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Contents of the Lecture Series

@ Semicontractive Examples.

@ Semicontractive Analysis for Stochastic Optimal Control.

@ Extensions to Abstract DP Models.

@ Applications to Stochastic Shortest Path and Other Problems.

@ Algorithms.
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Outline of this Lecture

° Review of Abstract DP

e Semicontractive Analysis

e Stochastic Shortest Path Problem

0 Affine Monotonic Problem: Exponential Cost Function

e Minimax Shortest Path Problem
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Abstract DP Problem Formulation

@ State and control spaces: X, U
@ Control constraint: u € U(x) for all x
@ Stationary policies: u : X — U, with p(x) € U(x) for all x

Monotone Mappings
@ Abstract monotone mapping H : X x U x E(X) — R

J<J BN H(x,u,J) < H(x,u,J"), Y x,u

where E(X) is the set of functions J : X — [—o0, 0]
@ Mappings T, and T

(T (X)) = H(x, u(x),d),  VxeX,JeEX)
(TN)() =inf (T)(x) = inf HOxud), Y xe X, J e E(X)

Stochastic Optimal Control Mapping: A Special Case
H(x,u,J) = E{g(x,u,w) + aJ(f(x,u,w))}
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Abstract Problem Formulation

Abstract DP Problem

@ Given an initial function J € R(X) and policy y, define

Ju(x) = limsup (TN J)(x), xeX
N— oo

@ Find J*(x) = inf, J.(x) and an optimal  attaining the infimum

Results of Interest
@ Bellman’s equation
J=TJ
and its set of solutions. Usually J* is a solution.
@ Conditions for optimality of a stationary policy p, usually T,J, = TJ,.

@ Algorithms, such as value iteration (VI) and policy iteration (Pl), and their
convergence issues.

Semicontractive Models:
Some policies are “well-behaved" (have a regularity property), and others are not.
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Our Approach for Semicontractive Problems

@ Select a class of well-behaved/regular policies

@ Define a restricted optimization problem over the regular policies only

@ Show that the restricted problem has nice theoretical and algorithmic properties
@ Relate the restricted problem to the original

@ Under reasonable conditions, obtain strong theoretical and algorithmic results

Research Monograph

D. P. Bertsekas, Abstract Dynamic Programming, Athena Scientific, 2013; updated
chapters on-line
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S-Regularity

Key idea: We have a set of functions S C E(X), which we view as the “domain of
regularity” J

S-Regular policy S-Irregular policy
TE]

Definition of S-Regular Policy

Given a set of functions S C E(X), we say that a stationary policy x is S-regular if:
@ J,eSandJ, = T,J,
o TfJ—J,forallde S

A policy that is not S-regular is called S-irregular.

Bertsekas (M.L.T.) Semicontractive Dynamic Programming 8/32



S-Regular Restricted Problem

Jy for pe Mg
i NN
e s JEEX)
S

Given aset S C E(X)

@ Consider the restricted optimization problem: Minimize J,, over p in the set Mg of
all S-regular policies

@ Let JZ be the optimal cost function over S-regular policies only:

Js(x) = o, ey K@

@ Since the set of S-regular policies is a subset of the set of all policies,

J' < s
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A Principal Assumption that Guarantees “Good Behavior"

Assume that S consists of real-valued functions and:
@ There exists at least one S-regular policy and Js = inf,erg J, belongs to S.
@ For every J € S and S-irregular policy u, there exists x € X such that

lim sup (T/{J)(x) = oo

k— o0
@ S contains J, and has the property that if J;, J» are two functions in S, then S
contains all functions J with J; < J < >
@ Theset {u e U(x) | H(x,u,J) < A} is compact forevery J € S, x € X, and A € R
@ For each sequence {Jn} C S with J,, 1 J for some J € S,

lim H(x,u,Jdn) = H(x,u,J), VxeX, ue Ux)

m— oo

@ For each function J € S, there exists a function J' € S such that J’ < J and
J <1

It is worth checking which parts of these assumptions are violated in the
counterexamples of Lecture 1.
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Main Result

