Reinforcement Learning and Optimal Control

ASU, CSE 691, Winter 2019

Dimitri P. Bertsekas
dimitrib@mit.edu

Lecture 13
A Review of the Course

Bertsekas Reinforcement Learning 1/37

0 DP Algorithm for Finite Horizon Problems

e Approximation in Value and Policy Space

e General Issues of Approximation in Value Space

o Rollout and Model Predictive Control

e Parametric Approximation Architectures and Neural Nets
e Introduction to Infinite Horizon Problems

e Approximate Policy Iteration

e Approximation in Policy Space

e Aggregation

Bertsekas Reinforcement Learning 2/37

Stochastic Finite Horizon DP Problems

Random Transition

Th1 = fe(@r, up, wi)

O O DO D
Random Cost

gk(lk’ Uk, wk)

@ System xxi1 = fi(Xk, Uk, Wk) with state xk, control ux, and random “disturbance" w
@ Cost function:

E {QN(XN) + i Gk (Xk, Uk, Wk)}

k=0
@ Policies m = {uo, ..., un—1}, Where py is a “closed-loop control law" or “feedback
policy"/a function of xx. Specifies control ux = uk(xx) to apply when at x.
@ For given initial state xo, minimize over all * = {uo, .. ., un—1} the cost

N1
Jr(X) = E {QN(XN) 4 Z 9k (X, b (X), Wk)}

k=0

@ Optimal cost function J*(xo) = min, Jx(xo)

Bertsekas Reinforcement Learning 4/37

The Stochastic DP Algorithm

Produces the optimal costs J;(xx) of the tail subproblems that start at xx
Start with Jy(xn) = gn(xn), and fork =0,...,N — 1, let

Ji (Xk) = min E{gk(xk,uk,Wk)+JZ+1(fk(xk,uk,Wk))}, for all x.
Uk € U (xic)

@ The optimal cost J*(xo) is obtained at the last step: J;j(x0) = J*(xo).

On-line implementation of the optimal policy, given J', ..., Jy_;

Sequentially, going forward, for k = 0,1,..., N — 1, observe xx and apply

U €arg min)E{Qk()% Uk, Wie) + kg1 (Fi(Xk, U, Wk))}-

Uk € Uy (Xx

Issues: Need to compute Ji ; (possibly off-line), compute expectation for each u,
minimize over all uy

V.

Approximation in value space: Use Ji+ in place of Ji41; also approximate E{-} and minuA.

Bertsekas Reinforcement Learning 5/37

Approximation in Value Space

Approximate Min

1 @ ”
Discretization First Step &
HQlLiIl E{gk (Thy Wiy Wi)+ Tpe1 (Tg11) }
, X

Approximate F{-} Approximate Cost-to-Go J, k1
Certainty equivalence Problem approxmlat.lor.l
Adaptive simulation Rollout, Model Predictive Control
Monte Carlo tree search Parametric approximation

Neural nets

Aggregation

ONE-STEP LOOKAHEAD
At State z;,
DP minimization
First ¢ Steps “Future”
! —

k+0—1
min E {gk(;lfk, Uk, W) + Z i (@m s pm (Tm), wm) + J k+1{(117k+1{>}

Uk sKhk4-1s Mk 40—1 m=k+1

Cost-to-go

Lookahead Minimization Approximation

MULTISTEP LOOKAHEAD

Bertsekas Reinforcement Learning 7137

Approximation in Policy Space: The Major Alternative to Approximation

in Value Space

@ |dea: Select the policy by optimization over a suitably restricted class of policies.

@ The restricted class is usually a parametric family of policies pux(Xk, rk),
k=0,...,N—1, of some form, where rx is a parameter (e.g., a neural net).

@ Important advantage once the parameter r, is computed: The computation of
controls during on-line operation of the system is often much easier: At state x
apply ux = pk(Xk, rk)-

Approximation in policy space on top of approximation in value space

@ Compute approximate cost-to-go functions Jx 1, k =0,..., N — 1.

@ This defines the corresponding suboptimal policy jix, k =0, ..., N — 1, through
one-step or multistep lookahead.

