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Classical Total Cost Stochastic Optimal Control (SOC)

System: xk+1 = f (xk ,uk ,wk )

xk : State at time k , from some space X

uk : Control at time k , from some space U

wk : Random “disturbance" at time k , from a countable space W , with
p(wk | xk , uk ) given

Policies: π = {µ0, µ1, . . .}
Each µk maps states xk to controls uk = µk (xk ) ∈ U(xk ) (a constraint set)

Cost of π starting at x0, with discount factor α ∈ (0, 1]:

Jπ(x0) = lim supk→∞ E
{∑k

m=0 α
mg(xm, µm(xm),wm

)}
Optimal cost starting at x0: J∗(x0) = infπ Jπ(x0)

Optimal policy π∗: Satisfies Jπ∗(x) = J∗(x) for all x ∈ X

Stationary policies, those of the form {µ, µ, . . .}, play a special role
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Bellman’s Equations In Shorthand

The cost of a stationary policy µ starting from state x , denoted Jµ(x), and the
optimal cost starting from state x , denoted J∗(x), typically satisfy Bellman’s
equations

Jµ(x) = E
{

g(x , µ(x),w) + αJµ

(
f (x , µ(x),w)

)}
, ∀ x ∈ X

J∗(x) = inf
u∈U(x)

E
{

g(x , u,w) + αJ∗
(
f (x , u,w)

)}
, ∀ x ∈ X

Denote for all x ∈ X and µ,

H(x , u, J) = E
{

g(x , u,w) + αJ
(
f (x , u,w)

)}
(TµJ)(x) = H

(
x , µ(x), J

)
, (TJ)(x) = inf

u∈U(x)
H(x , u, J)

A key property is that Tµ and T are monotone

The Bellman equations can be viewed abstractly as the fixed point equations
Jµ = TµJµ and J∗ = TJ∗

We are considering semicontractive problems where some Tµ are
“contraction-like" and others are not
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Results that we Aim for in Total Cost SOC

Characterization of the set of solutions of Bellman’s equations

J = TµJ, J = TJ

Are Jµ and J∗ solutions?

If µ∗(x) attains the min for all x ,

µ∗(x) ∈ arg min
u∈U(x)

E
{

g(x , u,w) + αJ∗
(
f (x , u,w)

)}
, ∀ x ∈ X

(i.e., Tµ∗J∗ = TJ∗ in shorthand), then µ∗ is optimal

The value iteration (VI) method converges: {T k J} → J∗ for appropriate initial J

The policy iteration (PI) method converges: Jµk → J∗, where {µk} is generated by

Jµk = Tµk Jµk , (policy evaluation)

and
Tµk+1 Jµk = TJµk , (policy improvement)
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We Gave Four Pathological Examples: What is the Root of the
Anomalies?

A (partial) answer
The presence of policies that are not well-behaved in terms of VI (e.g., involve zero
length cycles in shortest path problems, or are unstable in linear quadratic problems)

We call these policies “irregular" and we investigate
What problems can they cause?

Under what assumptions are they “harmless"?
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Our Approach for Semicontractive Problems

Select a class of well-behaved/regular policies

Define a restricted optimization problem over the regular policies only

Show that the restricted problem has nice theoretical and algorithmic properties

Relate the restricted problem to the original

Under reasonable conditions, obtain strong theoretical and algorithmic results

Research Monograph
D. P. Bertsekas, Abstract Dynamic Programming, Athena Scientific, 2013; updated
chapters on-line

Bertsekas (M.I.T.) Semicontractive Dynamic Programming 7 / 31



Outline of this Lecture

1 S-Regular Policies

2 S-Regular Restricted Optimization

3 Weak and Strong PI Properties

4 Stochastic Shortest Path Example

5 Deterministic Optimal Control Example

Bertsekas (M.I.T.) Semicontractive Dynamic Programming 8 / 31



Shorthand Notation for Cost Functions

< the set of real numbers (−∞,∞)