Proposition: Under the preceding assumption

@ (Bellman Eq.) J* = TJ*. Moreover, J* is the unique fixed point of T within S

@ (VI Convergence) We have T¥J — J* forall J € S

@ (Optimality Condition) w is optimal if and only if T,J* = TJ*, and there exists an
optimal S-regular p

@ (PI Convergence) If in addition for each {Jn} C E(X) with Jx | J for some
J € E(X),

H(x,u,J):mIim H(x, u, dm), VxeX,ue U(x)

then every sequence {1} generated by the Pl algorithm starting from an
S-regular policy ° satisfies Ik L J”

@ (Optimization-Based Solution of Bellman’s Eq.) For any J € S, if J < TJ we have
J < J*, and if J > TJ we have J > J*

Note: Nearly as strong results as for contractive problems. J
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The Three Applications of this Lecture

Common Characteristics

@ They all involve a finite number of states (X = {1, ..., n}), and a finite number of
controls at each state (so the number of policies is finite).

@ The set R(X) of real-valued functions on X is identified with R".
@ In all cases S is a subset of R".
@ Usually there is a termination state.

@ Because of this structure, the complicated assumption given earlier simplifies, and
is nonrestrictive and intuitive.

@ The results are almost as strong as for discounted problems.
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The Applications in Summary

@ Stochastic Shortest Path (SSP) Problems: Transition probs. p;(u),

J(i)=0, (T =D pi(u®) (90, u(),)) +J())

i=1
@ Affine Monotonic (AM) Problems:
J >0, TMJ = bu + Aqu
where b, > 0, A, > 0. A special case is SSP with exponential cost.

@ Minimax Shortest Path (MSP) Problems: Disturbance has a nonprobabilistic
set-membership description, w € W(i),

Ji)=0, (T.I)()= Jmax, {a(i, (i), w) + ad (F(i, pu(7), W) }

N
Ju(io) =limsup  max >~ g (i, u(ik), wk)
N— oo Wo,W1q,... P
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We Specialize our Analysis to the Finite Spaces Context

S consists of real-valued functions
@ For SSP and MSP, we use S = R".
@ For AM, we use S = R, the nonnegative orthant.

Thanks to the finite spaces structure, and the choices of S, the complicated
multipart assumption simplifies to the following:

@ There exists at least one S-regular policy.
@ Infinite cost condition: For all J € S and S-irregular p, there exists i such that

limsup (T/J)(i) = oo
k— o0

All other parts of the assumption are automatically satisfied. J
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A Common Approach for All Three Applications

Define the set S
For SSP and MSP, we use S = R". For AM, we use S = R, the nonnegative orthant.

v

Characterize the S-Regular Policies
@ For SSP, the S-regular i are the proper policies (those that terminate with prob. 1).
@ For AM, the S-regular p are those for which T,, is a contraction, i.e., all
eigenvalues of A, are strictly within the unit circle.
@ For MSP, the S-regular p turn out to be those that guarantee termination
regardless of the adversarial actions wyp, wy, .. ., but also some others.

Assume that there exists an S-regular policy and that each S-irregular policy has
infinite cost.

Apply the theorem: J* solves uniquely Bellman’s Eq., VI, Pl, and optimization approach
work, etc.

v
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Stochastic Shortest Path Problem

pij(u)

pii(u)

A graph of n nodes plus the destination ¢

@ At each node i we choose one of m probability distributions pj;(u), u=1,...,m,
over the successor nodes ;.

@ Transition cost g(i, u, j).
@ Minimize total expected cost up to termination.

Ji)=0,  (TuJ)() = prf(u(i)) (97, u(0),J) + J())
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Analysis for the SSP Problem

Proper Policies
@ A policy p is proper if it terminates from every initial state with probability 1.

@ Equivalent definition: Starting at any node /, there exists a sequence of positive
probability transitions under p that starts at / and ends at .

@ Then J, (i) is the expected cost starting from i up to termination.

S-Regularity
@ A policy is S-regular, where S = %", if and only if it is proper.

@ We just verify the regularity definition (T,’jJ — J,, for all J € S): We have that T[fJ
does not depend on J for k large if and only if x terminates.

@ Assume there exists a proper policy.

Assume each Improper Policy has Infinite Cost Starting at Some Initial State
Check that “cycling has positive cost"; true if every transition has positive cost.