@ Approximate fix using some form of regression and a training set consisting of a
large number q of sample pairs (x¢, ug), s=1,...,q, where ui = fik(Xg).

@ Example: Introduce a parametric family of policies pux(Xk, rx), k =0,...,N — 1, of
some form, where r is a parameter. Then estimate the parameters rx by

q
r € arg mrinz [k — k(i)|
s=1

Bertsekas Reinforcement Learning 8/37

On-Line and Off-Line Lookahead Implementations

Approximate Min

irs “ 9
Discretization First Step &
min E{gk(xk, Uk, Wi)+ 1 (g;k,+1)}
Uk \
Approximate E{-} Approximate Cost-to-Go Jy 11
Certainty equivalence Problem appI'OXIHIat}OI}
Adaptive simulation ROI.IOM’ Model Predictive Control
Monte Carlo tree search Parametric approximation
Neural nets
Aggregation

@ Off-line methods: All the functions Jx,¢ are computed for every k, before the
control process begins.

@ Examples of off-line methods: Neural network and other parametric
approximations; also aggregation.

@ For many-state problems, the minimizing controls jix(xx) are computed on-line
(because of the storage issue, as well as an off-line excessive computation issue).

@ On-line methods: The values Jx1(xk.1) are computed only at the relevant next
states xx+1, and are used to compute the control to be applied at the N time steps.

@ Examples of on-line methods: Rollout and model predictive control.
@ On-line methods are well-suited for on-line replanning.

Bertsekas Reinforcement Learning 10/37

Model-Based Versus Model-Free Implementation

Our layman’s use of the term “model-free": A method is called model-free if it involves
calculations of expected values using Monte Carlo simulation.

Model-free implementation is necessary when:

@ A mathematical model of the probabilities px(wxk | Xk, ux) is not available but a
computer model/simulator is. For any (xx, uk), it simulates sample probabilistic
transitions to a successor state xx..1, and generates the corresponding transition
costs.

@ When for reasons of computational efficiency we prefer to compute the expected
value by using sampling and Monte Carlo simulation; e.g., approximate an integral
or a huge sum of numbers by a Monte Carlo estimate.

An important example of model-free implementation:

Calculations of approximate Q-factors in lookahead schemes - Approximation in policy
space on top of approximation in value space

E{Qk(Xk, Uk, Wie) + it (Fe (X, Uk, Wk))}

(assuming Jx1 has been computed).

Bertsekas Reinforcement Learning 11/37

General Structure of Deterministic Rollout

Next States

Current State

Heuristic

Q-Factors

@ At state x, for every pair (X, ux), ux € Uk(Xk), we generate a Q-factor
Qu(Xk, Uk) = Gk (Xk, Ux) + Hii1 (F(Xk, Ux))

using the base heuristic [Hk+1(Xk+1) is the heuristic cost starting from x1].
@ We select the control ux with minimal Q-factor.
@ We move to the next state xx.1, and continue.

@ Multistep lookahead versions (length of lookahead is limited by the branching
factor of the lookahead tree).

Bertsekas Reinforcement Learning 13/37

Multistep Lookahead-Truncated Rollout-Terminal Cost Approximation

S — >0
Terminal Cost _
Approximation J

Lookahead Tree

o] e

States g2

@ Long rollout is costly. It is not necessarily true that increasing the length of the
rollout leads to improved performance.

@ Terminal cost approximation allows combinations with other value space schemes.

@ We can prove cost improvement, assuming various sequential consistency and/or
sequential improvement conditions, as well as modifications (fortified rollout).

@ Rollout is the most reliable and most easily implementable RL algorithm. Still
some trial and error experimentation is recommended for its implementation.

Bertsekas Reinforcement Learning 14/37

On-Line Rollout for Deterministic Infinite-Spaces Problems

Next States States
Tp41 Tkt

Current State

Base Heuristic
Minimization

Stage k Stages
k+1,...,k+0-1

When the control space is infinite rollout needs a different implementation
@ One possibility is discretization of Ux(xk); but then excessive number of Q-factors.
@ The major alternative is to use optimization heuristics.

@ Seemlessly combine the kth stage minimization and the optimization heuristic into
a single ¢-stage deterministic optimization.

