Bertsekas

Reinforcement Learning and Optimal Control

ASU, CSE 691, Winter 2019

Dimitri P. Bertsekas
dimitrib@mit.edu

Lecture 4

Reinforcement Learning

1/21

0 Approximation in Value Space and Rollout
e On-Line Rollout for Deterministic Finite-State Problems

@ Stochastic Rollout and Monte Carlo Tree Search

Bertsekas Reinforcement Learning 2/21

Recall Approximation in Value Space

Approximate Min

1 @ ”
Discretization First Step &
HQlLiIl E{gk (Thy Wiy Wi)+ Tpe1 (Tg11) }
, X

Approximate F{-} Approximate Cost-to-Go J, k1
Certainty equivalence Problem approxmlat.lor.l
Adaptive simulation Rollout, Model Predictive Control
Monte Carlo tree search Parametric approximation

Neural nets

Aggregation

ONE-STEP LOOKAHEAD
At State z;,
DP minimization
First ¢ Steps “Future”
! —

k+0—1
min E {gk(;lfk, Uk, W) + Z i (@m s pm (Tm), wm) + J k+1{(117k+1{>}

Uk sHfet-15-+05 Hk+e—1 m=k+1

Cost-to-go

Lookahead Minimization Approximation

MULTISTEP LOOKAHEAD

Bertsekas Reinforcement Learning 4/21

The Pure Form of Rollout

At State zy,

DP minimization
First ¢ Steps “Future”

l k4+£—1

min E {gk (fl"k'-, U, u'k) + Z 9k (i)-'m; #771,(55771>«, wm,) + vjk+l($k+é)}

Ul s B 15501 i T

Lookahead Minimization Heuristic Cost
Run the Base Policy

Use a suboptimal/heuristic policy at the end of limited lookahead)

@ The heuristic is called base policy (or default policy).
@ The lookahead policy is called rollout policy.

@ The aim of rollout is policy improvement (i.e., rollout policy performs better than
the base policy); true under some assumptions. In practice: good performance,
very reliable, very simple to implement.

@ Rollout in its “standard" forms involves simulation and on-line implementation.

@ The simulation can be prohibitively expensive (so further approximations may be
needed); particularly for stochastic problems and multistep lookahead.

Bertsekas Reinforcement Learning 5/21

Connection/Overlap with Other Methods

Connection with problem approximation
@ Suppose the base heuristic is an optimal policy for the approximating problem.

@ Then rollout is lookahead with problem approximation: the optimal cost of the
approximating problem is used as lookahead function.

@ True for both one-step and multistep lookahead.

Connection with policy iteration/self learning - Infinite horizon problems
@ Rollout can be viewed as one-step policy iteration (more on this later).

@ Cost improvement property of rollout is based on the fundamental cost
improvement property of policy iteration (more on this later).

@ Policy iteration can be viewed as “perpetual” rollout, i.e., every so often replace the
base policy with the current rollout policy (or an approximation thereoff).

4

Bertsekas Reinforcement Learning 6/21

General Structure of Deterministic Rollout

Next States

Current State

Heuristic

Q-Factors

@ At state x, for every pair (X, ux), ux € Uk(Xk), we generate a Q-factor
Qu(Xk, Uk) = Gk (Xk, Ux) + Hii1 (F(Xk, Ux))

using the base heuristic [Hk+1(Xk+1) is the heuristic cost starting from x1].
@ We select the control ux with minimal Q-factor.
@ We move to next state xx. 1, and continue.

@ Multistep lookahead versions (length of lookahead limited by the branching factor
of the lookahead tree).

Bertsekas Reinforcement Learning 8/21

Traveling Salesman Example of Rollout with a Greedy Heuristic

Next Cities Complete Tours

o) Current g
Initial City Partial Tour

Nearest Neighbor
Heuristic

Nearest Neighbor
Heuristic

Nearest Neighbor
Heuristic

@ Ncitiesc=0,..., N — 1; each pair of distinct cities ¢, ¢/, has traversal cost
g(c, c').

@ Find a minimum cost tour that visits each city once and returns to the initial city.

@ Recall that it can be viewed as a shortest path/deterministic DP problem. States

are the partial tours, i.e., the sequences of ordered collections of distinct cities
exponentially growing size of state space.

@ Nearest neighbor heuristic; chooses the best one-hop extension of a partial tour.

