Feature-Based Aggregation and Deep Reinforcement Learning

Dimitri P. Bertsekas

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology

Arizona State University
April 2018

Bertsekas (M.L.T.) Aggregation and Reinforcement Learning 1/28

AlphaZero Program (2017)

AlphaZero

Plays much better than all chess programs
Plays different!

Learned from scratch ... with 4 hours of training!

Same algorithm learned multiple games (Go, Shogi)

Bertsekas (M.L.T.) Aggregation and Reinforcement Learning

AlphaZero was Trained Using Self-Generated Data

Current
Player

A o

“Improved”
Player

Position “values”
Neural Move “probabilities”

Policy
Network Improvement

Self-Learning/Policy Iteration

AlphaZero implements a form of policy iteration/approximate DP method
@ Generates a sequence of players/policies, each implemented by a deep neural net
@ A player’'s games are used to train an “improved" player (self-learning)

@ The neural net of a player/policy provides at any position: the "value" of the
position, and a “probabilistic ranking" of the possible moves

@ The games of a player are generated by Monte-Carlo Tree Search (MCTS, a form
of randomized multistep lookahead)

@ Training uses a form of regression

@ AlphaZero bears similarity to earlier works, e.g., TD-Gammon (Tesauro,1992), but
is more complicated because of the MCTS and the deep NN

Bertsekas (M.L.T.) Aggregation and Reinforcement Learning

DP/RL: A CLASSICAL AND UNIVERSAL METHODOLOGY

Exact DP applies (in principle) to a very broad range of optimization problems
@ Deterministic <—-> Stochastic
@ Combinatorial optimization <—-> Optimal control w/ infinite state/control spaces
@ One decision maker <—-> Two player games
@ ... BUT is plagued by the curse of dimensionality and need for a math model

Approximate DP/Reinforcement Learning

@ Overcomes the difficulties of exact DP by using:

Approximation (to reduce dimension)
Simulation (in place of a math model)

@ Can be used in a very broad range of challenging/large scale problems
@ Has proved itself in many fields ...

@ ... BUT implementation is a challenge/art and success is not guaranteed
@ Still there is theory that guides the art

Bertsekas (M.L.T.) Aggregation and Reinforcement Learning

Some History
@ 1950s-60s: Bellman (DP), Shannon (chess), Samuel (checkers)

@ 80s-early90s: Approximation and simulation-based methods: Barto/Sutton [TD()),
Al-DP connection], Watkins (Q-learning), Tesauro (backgammon, self-learning)

@ 1990s: Rigorous analysis, mathematical understanding, first books

@ Late 90s-Present: Rollout, Monte-Carlo Tree Search, Deep Neural Nets, Model
Predictive Control

Methodology
@ Math framework is DP (plus function approximation, training by simulation)

@ Approximations in value space and in policy space (compact/low-dimensional,
feature-based parametric architectures)

@ Supervised vs unsupervised learning (using external vs self-generated data)
@ No dominant method. Some ideas are solid and some are heuristic

@ Success depends on finding the right mix of implementation ideas, and using
massive computational power

@ The AlphaZero program combines in a skillful way ideas that have been known

since around 2005
Bertsekas (M.L.T.) Aggregation and Reinforcement Learning 5/28

Purpose of this Talk

Selectively survey the state of the art with focus on:
@ Approximate policy iteration
@ Neural network implementations
@ Aggregation

Describe the relevant contributions of neural networks:
@ Provide an approximation architecture for the cost function of a policy
@ Automatically construct the features of the architecture using self-generated data
@ Use in neural network-based policy iteration

Describe the feature-based aggregation methodology, and how it can be used
in combination with neural nets

Bertsekas (M.LT.) Aggregation and Reinforcement Learnin,
ggreg; g

References

Survey paper

Bertsekas, “Feature-Based Aggregation and Deep Reinforcement Learning: A Survey
and Some New Implementations," Lab. for Information and Decision Systems Report,
MIT, April 2018; http://arxiv.org/abs/1804.04577