@ Can solve it by nonlinear programming/optimal control methods (e.g., quadratic
programming, gradient-based).

Bertsekas Reinforcement Learning 15/37

Model Predictive Control for Deterministic Regulation Problems

Next States
Tk+1

Current State State

(¢ — 1)-Stages Tt =0

Minimization

) Stage k B Stages
kE+1,...k+0-1

@ System: Xir1 = fi(Xk, Uk).

@ Cost per stage: gk(x«, ux) > 0, the origin 0 is cost-free and absorbing.

@ State and control constraints: xx € Xk, ux € Uk(xx) for all k.

@ At x, solve an ¢-step lookahead version of the problem, requiring Xk, = 0 while
satisfying the state and control constraints.

® If {Uk, ..., Ukie—1} is the control sequence so obtained, apply .

Bertsekas Reinforcement Learning 16/37

Parametric Approximation in Value Space

Approximation Architectures
@ A class of functions J(x, r) that depend on x and a vector r = (ri, ...,) of m
“tunable" scalar parameters (or weights).
@ We adjust r to change J and “match" the cost function approximated.
@ Training the architecture: The algorithm to choose r (typically use data/regression).

@ Architectures are linear or nonlinear, depending on whether J(x, r) is linear or
nonlinear in r.

@ Architectures are feature-based if they depend on x via a feature vector ¢(x),
J(x,r) = J(¢(x), 1),

where J is some function. Idea: Features capture dominant nonlinearities.
@ A linear feature-based architecture:

J(x.r) = mee

where r, and ¢¢(x) are the ¢th components of r and ¢(x).

Bertsekas Reinforcement Learning 18/37

Neural Nets: An Architecture that does not Require Knowledge of

Features

> A Cost
roximation
State x y(ml pE'QS(x v)
— > ——— ’
State Linear Nonlinear Linear
Encoding Layer Layer Weighting
Parameter Parameter
v=(A,b) FEATURES o

@ Can be used when problem-specific handcrafted features and linear feature-based
architectures are inadequate.

@ Tricky training issues by incremental gradient (backpropagation) methods.
@ Deep neural nets have proved useful in important contexts.

@ There are other nonlinear architectures (e.g., radial basis functions) that we have
not covered.

Bertsekas Reinforcement Learning 19/37

Sequential DP Approximation - A Parametric Approximation at Every

Stage (Also Called

Start with Jy = gn and sequentially train going backwards, until k = 0
@ Given a cost-to-go approximation Jx. 1, we use one-step lookahead to construct a
large number of state-cost pairs (x¢, 85), s=1,..., q, where

Bi= min E{Q(Xf,u,wk)+Jk+1(fk(xks,u,Wk),rm)}, s=1,...,q9
ueUk(x,f)

@ We “train” an architecture Ji on the training set (x§, 55), s =1,...,q.

Typical approach: Train by least squares/regression and possibly using a
neural net

We minimize over ry

q
S (k6 n) = 6°)
s=1

(plus a regularization term).

Bertsekas Reinforcement Learning 20/37

Sequential Q-Factor Approximation

@ Consider sequential DP approximation of Q-factor parametric approximations

Qu (X, Uk, k) = E{gk(Xk~, Uo W)+ min Qe (Xeet, U, I’k+1)}
UE Vg1 (Xie41)

@ Note: E{min(...)} can be sampled; min(E{...}) cannot be sampled.

@ We obtain Q«(x«, Uk, r) by training with many pairs ((x{, uf), 55), where 35 is a
sample of the approximate Q-factor of (x¢, ug). [No need to compute E{-}.]

@ No need for a model to obtain 3;. Sufficient to have a simulator that generates
state-control-cost-next state random samples

((Xk7 Uk), (gk(Xk, Uk, Wk)7 Xk+1))
@ Having computed ri, the one-step lookahead control is obtained on-line as
mk(xx) € arg min Qk(xk, U, r¢)
u€ Uy (xk)
without the need of a model or expected value calculations.

