Parameter
v =(A,b) r
FEATURES

20/21

Bertsekas Reinforcement Learning

About the Next Lecture

We will cover:
@ Training of parametric approximation architectures
@ Neural networks; how do we use
@ Sequential Dynamic Programming Approximation
@ Q-factor Parametric Approximation

PLEASE READ AS MUCH OF SECTIONS 3.1.3, 3.2-3.4 AS YOU CAN
PLEASE DOWNLOAD THE LATEST VERSIONS FROM MY WEBSITE

Bertsekas Reinforcement Learning 21/21

	Review of Approximation in Value Space and Rollout
	On-Line Rollout for Deterministic Infinite Spaces Problems
	Model Predictive Control
	Parametric Approximation Architectures