DP/RL Book references
@ Bertsekas and Tsitsiklis, Neuro-Dynamic Programming, 1996
@ Sutton and Barto, Reinforcement Learning, 1998 (2nd ed. on-line, 2018)
@ Bertsekas, Dynamic Programming and Optimal Control: 4th edition, 2017

My latest theoretical monograph on DP
Bertsekas, Abstract Dynamic Programming: 2nd edition, 2018

Bertsekas (M.L.T.) Aggregation and Reinforcement Learning 7/28

Relations and Terminology in RL/Al and DP/Control

RL uses Max/Value, DP uses Min/Cost
@ Reward of a stage = (Opposite of) Cost of a stage.
@ State value = (Opposite of) State cost.
@ Value (or state-value) function = (Opposite of) Cost function.

Controlled Markov chain terminology
@ Agent = Controller or decision maker.
@ Action = Control.
@ Environment = System.

Methods terminology
@ Learning = Solving a DP-related problem using simulation.
@ Self-learning (or self-play in the context of games) = Solving a DP problem using
simulation-based policy iteration.
@ Planning vs Learning distinction = Solving a DP problem with math model-based
vs model-free simulation.

@ Prediction = Policy evaluation.

Bertsekas (M.LT.) Aggregation and Reinforcement Learnin,
ggreg; g

0 Exact and Approximate Policy lteration
e Approximate Policy Evaluation with Neural Nets
@ Feature-Based Aggregation

0 Feature-Based Aggregation with Neural Networks

Bertsekas (M.L.T.) Aggregation and Reinforcement Learning 9/28

Discounted Infinite Horizon Problem

Transition probabilities p;; (u)

Cost akg(i,u,j)

Controlled Markov Chain

A Markov chain with states 1, ..., n, and control u
@ pj(u): Transition probability from i to j under u
@ oXg(i,u,j): Cost of the kth transition; a € (0, 1): discount factor

Policy (or feedback controller) x: Maps each state i to a control (/)
o Total cost of u starting at io: Jy. (o) = E {34 9 (i, u(ik), ik+1) }
@ Optimal cost starting at io: J*(io) = min, J,.(/o)
@ Optimal policy p*: Satisfies J,.« (i) = J*(i) for all i

Bertsekas (M.L.T.) Aggregation and Reinforcement Learning

Basic Theory

Bellman’s equation for J*
J*(i) = min > piw){gli,u,))+ad ()}, foralli
i=1

Optimal cost at i = min, E{1st stage exp. cost + optimal cost of remaining stages}

Policy evaluation (Bellman) equation for the cost function J,, of a given policy .

Juli) = 3 Pyl g0, u(i).J) + adu)}, foral i
i=1

Policy improvement principle
Given a policy . and its evaluation J,,, we can obtain an improved policy z through

A(i) = arg min ipij(u){g(i, u,j) +adu())}, for all j

i=1

We have J; (i) < Jy (i) for all i

Bertsekas (M.L.T.) Aggregation and Reinforcement Learning

Exact and Approximate Policy Iteration (P1)

Exact policy iteration is successive policy improvement:
o = w1 :improved policy over ug = o : improved policy over py = ---

We have J,,, — J".

Approximate policy iteration is policy improvement w/ approximate evaluation:

to = w1 : “improved” policy over uo = o : “improved" policy over py = ---

“Converges" to optimum within an error bound [of order O((1 — «)?) or O((1 — a))].

Initial Policy

Evaluate Approximate
Cost J,, of
Current Policy p

Approximate Policy
Evaluation

Generate “Improved” Policy ji Policy Improvement

Bertsekas (M.L.T.) Aggregation and Reinforcement Learning

Feature-Based Policy Evaluation

Initial Policy

l Approximation in a space of basis functions

Current Policy p
Evaluate Approximate
Cost J,, (F(i),7) of i F(i) = (F1(i),..., Fs(i)): Vector of Features of i

r: Vector of weights

JL (F (2), r): Feature-based parametric architecture

A 4

Generate “Improved” Policy i

Features F and weights r provide a lower-dimensional representation of J,,

@ The features can be viewed as basis functions

@ The weights depend on p (sometimes the features also)
@ Critical question: How to find good features?