Apply the theorem

J* solves uniquely Bellman’s Eq., VI and PI converge to J*, LP approach works, etc.

v
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Back to the Pathological Examples

Deterministic shortest path problem

Cost a

Destination

Cost b

One proper policy (from 1 go to t), and one improper policy (self-cycle)

Set of solutions of Bellman’s equation: J(1) =min {b, a+ J(1)}
@ Unique solution, J*(1) = bif a > 0 (assumptions satisfied)
@ All J(1) < bif a= 0 (assumptions violated)
@ No real-valued solution if a < 0 (assumptions violated; consider changing S)

The assumption a > 0 corresponds to the classical conditions:
@ There exists a path to the destination starting from every node.
@ All cycles have positive length.
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The SSP Problem where J* does not Satisfy Bellman’s Equation

A single policy n. The only uncertainty is at the first stage starting at state 1

Cost 0

Ju(1) =0

Prob. = 1/2 Prob. = 1/2

Cost —2 Cost 1 Cost —1

Destination

Cost 0

The Bellman Eq. is violated at 1: Ju (1) # 1J.(2) + 1J.(5)

v
Here the infinite cost condition is violated. )
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Affine Monotonic Problems

T, maps J € R into T,J € R and is affine:

Tod = by + A,
where b, > 0, A, > 0. Also assume J € R (but may have J # 0)

Some special cases

@ An SSP problem with nonnegative cost per transition. Corresponds to J = 0 and
@ An SSP problem with exponential cost for the length of a path, so

Ju(i) = E{ exp(Length of path starting at / up to reaching destination t) }

Corresponds to the affine monotonic problem defined by

j(l) = 1’ (THJ)( ) pn(u(l))eg(’ w(i), t + Zp’l eg(/ u(i )J(])

i=1

@ Multiplicative cost function (contains the exponential cost SSP as a special case)
v
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Characterization of S-Regular Policies; Here S = R/}

Cost Function of a Policy p
By repeatedly applying the equation T,.J = b, + A.J, we have

N—1
TN =AlJ+Y Ab,, VJeEE(X), N=1.2,..
k=0

*

Ju = I|m 1SUp TV = I|m supANJ+ ZA"
k=0

Contractive policies: Those for which lim supy_, .. Al’)’J =0 forall J € R"
(equivalently A,, has eigenvalues strictly within the unit circle).

Key fact is that . is R (X)-regular if and only if T,, is contractive. Justification:

N—1
Ju = I|m 1Sup T)J =limsup " Afb,, ¥ u: contractive, J € R

—>Ooko

Hence, if i is contractive it is also R*(X)-regular. The reverse can also be shown to be

true.

v
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Assumptions and Results for AM Problems

Assume that:

@ There exists at least one contractive policy

@ Each noncontractive policy has infinite cost for some initial state.
Then the standard results hold:

@ Bellman’s Eqg. has J* as its unique solution

@ VI and PI converge to J*

@ Standard optimality conditions hold

@ Solution by linear programming is possible

Some notes for the exponential cost SSP

@ Every proper policy is contractive but the reverse is not true (consider a
deterministic problem and a policy with a negative length cycle)

@ In exponential cost SSP policies that include cycles with “negative cost" do not
cause difficulties (but “zero cost cycles" may cause a problem)
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Back to the Deterministic Shortest Path Problem

Length a
Policy p/

Destination
Tt = limpy_so0 €X N Jj,l = b
Ju (1) = limy exp(alN) Length b (1) = exp(b)
(T, J)(1) = exp(a)J(1) - @ (T 7)(1) = exp(b)
Policy u

Bellman’s equation: J(1) = min { exp(b), exp(a)J(1)}

@ If a > 0 (assumptions satisfied), J*(1) = exp(b) solves uniquely Bellman’s Eq., u
is optimal

@ If a < 0 (assumptions satisfied, both policies are contractive, even though p' is
improper!), J*(1) = 0 solves uniquely Bellman’s Eq., x" is optimal

@ If a= 0 (assumptions violated), all J(1) in the interval 0 < J(1) < exp(b) solve
Bellman’s Eq., J*(1) = min { exp(b), 1}

The assumption a > 0 corresponds to the classical conditions:
@ There exists a path to the destination starting from every node.