@ Rollout algorithm: Start at some city; given a partial tour {co, . .., ck} of distinct
cities, select as next city cx+1 the one that yielded the minimum cost tour under the
nearest neighbor heuristic.

Bertsekas Reinforcement Learning 9/21

Criteria for Cost Improvement of a Rollout Algorithm - Sequential

Consistency

@ Special conditions must hold to guarantee that the rollout policy has no worse
performance than the base heuristic.

@ Two such conditions are sequential consistency and sequential improvement.
@ A sequentially consistent heuristic is also sequentially improving.
@ Any heuristic can be modified to become sequentially improving.

The base heuristic is sequentially consistent if it “stays the course"
@ If the heuristic generates the sequence

{ X X155 XN}
starting from state x, it also generates the sequence
{Xk+1 geeoyg XN}

starting from state xj1.

@ The base heuristic is sequentially consistent if and only if it can be implemented
with a legitimate DP policy {uo, . . ., un—1}-

@ Greedy heuristics are sequentially consistent.

Bertsekas Reinforcement Learning

10/21

Policy Improvement for Sequentially Improving Heuristics

Sequential improvement holds if for all xx (Best heuristic Q-factor < Heuristic cost):

min : [gk(Xk, Uk) + Hit (Fe(Xx, Uk))] < Hie(xk),

Uy € U (Xk

where Hi(xx) is the cost of the trajectory generated by the heuristic starting from x.
True for a sequentially consistent heuristic [Hk(x«x) is the Q-factor of the heuristic at x].

Cost improvement property for a sequentially improving heuristic

Let the rollout policy be & = {jio, - . ., fin—1}, and let Jx = (x«) denote its cost starting
from xx. Then for all xx and k, Ji = (Xx) < Hk(Xk).

Proof by induction: It holds for k = N, since Jy > = Hy = gn. Assume that it
holds for index k + 1.

Ji#(Xk) = gk (X, fix (X)) + Jks1,7 (fk (XK, ﬁk(Xk)))
< Gk (Xk, fik(Xk)) + Hicer (Fe(Xk, fik (X))
= min [gk(Xk, Uk) + Hk+1 (fk(Xk7 uk))]

Uk € Uy (xk)

< Hk(x«)

Bertsekas Reinforcement Learning 1/21

A Working Break: Challenge Question

m
020 %20
<
CRRL
(N,-N) g((,;)v’i\/z‘\)m
s o| %

@ Walk on a line of length 2N starting at position 0. At each of N steps, move one
unit to the left or one unit to the right.

@ Objective is to land at a position i of small cost g(i) after N steps.

@ Question: Consider a base heuristic that takes steps to the right only. How will the
rollout perform compared to the base heuristic?

@ Compare with a superheuristic/combination of two heuristics: 1) Move only to the
right, and 2) Move only to the left. Base heuristic chooses the path of best cost.

Bertsekas Reinforcement Learning 12/21

Fortified Rollout: Restores Cost Improvement for Base Heuristics that

are not Sequentially Consistent

Tentative trajectory Ty

Heuristic

Current State
Heuristic

Heuristic
Permanent trajectory Py

@ Upon reaching state x it stores the permanent trajectory
Pi = {xo, Uo, .., Uxk—1, Xk}

that has been constructed up to stage k, called, and it also stores a tentative
trajectory B
Tk = {Xk, Uk, Xk+1, Uk, - - -, UN—1, XN}

@ The tentative trajectory is such that Px U Ty is the best end-to-end trajectory
computed up to stage k of the algorithm.

@ At each step follow the best trajectory.

Bertsekas Reinforcement Learning 13/21

Multistep Rollout with Terminal Cost Approximation
Lookahead V T ""',. .
Terminal Cost _
Approximation .J

@ oo ---»®

States Tji2

@ Saves computation but the cost improvement property is lost.

@ We can prove cost improvement, assuming sequential consistency and a special
property of the terminal cost function approximation that resembles sequential
improvement (more on this when we discuss infinite horizon rollout).

@ ltis not necessarily true that longer lookahead leads to improved performance; but
usually true (similar counterexamples as in the last lecture).

@ It is not necessarily true that increasing the length of the rollout leads to improved
performance (some examples indicate this). Moreover, long rollout is costly.