R(X ) the set of real-valued functions J : X 7→ <
E(X ) the set of extended real-valued functions J : X 7→ [−∞,∞]

J̄ is the identically 0-function, J̄(x) ≡ 0

N-stage cost of policy µ starting from x with terminal cost function J:

(T N
µ J)(x) = E

{
αNJ(xN) +

N−1∑
k=0

αk g
(
xk , µ(xk ),wk

)}

k -stage cost of policy µ starting from x with 0 terminal cost:

(T k
µ J̄)(x) = E

{
k−1∑
m=0

αmg
(
xm, µ(xm),wm

)}

Infinite horizon cost of policy µ starting from x :

Jµ(x) = lim sup
k→∞

(T k
µ J̄)(x)
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Definition of S-Regular Policy
Given a set of functions S ⊂ E(X ), we say that a stationary policy µ is S-regular if:

Jµ ∈ S and Jµ = TµJµ

T k
µJ → Jµ for all J ∈ S

A policy that is not S-regular is called S-irregular.

The S-regular µ are the ones for which Jµ is the unique and stable equilibrium
point of Tµ within S

The S-regular µ are well-behaved" with respect to VI (at least within S)
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S-Regular Policies: Illustration for S = <
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Bertsekas (M.I.T.) Semicontractive Dynamic Programming 12 / 31



Examples of S-Regular Policies in SOC

Definition of S-Regularity
Given a set of functions S ⊂ E(X ), a stationary policy µ is S-regular if:

Jµ ∈ S and Jµ = TµJµ

T k
µJ → Jµ for all J ∈ S

Examples
All µ such that Jµ ∈ S and Tµ is a contraction mapping over S are S-regular: i.e.,
Tµ : S 7→ S and

‖TµJ − TµJ ′‖ ≤ β‖J − J ′‖, ∀ J, J ′ ∈ S

where β ∈ (0, 1)

n-state shortest path problems: If S = <n, the S-regular policies are precisely the
terminating policies

In linear quadratic problems: If S is the set of positive semidefinite quadratic
functions, the linear stabilizing controllers are S-regular
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S-Regular Policies: Dependence on the Choice of S
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Hyperplane {x | a⇤x = b} = {x | a⇤x = a⇤x}

x� x f
�
�x� + (1 � �)x

⇥

x x�

x0 � d x1 x2 x x4 � d x5 � d d

x̂0 x̂1 x̂2 x̂3

a0 a1 a2 a3

f(z)

z

1

J� = lim
k⇥⌅

T kJ̄ =
1

1 � �
J TJ� J̄ = 0 TµJ

J� =
1

1 � �
TJ� =

2

1 � �
1 H(0, 0, J)

S-regular S-irregular

⇥k � Dk(x, xk) ⇥k+1 � Dk+1(x, xk+1)

T
y3 x3 Slope = y3

rx(z) = �(ĉl⌅)(x, z)

rx(µ) � ⇤ µ Z (u, 1)

= Min Common Value w�

= Max Crossing Value q�

Positive Halfspace {x | a⇤x ⇥ b}

a�(C) C C ⇤ S⇧ d z x

Hyperplane {x | a⇤x = b} = {x | a⇤x = a⇤x}

x� x f
�
�x� + (1 � �)x

⇥

x x�

x0 � d x1 x2 x x4 � d x5 � d d

x̂0 x̂1 x̂2 x̂3

a0 a1 a2 a3

f(z)

z

1

J� = lim
k⇥⌅

T kJ̄ =
1

1 � �
J TJ� J̄ = 0 TµJ

J� =
1

1 � �
TJ� =

2

1 � �
1 H(0, 0, J)

S-regular S-irregular ⇤-regular ⇤-irregular

⇥k � Dk(x, xk) ⇥k+1 � Dk+1(x, xk+1)