@ All cycles have positive length.
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An Exponential Cost SSP Problem where J* does not Satisfy Bellman’s

Equation

This is the exponential cost version of the earlier SSP counterexample, which involved
zero length cycles.

Cost 0

Ju(1) = 1(e! +e-1)

Prob. = 1/2 Prob. = 1/2

Cost —2 Cost 1 Cost —1

Destination

Cost, 0

The Bellman Eq. is violated at 1: J,(1) # $Ju(2) + 3Ju(5)

Here the policy is noncontractive and hence R/} -irregular, while the infinite cost
condition is violated.
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Minimax Shortest Path Problem

Problem Formulation

@ A graph with set of nodes X = {1,..., n} plus a destination t, and a set of directed
arcs (i, f), where i,j € X U {t}.

@ At each node i we may choose a control u from a finite set U(J).
@ The destination t is absorbing and cost-free.

@ At node /, a successor node j is selected by an antagonistic opponent from a
given set Y(i,u) C X U{t} and a cost g(i, u, ) is incurred.
@ Mappings:
H(i,u,J) = max [g(i,u.j) +J()],  Vx u JeR
JeY(iu)

where J(j) = J(j) if j € X and J(j) = 0 if j = t. We have

(Tud)(i) = H(iui) ), (TH() = min H(i,u,J)

@ Let J be the zero function, so
N

Ju(io) = Iizw sup  max Zg(ik,u(ik), W)
oo oW
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Cost Function and Other Properties of a Policy p

@ A possible path under p starting at node iy € X is an arc sequence
p = {(io, i), (i1, i2), ...}, such that ixs1 € Y (ix, u(ix)) for all k > 0. The set of all
possible paths under  starting at iy is denoted by P(i, 1).

@ The length of a path p € P(ig, 1) is limsupy_, .o S-k_o 9 ik, 11(ik), ik+1) -

@ Similar definitions for the length of a portion of a path p, consisting of a finite
number of consecutive arcs.

@ For any p and i, (T/J)(i) is the length of the longest path under 1 that starts at i
and consists of k arcs, and can be computed with a k-stage DP algorithm.

@ Of special interest are cycles, i.e., paths of the form {(ii, ii+1), . . ., (iixm, i)}, and
paths that terminate, i.e., have the form p = {(io, 1), . .., (im, t), (t,t), ... }.

Proper Policies
A policy w is proper if for all /, all the paths in P(i, ) contain no cycle and terminate.

S-Regular Policies (S = R")
It is easy to see that all proper policies are R"-regular. The reverse is not true.
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Characterization of S-Regular Policies (S = R")

The Characteristic Graph of a Policy u: A, = Uiex{(i,j) | j € Y(i,u(i))}

={1,2}  Two controls at node 1 ~ One control at node 2

Destination | Destination

Improper policy Proper Policy p/

@ We say that A, is destmatlon—connected if for each i € X there exists a
terminating path in P(i, u).

Characterization of R"-Regular Policies

@ 4 is R"-regular if and only if A, is destination-connected and all its cycles have
negative length. (Note that a proper policy is :"-regular.)

@ u is R -irregular if and only if it is improper, and either is destination-disconnected
or A, has a cycle with length > 0. (Note that there exist improper policies that are
R"-regular.)
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Assumptions and Results for MSP

Assume that:
@ There exists at least one proper policy (implies that there exists an ®"-regular
policy).
@ For every improper policy u, all cycles in the characteristic graph A,, have positive
length (implies that every R -irregular policy has infinite cost for some initial state).
Then the standard results hold:
@ Bellman’s Eq. has J* as its unique solution.
@ VI, PI, converge to J*.
@ Standard optimality conditions hold, etc.

Some notes
@ The positive cycle condition can be relaxed to nonnegativity, using a perturbation
approach (add a § > 0 to each g(i, u, ) and take ¢ | 0; see the next lecture).
@ There is a finitely terminating Dijkstra-like algorithm for MSP problems with

nonnegative arc lengths (this is a consequence of the shortest path character of
the problem, not its semicontractive character).
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