@ Experimentation with length of rollout and terminal cost function approximation are
recommended.

v

Bertsekas Reinforcement Learning 14/21

Stochastic Rollout - Cost Improvement

At State xy,

DP minimization .
First £ Steps “Future”

l k+0—1

min E {gl«(ka Uk, wl-") + Z 9k (xm-, /LHL(‘/I’,HL)a 'wm) + jk+/ (IIH»Z)}

Uk Hfgt-15e sk 0—1 m=k+1

Lookahead Minimization Heuristic Cost
Run the Base Policy

Consider the pure case (no truncation, no terminal cost approximation)

@ Assume that the base heuristic is a legitimate policy = = {uo, ..., un—1} (i.e., is
sequentially consistent, in the context of deterministic problems).
@ Let # = {uo,. .., un—1} be the rollout policy. Then cost improvement is obtained
Jix(Xk) < Ik, (Xx), for all x, and k.

@ Essentially identical induction proof as for the sequentially improving case (see the
text).

4

Bertsekas Reinforcement Learning 16/21

Backgammon Example

Possible Moves

i

|

Av. Score by Av. Score by Av. Score by Av. Score by
Monte-Carlo Monte-Carlo Monte-Carlo Monte-Carlo
Simulation Simulation Simulation Simulation

@ Announced by Tesauro in 1996.

@ Truncated rollout with cost function approximation provided by TD-Gammon
(earlier program involving a neural network trained by a form of policy iteration).

@ Plays better than TD-Gammon, and better than any human.

@ Too slow for real-time play (without parallel hardware), due to excessive simulation
time.

Bertsekas Reinforcement Learning 17/21

Monte Carlo Tree Search - Motivation

We assumed equal effort for evaluation of Q-factors of all controls at a state xi
Drawbacks:

@ The trajectories may be too long because the horizon length N is large (or infinite,
in an infinite horizon context).

@ Some of the controls u,x may be clearly inferior to others, and may not be worth as
much sampling effort.

@ Some of the controls uk that appear to be promising, may be worth exploring
better through multistep lookahead.

Monte Carlo tree search (MCTS) is a “randomized" form of lookahead

@ MCTS aims to trade off computational economy with a hopefully small risk of
degradation in performance.

@ It involves adaptive simulation (simulation effort adapted to the perceived quality of
different controls).

@ Aims to balance exploitation (extra simulation effort on controls that look
promising) and exploration (adequate exploration of the potential of all controls).

v

Bertsekas Reinforcement Learning 18/21

Monte Carlo Tree Search - Adaptive Simulation

Control 1

Simulation

Current State Control 2

Simulation

Control 3 Simulation

Sample Q-Factors

Find a control &k that minimizes the approximate Q-factor

Qi (X, Uk) = E{gk(xlw u, wie) + Ji1 (F(xk, U, Wk))}

over ux € Uk(xk), by averaging samples of Qx(xk, Ux).

Assume that Uk (xx) contains m elements, denoted 1,..., m

@ After the nth sampling period we have Q. », the empirical mean of the Q-factor of
control / (total sample value divided by total number of samples).

@ How do we use the estimates Q;, to select the control to sample next?

Bertsekas Reinforcement Learning 19/21

MCTS Based on Statistical Tests

Qi+ Rin

Simulation

Current State -
Simulation

Simulation

Sample Q-Factors

A good sampling policy balances exploitation (sample controls that seem most
promising, i.e., a small Q;,,) and exploration (sample controls with small sample count)

v

@ A popular strategy: Sample next the control / that minimizes the sum Q; » + Ri,»
where R; , is an exploration index.

@ R, is based on a confidence interval formula and depends on the sample count s;
of control i (which comes from analysis of multiarmed bandit problems).

@ The UCB rule (upper confidence bound) sets R, = —c+/log n/s;, where c is a
positive constant, selected empirically (values ¢ ~ /2 are suggested, assuming
that @Q;,, is normalized to take values in the range [—1, 0]).

@ MCTS with UCB rule has been extended to multistep lookahead.

Bertsekas Reinforcement Learning 20/21

About the Next Lecture

We will cover:
@ Model predictive control
@ Approximation architectures
@ Training approximation architectures

PLEASE READ AS MUCH OF SECTIONS 2.5, 3.1 AS YOU CAN
PLEASE DOWNLOAD THE LATEST VERSIONS FROM MY WEBSITE

Bertsekas Reinforcement Learning 21/21

	Approximation in Value Space and Rollout
	On-Line Rollout for Deterministic Finite-State Problems
	Stochastic Rollout and Monte Carlo Tree Search