Bertsekas Reinforcement Learning 21/37

Infinite Horizon Finite Spaces Discounted Problems

Convergence of VI

Given any initial conditions Jo(1), . .., Jo(n), the sequence {Jk(i)} generated by VI
s (i —u@mZp,, a(iu,)) + adk(j)), i=1,....n,

converges to J* (i) for each i.

Bellman’s equation
The optimal cost function J* = (J*(1),...,J*(n)) satisfies the equation

(i) = min Zp,, (g(i, u,j) + ad())). i=1,....n,

ueU(i)

and is the unique solution of this equation.

Optimality condition
A stationary policy u is optimal if and only if for every state /, u(i) attains the minimum
in the Bellman equation.

Bertsekas Reinforcement Learning 23/37

Policy lteration (P1) Algorithm

Initial Policy

Evaluate Cost Function J,, of Policy Cost
Current policy Evaluation

Generate “Improved” Policy fi Policy Improvement

Given the current policy 1%, a Pl consists of two phases:

@ Policy evaluation computes J «(f), i = 1,..., n, as the solution of the (linear)
Bellman equation system

n
i) = > i (1 () (9 (s 1(0),) + @) i =1,..sm
j=1
@ Policy improvement then computes a new policy **' as

n
W i) € arg min S py(u) (U u.f) + o). =10
=

@ Optimistic and multistep lookahead versions.

Bertsekas Reinforcement Learning 24/37

Parametric Approximation and Actor-Critic Schemes

Initial Policy

]::valuate Approximate Cost Approximate Policy
Ju(i,7) of Current Policy u Evaluation
Critic

A,

Generate “Improved” Policy 77 by Policy Improvement
Lookahead Min Based on J,(i,7) Actor

Introduce a differentiable parametric architecture J, (i, r) for policy evaluation

@ Example architectures: A linear featured-based or a neural net.

@ Example of approximate policy evaluation: Generate state-cost pairs (i°, 3°),
where 3° is a sample cost corresponding to i°. Use least squares/regression:

q
_ . s 512
Fe argmrln;(JM(l 1) —B%)
@ [3° is generated by simulating an N-step trajectory starting at i®, using u, and
adding a terminal cost approximation o™ J(iy).
@ Alternative approximate policy evaluation methods: TD(X), LSTD(A), LSPE())

Bertsekas Reinforcement Learning 26/37

Training, Exploration, and Other Issues

@ The training problem q
_ . s 512
Fe argmran(Ju(l ,r) —B°%)
s=1
is well-suited for incremental gradient:
P = K DT,) (T,) - B%)

where (i%, 3%) is the state-cost sample pair that is used at the kth iteration.

@ Trajectory reuse: Given a long trajectory (o, i1, - - ., in), We can obtain cost
samples for all the states iy, /s, i2, . . ., by using the tail portions of the trajectory.

@ Exploration: When evaluating p with trajectory reuse, we generate many cost
samples that start from states frequently visited by p. Then the cost of
underrepresented states may be estimated inaccurately, causing potentially
serious errors in the calculation of the improved policy 7.

@ Bias-variance tradeoff: As the trajectory length N increases, the cost samples 3°
become more accurate but also more “noisy."

@ Error bounds quantify qualitative behavior; e.g., convergence to within an “error
zone."

Bertsekas Reinforcement Learning 27/37

General Framework for Approximation in Policy Space

@ Parametrize stationary policies with a parameter vector r; denote them by i(r),
with components fi(i,r), i =1,...,n. Each r defines a policy.

@ The parametrization may be problem-specific, or feature-based, or may involve a
neural network.

@ The idea is to optimize some measure of performance with respect to r.

Five contexts where approximation in policy space is either essential or is
helpful
@ Problems with natural policy parametrizations (like supply chain problems)

@ Problems with natural value parametrizations, where a good policy training
method works well (like the tetris problem).

@ Approximation in policy space on top of approximation in value space.
@ Learning from a software or human expert.

@ Unconventional information structures, e.g., multiagent systems with local
information (not shared with other agents) - Conventional DP breaks down.

Bertsekas Reinforcement Learning 29/37

Approximation in Policy Space by Optimization-Based Training

Control

u = /1(27 T)

Uncertainty

l

A

A 4

System
Environment

Cost

»

Current State ¢

Training by Cost Optimization

@ Each r defines a stationary policy fi(r), with components (i, r),i=1,...