Handcrafted, based on a priori knowledge/intuition
Constructed from data, e.g., using a neural network (this is the BIG contribution of NNs)

Bertsekas (M.L.T.) Aggregation and Reinforcement Learning

NN-Based Evaluation of J,, for a Given Policy u

Features Cost
State o Apsprommatlon
i l‘ oo Fe(i,v)re = J, (i)
— /—>
State Linear Nonlinear Linear
Encoding Layer Layer Weighting

Parameter Parameter
U:(Aab) T':(Tl-,u»a'rs)

Generate state-cost samples (im, Bm), m=1,..., M, Bmn = J,(im)+“noise”

@ Use nonlinear optimization/regression: Find (v, r) that minimizes
M

Z (ju(imv v, f) - Bm)z

m=1
@ Use of an incremental gradient method (also called SGD, backpropagation)
@ Making the method work is an art (regularization, hot start, stepsize, etc)
@ Universal approximation theorem
@ To generate the cost samples: We simulate the Markov chain under
@ We can use alternative regressions (e.g., based on temporal differences, etc)

Bertsekas (M.L.T.) Aggregation and Reinforcement Learning

Use of Deep NNs

Final Features
Cost
State Apspl oxnn‘amon
1 22:1 Ff(zav)rl
—
State Linear Nonlinear ~ Linear Nonlinear Linear
Encoding Layer Layer Layer Layer Weighting of

Features
A deep NN just has many layers
@ Can be viewed as providing a “hierarchy of features"
@ The last set of features is the one used in the cost approximation
@ More “sophisticated" features with each stage, fewer weights needed (?)
@ Sampling and training is the same as in single layer nets

@ |s deeper better? Tesauro’s and subsequent backgammon implementations used
one nonlinear layer!

@ For our purposes, deeper is better. There are fewer final features in deep NNs

Bertsekas (M.LT.) Aggregation and Reinforcement Learning

Basic Principles of Aggregation

An old idea: Problem approximation (rather than algorithm approximation)

@ Group “similar" states together and represent them as a single state

@ Approximate the original DP problem with a fewer-state DP problem, called
aggregate problem

@ Solve the aggregate problem and “extend" its cost function to the original
@ The aggregate problem can be solved by exact DP and simulation-based methods

v

A simple example: Approximate a fine grid with a coarse grid

Another example (hard aggregation): Partition the state space into disjoint
subsets, each viewed as a single “aggregate state"

Bertsekas (M.L.T.) Aggregation and Reinforcement Learning

Use a Feature Map F (i) to Form the Aggregate DP Problem

Idea: Group together states with “similar" features (i.e., small variation of F)

Feature Vector F(i) Ju(d)

Aggregate states: Disjoint subsets Sy, . .., S, of state-feature pairs (i, F(i))

@ System states j relate to the aggregate states according to
“membership/interpolation weights" ¢+, . . . , ¢ne (called aggregation probabilities)
@ Each aggregate state S; relates to its “footprint", the set I, = {i | (i, F(i)) € S¢},
according to “importance weights" dp1, . . ., den (called disaggregation probabilities)
@ Constraints:

If j € Sy then ¢, = 1 (membership weight 1 for states in the footprint)
If i ¢ I, then dy; = 0 (importance weight 0 for states outside the footprint)

Bertsekas (M.L.T.) Aggregation and Reinforcement Learning

Aggregate DP Problem: Approximation through Features

Original
System States

pz](U)rg(i,%ﬂ

Disaggregation Aggregation
Probabilities Probabilities

dpy=01ifi ¢ I, (Z)ﬂiliijI[f

Aggregate States

States: Aggregate states plus two copies of the original system states

Costs and transition probabilities: As shown

Optimal costs: r; for aggregate state S, Jo(i) for left state i, J(j) for right state j
By Bellman’s equation for the aggregate problem we have

q
JiG)=> ¢pri, j=1,...,n (piecewise linear)

£=1

Once we compute r;, we can obtain an “improved" policy

n q
Adi) = urgbg);py(w <g(u u7/)+a;¢/erfz> ;=1

Bertsekas (M.LT.) Aggregation and Reinforcement Learning

Aggregation-Based Approximate Policy lteration

Initial Policy

!

