Bertsekas

Reinforcement Learning and Optimal Control

ASU, CSE 691, Winter 2019

Dimitri P. Bertsekas
dimitrib@mit.edu

Lecture 3

Reinforcement Learning

1/25

° Approximation in Value and Policy Space
e General Issues of Approximation in Value Space
e Special Multistep Lookahead Issues

° Problem Approximation Schemes

Bertsekas Reinforcement Learning 2/25

Recall the Stochastic DP Algorithm

Produces the optimal costs J;(xx) of the tail subproblems that start at xx
Start with Jy(xnv) = gn(xn), and for k =0,...,N — 1, let

Ji(X) = min E{gk(xk,uk,wk)+JZ+1(fk(xk,uk,Wk))}, for all x.
Uy € Uk (xk)

@ The optimal cost J*(xp) is obtained at the last step: J; (x0) = J* (o).

Online implementation of the optimal policy, given J;, ..., J§_,

Sequentially, going forward, for k = 0,1,..., N — 1, observe xx and apply

Ug €arg min)E{Qk(X;n Ui, Wie) + Ji g1 (fie(Xc, Uiy Wk))}'

Uk € Uy (Xk

The main difficulties: Too much computation, too much memory storage.

v

Approximation in value space: Use Ji in place of J; ; possibly approximate E{-} and min,,.

Bertsekas Reinforcement Learning 4/25

Approximation in Value Space: One-Step Lookahead

Approximate Min

i “ L)
Discretization < First Step . < Future N
Hl}in E{gk(:pka Uk, wk)+Jk+1 (xk—i—l)}

Approximate E{-} Approximate Cost-to-Go Jy11
Certainty equivalence Problem approximation
Adaptive simulation Rollout, Model Predictive Control
Monte Carlo tree search Parametric approximation

Neural nets

Aggregation

Approximation in value space uses Jx 1 (in place of Jis1)
and lookahead minimization, to construct suboptimal control law /i, at time k.

Three main Issues; they can be addressed separately
@ How to construct Ji, k = 1,..., N.
@ How to simplify E{-} operation.
@ How to simplify min operation.

Bertsekas Reinforcement Learning 5/25

Approximation in Value Space: Multistep Lookahead

At State z;

DP minimization

First ¢ Steps “Future”
min E{flk:(«'lfk-, Uk, “/'k') + Z gm (11/'m,~ N’m(il;'m,% 'wm) + Jk’+€ (xk'+l)}
Uk K415 k401 S
Cost-to-go

Lookahead Minimization Approximation

@ At state xk, we solve an ¢-stage version of the DP problem with x, as the initial
state and Jx. . as the terminal cost function.

@ Use the first control of the ¢-stage policy thus obtained, while discarding the others.

Can view /-step lookahead as a special case of one-step lookahead:

The “effective” one-step lookahead function is the optimal cost function of an
(¢ — 1)-stage DP problem with terminal cost J.¢.

Bertsekas Reinforcement Learning 6/25

Approximation in Policy Space: The Major Alternative to Approximation

in Value Space

@ |dea: Select the policy by optimization over a suitably restricted class of policies.

@ The restricted class is usually a parametric family of policies pux(Xk, rk),
k=0,...,N—1, of some form, where rx is a parameter (e.g., a neural net).

@ Important advantage once the parameters r, are computed: The computation of
controls during on-line operation of the system is often much easier: At state x
apply ux = pk(Xk, rk)-

Approximation in policy space on top of approximation in value space

@ Compute approximate cost-to-go functions Jx 1, k =0,..., N — 1.

@ This defines the corresponding suboptimal policy jix, k =0, ..., N — 1, through
one-step or multistep lookahead.

@ Approximate fix using some form of regression and a training set consisting of a
large number q of sample pairs (x¢, ug), s=1,...,q, where ui = fik(Xg).

@ Example: Introduce a parametric family of policies pux(Xk, rx), k =0,...,N — 1, of
some form, where r is a parameter. Then estimate the parameters rx by

q
r € arg mrinz [k — k(i)|
s=1

Bertsekas Reinforcement Learning 7/25

On-Line and Off-Line Lookahead Implementations

Approximate Min

irs “ 9
Discretization First Step &
min E{gk(xk, Uk, Wi)+ 1 (g;k,+1)}
Uk \
Approximate E{-} Approximate Cost-to-Go Jy 11
Certainty equivalence Problem appI'OXIHIat}OI}
Adaptive simulation Rolilout, Model Pre.dlfttl.ve Control
Monte Carlo tree search Parametric approximation
Neural nets
Aggregation

@ For many-state problems, the minimizing controls jix(xx) are computed on-line
(storage issue).

@ Off-line methods: All the functions Jx.1 are computed for every k, before the
control process begins.

@ Examples of off-line methods: Neural network and other parametric
approximations; also aggregation.

@ On-line methods: The values Jx1(x«1) are computed only at the relevant next
states xx+1, and are used to compute the control to be applied at the N time steps.

@ Examples of on-line methods: Rollout and model predictive control.
@ Rollout is well-suited for on-line replanning, but lots of on-line computation.