Controller|

ﬂ('vr)

@ Determine r through the minimization

min Jz(r) (fo)

where J;(r)(io) is the cost of the policy fi(r) starting from initial state /o.
@ More generally, determine r through the minimization

min E-{ ()}

where the E{-} is with respect to a suitable probability distribution of .

Bertsekas

Reinforcement Learning

30/37

Training by Random Search - Cross-Entropy Method

Eyt1

Ey

@ At the current iterate r*, construct an ellipsoid Ex centered at r*.

@ Generate a number of random samples within Ex. “Accept” a subset of the
samples that have “low" cost.

@ Let r*" be the sample “mean” of the accepted samples.

@ Construct a sample “covariance" matrix of the accepted samples, form the new
ellipsoid Ex1 using this matrix, and continue.

@ Limited convergence rate guarantees. Success depends on domain-specific
insight and the skilled use of implementation heuristics.

@ Simple and well-suited for parallel computation.
@ Resembles a “gradient method". Naturally model-free.

Bertsekas Reinforcement Learning

31/37

Feature-Based Aggregation Framework
Feature
@ Extraction CT o

Representative Features

State Space Feature Space Aggregate States
Representative feature formation)
Original

System States

Disaggregation

Probabilities
d:m'

dyi =0 fori ¢ I,

Aggregation
Probabilities
iy

¢jy =1forjel,

Representative Features
Aggregate States

Transition diagram for the aggregate problem)

Bertsekas Reinforcement Learning 33/37

Some of the Major Points Relating to Aggregation

It aims to approximate J*, not J,, of some policy .

It can yield an arbitrarily close approximation to J*, with sufficient number of
aggregate states.

Distinction between representative features schemes and their simpler special
case, representative states schemes.

Simulation-based VI and Pl methods for solving the aggregate problem.

Spatio-temporal aggregation: Solve a simpler aggregate problem involving
“compression” in space and time.

Bertsekas Reinforcement Learning 34/37

Concluding Remarks

Some words of caution

@ There are challenging implementation issues in all approaches, and no fool-proof
methods.

@ Problem approximation and hand-crafted feature selection require domain-specific
knowledge.

@ Training algorithms are not as reliable as you might think by reading the literature.
@ Approximate Pl involves oscillations and faces challenging exploration issues.
@ Recognizing success or failure can be a challenge!

@ The RL successes in game contexts are spectacular, but they have benefited from
perfectly known and stable models and small number of controls (per state).

@ Problems with partial state observation remain a big challenge.

On the positive side

@ Massive computational power together with distributed computation are a source
of hope.

@ Silver lining: We can begin to address practical problems of unimaginable difficulty!

@ There is an exciting journey ahead!

Bertsekas Reinforcement Learning 35/37

Some Words of Relevance

Some old quotes ...

@ The book of the universe is written in the language of mathematics. Gallileo

@ Learning without thought is labor lost; thought without learning is perilous.
Confucius
(In the language of Confucius’ day: learning = obtaining knowledge; thought ~
ideas on how to do things)

@ Many arts have been discovered through practice, empirically; for experience
makes our life proceed deliberately, but inexperience unpredictably. Plato

@ White cat or black cat it is a good cat if it catches mice. Deng Xiaoping

.. and some more recent ones

@ Machine learning is the new electricity. Andrew Ng
(Electricity changed how the world operated. It upended transportation,
manufacturing, agriculture and health care. Al is poised to have a similar impact.)
@ Machine learning is the new alchemy. Ali Rahimi and Ben Recht
(We do not know why some algorithms work and others don’t, nor do we have
rigorous criteria for choosing one architecture over another ...)

Bertsekas Reinforcement Learning 36/37

Thank you and good luck!

	DP Algorithm for Finite Horizon Problems
	Approximation in Value and Policy Space
	General Issues of Approximation in Value Space
	Rollout and Model Predictive Control
	Parametric Approximation Architectures and Neural Nets
	Introduction to Infinite Horizon Problems
	Approximate Policy Iteration
	Approximation in Policy Space
	Aggregation