T
y3 x3 Slope = y3

rx(z) = �(ĉl⌅)(x, z)

rx(µ) � ⇤ µ Z (u, 1)

= Min Common Value w�

= Max Crossing Value q�

Positive Halfspace {x | a⇤x ⇥ b}

a�(C) C C ⌅ S⇧ d z x

Hyperplane {x | a⇤x = b} = {x | a⇤x = a⇤x}

x� x f
�
�x� + (1 � �)x

⇥

x x�

x0 � d x1 x2 x x4 � d x5 � d d

x̂0 x̂1 x̂2 x̂3

a0 a1 a2 a3

f(z)

z

1

J� = lim
k⇥⌅

T kJ̄ =
1

1 � �
J TJ� J̄ = 0 TµJ

J� =
1

1 � �
TJ� =

2

1 � �
1 H(0, 0, J) Jµ J̃

S-regular S-irregular ⇤-regular ⇤-irregular

⇥k � Dk(x, xk) ⇥k+1 � Dk+1(x, xk+1)

T
y3 x3 Slope = y3

rx(z) = �(ĉl⌅)(x, z)

rx(µ) � ⇤ µ Z (u, 1)

= Min Common Value w�

= Max Crossing Value q�

Positive Halfspace {x | a⇤x ⇥ b}

a�(C) C C ⌅ S⇧ d z x

Hyperplane {x | a⇤x = b} = {x | a⇤x = a⇤x}

x� x f
�
�x� + (1 � �)x

⇥

x x�

x0 � d x1 x2 x x4 � d x5 � d d

x̂0 x̂1 x̂2 x̂3

a0 a1 a2 a3

f(z)

z

1

J� = lim
k⇥⌅

T kJ̄ =
1

1 � �
J TJ� J̄ = 0 TµJ

J� =
1

1 � �
TJ� =

2

1 � �
1 H(0, 0, J) Jµ J̃

S -regular S-irregular ⇤-regular ⇤-irregular

⇥k � Dk(x, xk) ⇥k+1 � Dk+1(x, xk+1)

T
y3 x3 Slope = y3

rx(z) = �(ĉl⌅)(x, z)

rx(µ) � ⇤ µ Z (u, 1)

= Min Common Value w�

= Max Crossing Value q�

Positive Halfspace {x | a⇤x ⇥ b}

a�(C) C C ⌅ S⇧ d z x

Hyperplane {x | a⇤x = b} = {x | a⇤x = a⇤x}

x� x f
�
�x� + (1 � �)x

⇥

x x�

x0 � d x1 x2 x x4 � d x5 � d d

x̂0 x̂1 x̂2 x̂3

a0 a1 a2 a3

f(z)

z

1

J� = lim
k⇥⌅

T kJ̄ =
1

1 � �
J TJ� J̄ = 0 TµJ

J� =
1

1 � �
TJ� =

2

1 � �
1 H(0, 0, J) Jµ J̃

S S-regular S-irregular ⇤-regular ⇤-irregular

⇥k � Dk(x, xk) ⇥k+1 � Dk+1(x, xk+1)

T
y3 x3 Slope = y3

rx(z) = �(ĉl⌅)(x, z)

rx(µ) � ⇤ µ Z (u, 1)

= Min Common Value w�

= Max Crossing Value q�

Positive Halfspace {x | a⇤x ⇥ b}

a�(C) C C ⌅ S⇧ d z x

Hyperplane {x | a⇤x = b} = {x | a⇤x = a⇤x}

x� x f
�
�x� + (1 � �)x

⇥

x x�

x0 � d x1 x2 x x4 � d x5 � d d

x̂0 x̂1 x̂2 x̂3

a0 a1 a2 a3

f(z)

z

1

J� = lim
k⇥⌅

T kJ̄ =
1

1 � �
J TJ� J̄ = 0 TµJ

J� =
1

1 � �
TJ� =

2

1 � �
1 H(0, 0, J) Jµ Ĵ T k

µ J̄

S S-regular S-irregular ⇤-regular ⇤-irregular

⇥k � Dk(x, xk) ⇥k+1 � Dk+1(x, xk+1)