Bertsekas Reinforcement Learning 9/25

Simplifying the Minimization of the Expected Value in Lookahead

Schemes

min E{gk(xk, Uk, Wie) + it (Fe(Xk, Uk, Wk))}

Uk € Uy (xk)

o If Ux(xk) is a finite set, the minimization can be done by brute force.

@ If Uk(xx) is an infinite set, it may be replaced by a finite set through discretization.

@ For deterministic problems and continuous control spaces, a more efficient
alternative may be to use nonlinear programming techniques.

@ For stochastic problems and continuous control spaces, we may use stochastic
programming. Lookahead must be short because of the high branching factor of
the lookahead tree when the problem is stochastic.

One possibility to deal with the E{-}:
Assumed certainty equivalence, i.e., choose a typical value W of w, and use the
control fix(xx) that solves the deterministic problem

min [Qk(Xk, Uk, Wie) + et (Fe(Xk, Uk, Wk))}
uy € Uk (xk)

However, this may degrade performance significantly.

Bertsekas Reinforcement Learning 10/25

Model-Based Versus Model-Free Implementation

Our layman’s use of the term “model-free": A method is called model-free if it involves
calculations of expected values using Monte Carlo simulation.

Model-free is necessary when:

@ A mathematical model of the probabilities px(wx | Xk, ux) is not available but a
computer model/simulator is. For any (xx, uk), it simulates sample probabilistic
transitions to a successor state xx..1, and generates the corresponding transition
costs.

@ When for reasons of computational efficiency we prefer to compute the expected
value by using sampling and Monte Carlo simulation; e.g., approximate an integral
or a huge sum of numbers by a Monte Carlo estimate.

v

Principal example: Calculations of approximate Q-factors in lookahead
schemes

E{gk(xk, Uk, Wi) + Tt (e (X, Uk, Wk))}

(assuming Jx1 has been computed).

Bertsekas Reinforcement Learning 11/25

Model-Free Q-Factor Calculation for Stochastic Problems

Sample

Sample
State z}; Next State 25 .. | =~ Sample Q-Factor
Simulator O Jea _ >
Sample Sample . By = g5 + Jra (25 q)
Control uj, Transition Cost g,

@ Use the simulator to collect a large number of “representative” samples of
state-control-successor states-stage cost quadruplets (xg, ug, X¢. 1, gi), and
corresponding sample Q-factors

5E:g:+jk+1(xff+1)v s:17"'aq

@ Introduce a parametric family of Q-factors Qk(Xx, Ux, k).
@ Determine the parameter vector 7, by the least-squares regression

q

_ . ~ 2

T« € arg rr;km E (Qu(XK, U, k) — BR)
s=1

@ Use the policy

ﬂk(Xk) € arg min ék(Xk, Uk,Fk)
Uk € Uk (xk)

Bertsekas Reinforcement Learning 12/25

Multistep Lookahead Issues

At State z,

DP minimization

First ¢ Steps “Future”
l k+0—1
min E{gk(wka Uk “Jk) + Z Im (-777717 /Lm(*mm)) U«'m) + Jrte (l’k.t,-g)}
Upgs Mg 15 Pkt €—1 i
Cost-to-go

Lookahead Minimization Approximation

Main hope

@ Minimization over many steps will work better than minimization over few steps
(with long enough lookahead we are optimal).

@ By using a long-step lookahead, we can afford a simpler/less accurate cost-to-go
approximation.

Main Issue

Minimization over many stages is costly; stochastic problems are harder because of a
larger branching factor of the lookahead tree.

Bertsekas Reinforcement Learning 14/25

Multistep Lookahead and Deterministic Problems

ot—0-

C/ o
/O/‘mion
Jese
~ o1
Lookahead treexo/
¢ Steps T

Shortest path problem

—
Cost Function

\

If the problem is deterministic and finite-state, the lookahead minimization is a shortest
path problem and may be solved on-line.

v

If the problem is deterministic and continuous-state/control, the lookahead minimization
may be quickly solvable by nonlinear programming (model predictive control case).

4

If the problem is stochastic and finite-state, the lookahead minimization can be split into
a first stochastic step and a deterministic remainder; i.e., use a deterministic shortest
path problem approximation for the remaining steps.

Bertsekas Reinforcement Learning 15/25

Let’s Take a Working Break to Consider the Following Challenge

Questions

Question 1

Consider one-step lookahead with two different cost function approximations Jk+1 and
Jk+1. Assume that Ji,+ is “much closer" to Ji,¢ (in any way you may think of).
Will Jx.1+ produce a better policy than Jri1?

Question 2

Consider multistep lookahead.
Will longer lookahead produce a better policy than shorter lookahead?

Bertsekas Reinforcement Learning 16/25

The Answers are NO and NO

Good approximation

Qu(wy,u)

Poor Approximation

Qu(wr,u)
/

Qulwr.u)

Qr(n, u)

[
—s

| PARN u | e uy u
Qi@ u) — Qu(wr, 1) Qi@ u) — Qu(wx, 1)

I
.

h
.