Generate Features F(i) of Use a Neural Network or Other Scheme
Current Policy Possibly Include “Handcrafted” Features

Y

Form the Aggregate States
Formulate Aggregate Problem Choose the Aggregation and Disaggregation
Probabilities

Y

Generate “Improved” Policy [
— by “Solving” the
Aggregate Problem

Bertsekas (M.L.T.) Aggregation and Reinforcement Learning

Properties of the Aggregate Problem

Original
System States

Cost function Jo (i)

Cost function J;)

pij(w), 9(i, u,5)

bje

e Aggregate costs 7}

@ Aggregate problem lends itself to simulation if the original problem does
@ r; is computable with exact/tabular methods, e.g., TD()), LSTD, LSPE, Q-learning

Aggregate States
Aggregate costs Ty

Intuition and analysis/error bounds suggest the following general strategy:
Use features that conform to J*, i.e.,

J() = (") = F(i)=F(")

Form aggregate states so that F varies little within their footprint

Bertsekas (M.LT.) Aggregation and Reinforcement Learning

Using “Scoring" Functions

Scoring Function V' (4)

Aggregate Problem
Approximation

Py
- i ‘T’ i
I ‘ q

Suppose we have a function V with “similar form" to J* (up to a constant shift)
@ We can use V as a feature map and group states with similar values of V
@ Each interval may contain one or multiple states
@ Many intervals lead to more accurate but more time-consuming solution

Extend this idea to a vector of scoring functions V(i) = (V4(i), ..., Vs(i)) J

Bertsekas (M.L.T.) Aggregation and Reinforcement Learning

Approximate Pl with Aggregation and Neural Nets

“Standard" NN-based PI

Feature Map

Neural F(i) Policy Approximately
Current | Network Aspmasdimsie Improvement Improved
Policy p Cost ju (F(i), " Policy f1
NN-based Pl with aggregation
Feature Map Ameste
Neural F() States Aggregate [Approximately
Network Stavarpliiigg > Problem [~——*
Current Optimization| Improved
Policy p Policy f

Start with a training set of state-cost pairs generated using the current policy u
Evaluate . using the NN; obtain a feature map F, and a sample of (i, F(i)) pairs

Construct aggregate states and a feature-based aggregate problem (essentially
use F as a vector scoring function, possibly with some handcrafted features)

Use as “improved" policy /i the optimal policy of the aggregate problem
More work for policy improvement, but may yield better “improved" policy

Bertsekas (M.LT.) Aggregation and Reinforcement Learning 26/28

Concluding Remarks

@ NNs resolve a major difficulty of approximate PI: Automatically extract features of
the cost function of a policy

@ Good features, once extracted can be used for other purposes, including
aggregation. Deep NNs provide fewer final features, which favors aggregation

@ Aggregation benefits from the solidity of exact DP algorithms

Some words of caution on approximate PI

@ There are challenging implementation issues

Approximation architecture design using features
Sample design/explore well the state space
Training algorithms

Oscillations

Recognizing success or failure!

@ The RL game successes are spectacular, but they have benefited from perfectly
known and stable models and relatively small number of controls (per state)

@ On the positive side, massive computational power together with distributed
computation are a source of hope

@ There is an exciting journey ahead ...

Bertsekas (M.LT.) Aggregation and Reinforcement Learnin,
ggreg; g

Thank you!

Bertsekas (M egation and Reil

	Exact and Approximate Policy Iteration
	Approximate Policy Evaluation with Neural Nets
	Feature-Based Aggregation
	Feature-Based Aggregation with Neural Networks