T
y3 x3 Slope = y3

rx(z) = �(ĉl⌅)(x, z)

rx(µ) � ⇤ µ Z (u, 1)

= Min Common Value w�

= Max Crossing Value q�

Positive Halfspace {x | a⇤x ⇥ b}

a�(C) C C ⌅ S⇧ d z x

Hyperplane {x | a⇤x = b} = {x | a⇤x = a⇤x}

x� x f
�
�x� + (1 � �)x

⇥

x x�

x0 � d x1 x2 x x4 � d x5 � d d

x̂0 x̂1 x̂2 x̂3

a0 a1 a2 a3

f(z)

z

1

J̃ Jµ Jµ⇤ = J� Jµ = J� J� = lim
k⇥⌅

T kJ̄ =
1

1 � �
J TJ� J̄ = 0 TµJ Tµ⇤J

Tµ,�J 1 Jµ,� = 1+⇤ J̄ = Jµ = 0 J� =
1

1 � �
TJ� =

2

1 � �
1 H(0, 0, J) Jµ Ĵ T k

µ J̄ T k
µ J̄

S S-regular S-irregular ⇤-regular ⇤-irregular

J� = TJ�

Fixed Points of Tµ

TµJ TµJ

⇥k � Dk(x, xk) ⇥k+1 � Dk+1(x, xk+1)

T
y3 x3 Slope = y3

rx(z) = �(ĉl⇧)(x, z)

rx(µ) � ⌅ µ Z (u, 1)

= Min Common Value w�

= Max Crossing Value q�

Positive Halfspace {x | a⇤x ⇥ b}

a�(C) C C ⌅ S⇧ d z x

Hyperplane {x | a⇤x = b} = {x | a⇤x = a⇤x}

x� x f
�
�x� + (1 � �)x

⇥

x x�

x0 � d x1 x2 x x4 � d x5 � d d

x̂0 x̂1 x̂2 x̂3

a0 a1 a2 a3

1

Definition of S-Regularity

Given a set of functions S ⊂ E(X ), a stationary policy µ is S-regular if:

Jµ ∈ S and Jµ = TµJµ

T k
µJ → Jµ for all J ∈ S
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S-Regular Restricted Problem
Amount demanded: u ∈ (0, 1]

Well-Behaved Region

Jµ for µ ∈ MS supJ∈S J J∗
S J ∈ E(X)

Fixed Point of T VI: T kJ Optimal Cost over C E(X) Cost 0

Jµ(2) = Jµ(3) = Jµ(4) = 1 Prob. = 1/2

Jµ(5) = Jµ(6) = Jµ(7) = 1

Jµ(1) = 0

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

For p = 0: Jp(1) = Jp(5) = 1

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

1

Amount demanded: u ∈ (0, 1]

Well-Behaved Region

Jµ for µ ∈ MS supJ∈S J J∗
S J ∈ E(X)

Fixed Point of T VI: T kJ Optimal Cost over C E(X) Cost 0

Jµ(2) = Jµ(3) = Jµ(4) = 1 Prob. = 1/2

Jµ(5) = Jµ(6) = Jµ(7) = 1

Jµ(1) = 0

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

For p = 0: Jp(1) = Jp(5) = 1

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

1

Amount demanded: u ∈ (0, 1]

Well-Behaved Region

Jµ for µ ∈ MS supJ∈S J J∗
S J ∈ E(X)

Fixed Point of T VI: T kJ Optimal Cost over C E(X) Cost 0

Jµ(2) = Jµ(3) = Jµ(4) = 1 Prob. = 1/2

Jµ(5) = Jµ(6) = Jµ(7) = 1

Jµ(1) = 0

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

For p = 0: Jp(1) = Jp(5) = 1

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

1

Amount demanded: u 2 (0, 1]