Constant shift in Q-factor does not affect the minimizing control. For a good suboptimal
policy, the “slope" of the Q-factor difference Qx(xx, u) — Qk(Xk, u) should be small. J

Optimal trajectory

Optimal

Initial

State i .
. “Deceptive” X
Subobdimal High Low High
u'

Cost _ Cost Cost

£ Stages

£+ 1 Stages

Problem with “edge effects": Two controls, u (optimal) and U’ (suboptimal), and cost
function approximation Jx(xx) = 0. u will be preferred based on ¢-step lookahead. v’
will be preferred based on (¢ + 1)-step lookahead.

Bertsekas Reinforcement Learning 17/25

Recall Lookahead Methods Involving Problem Approximation

i in E Jurr (£
fik(xx) € arg qu?JLr(]xk) {gk(Xk, Uk, Wi) + Jirt (e (X, Uk, Wk))}

Ji+1 is the optimal cost function of a simpler problem
How this is done is typically problem-dependent

Examples
@ Enforced decomposition of systems that consist of weakly coupled subsystems.
Leads to single subsystem computations.
@ Probabilistic approximation. Enforced certainty equivalence. Leads to
deterministic minimizations with no expected values to compute.
@ Aggregation. Construct a “smaller" aggregate problem by introducing aggregate
states.

Bertsekas Reinforcement Learning 19/25

Example: Optimize the Routes of n Vehicles Through a Road Network

@ Aim: Execute a number of tasks with given values
@ The value of a task is collected only once; a finite horizon is assumed.
@ This is a very complex combinatorial problem.

@ The single vehicle problem is typically much simpler (e.g., can be solved exactly or
with a high-quality heuristic).

@ At a given state: Solve (suboptimally) the tail subproblem one-vehicle-at-a-time.

v

Bertsekas Reinforcement Learning 20/25

Enforced Decomposition: Constraint Decoupling by Relaxation

Constraint Relaxation

U
UZ
U
1
U1 U
o Letxy = (X,....,xD), uk = (U}, ..., ud), wk = (wW},..., wJ), with (i, uk, wj)

corresponding to the ith subsystem.
@ Assume that the only coupling between subsystems is the control constraint

(U, ...,uf) e U, eg,uelU, u+ - +uf <b
@ Approximate U with a decomposed constraint U' x ... x U".

@ The problem decomposes into n decoupled subproblems. Let Ji, be the optimal
cost to go functions for the ith decoupled subproblem (obtained by DP off-line).

@ Use one-step lookahead with the cost-to-go approximation

Tt (K1) = Tkt (k1) + -+ - + Jipa (K1)

Bertsekas Reinforcement Learning 21/25

Example: Production Planning

Constraint Relaxation

2
Uy,

U2

1
U,

Ul
A work center producing n product types

@ X/, U, wi: the amounts stored, produced, and demanded of product i at time k
o State is the stock vector xk = (X1, ..., x¢), where xi. = X, + uj, — w,
@ U represents the (shared) production capacity of the work center

@ In a more complex version (involving equipment failures), U depends on a random
parameter ax that changes according to a Markov chain

Another example in the text: “Restless” multiarmed bandit problems. (Select one out of
n projects to work on at each stage.)

v

Bertsekas Reinforcement Learning 22/25

Probabilistic Approximation

Modify the probability distributions P(wx | xk, wi) to simplify the calculation of Jk,
and/or the lookahead minimization.

Certainty equivalent control (inspired by linear-quadratic control problems)
@ Replace uncertain quantities with deterministic nominal values.

@ The lookahead and tail problems are deterministic so they could be solvable by
DP or by special deterministic methods on-line.

@ Use expected values or forecasts to determine nominal values; update policy
when forecasts change (on-line replanning).

@ Use state estimates instead of belief states.

@ A variant: Partial certainty equivalence. Fix only some uncertain quantities to
nominal values.

@ A generalization: Approximate E{-} by limited simulation.

Bertsekas Reinforcement Learning 23/25

Problem Approximation by Aggregation (to be discussed in detail later)

Original
System States

Disaggregation
Probabilities

Aggregation
Probabilities
iy

@ Construct a “smaller" aggregate problem by introducing aggregate states.

@ Use the exact costs-to-go of the aggregate tail problem as approximate
costs-to-go for the original.

Aggregation examples:
@ State discretization-interpolation schemes.
@ Grouping of states into subsets, which serve as aggregate states.

@ Feature-based discretization; aggregate problem operates in the space of
features.

Bertsekas Reinforcement Learning 24/25

About the Next Lecture

We will cover:
@ Rollout for deterministic and stochastic problems
@ Monte Carlo tree search
@ Model predictive control

PLEASE READ AS MUCH OF SECTIONS 2.3, 2.4 AS YOU CAN
PLEASE DOWNLOAD THE LATEST VERSIONS FROM MY WEBSITE

Bertsekas Reinforcement Learning 25/25

	Approximation in Value and Policy Space
	General Issues of Approximation in Value Space
	Special Multistep Lookahead Issues
	Problem Approximation Schemes