Well-Behaved Region J⇤ S

Jµ for µ 2 MS supJ2S J J⇤
S J 2 E(X)

Fixed Point of T VI: T kJ Optimal Cost over C E(X) Cost 0

Jµ(2) = Jµ(3) = Jµ(4) = 1 Prob. = 1/2

Jµ(5) = Jµ(6) = Jµ(7) = 1

Jµ(1) = 0

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

For p = 0: Jp(1) = Jp(5) = 1

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

1

Amount demanded: u 2 (0, 1]

Well-Behaved Region J⇤ S

Jµ for µ 2 MS supJ2S J J⇤
S J 2 E(X)

Fixed Point of T VI: T kJ Optimal Cost over C E(X) Cost 0

Jµ(2) = Jµ(3) = Jµ(4) = 1 Prob. = 1/2

Jµ(5) = Jµ(6) = Jµ(7) = 1

Jµ(1) = 0

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

For p = 0: Jp(1) = Jp(5) = 1

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

1

Given a set S ⊂ E(X )

LetMS be the set of all S-regular policies

Consider the restricted optimization problem: Minimize Jµ over the S-regular µ

Let J∗S be the optimal cost function over S-regular policies only:

J∗S (x) = inf
µ∈MS

Jµ(x), x ∈ X

Since S-regular policies is a subset of the set of all policies,

J∗ ≤ J∗S
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Well-Behaved Region Theorem

Given a set S ⊂ E(X ) consider

J∗S (x) = inf
µ∈MS

Jµ(x), x ∈ X

whereMS is the set of all S-regular policies

Amount demanded: u ∈ (0, 1]

Well-Behaved Region

Jµ for µ ∈ MS supJ∈S J J∗
S J ∈ E(X)

Fixed Point of T VI: T kJ Optimal Cost over C E(X) Cost 0

Jµ(2) = Jµ(3) = Jµ(4) = 1 Prob. = 1/2

Jµ(5) = Jµ(6) = Jµ(7) = 1

Jµ(1) = 0

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

For p = 0: Jp(1) = Jp(5) = 1

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

1

Amount demanded: u ∈ (0, 1]

Well-Behaved Region

Jµ for µ ∈ MS supJ∈S J J∗
S J ∈ E(X)

Fixed Point of T VI: T kJ Optimal Cost over C E(X) Cost 0

Jµ(2) = Jµ(3) = Jµ(4) = 1 Prob. = 1/2

Jµ(5) = Jµ(6) = Jµ(7) = 1

Jµ(1) = 0

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

For p = 0: Jp(1) = Jp(5) = 1

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

1

Amount demanded: u ∈ (0, 1]

Well-Behaved Region

Jµ for µ ∈ MS supJ∈S J J∗
S J ∈ E(X)

Fixed Point of T VI: T kJ Optimal Cost over C E(X) Cost 0

Jµ(2) = Jµ(3) = Jµ(4) = 1 Prob. = 1/2

Jµ(5) = Jµ(6) = Jµ(7) = 1

Jµ(1) = 0

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

For p = 0: Jp(1) = Jp(5) = 1

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

1

Amount demanded: u ∈ (0, 1]

Well-Behaved Region

Jµ for µ ∈ MS supJ∈S J J∗
S J ∈ E(X)

Fixed Point of T VI: T kJ Optimal Cost over C E(X) Cost 0

Jµ(2) = Jµ(3) = Jµ(4) = 1 Prob. = 1/2

Jµ(5) = Jµ(6) = Jµ(7) = 1

Jµ(1) = 0

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

For p = 0: Jp(1) = Jp(5) = 1

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

1

Amount demanded: u ∈ (0, 1]

Well-Behaved Region Fixed Point of T J∗ S

Jµ for µ ∈ MS supJ∈S J J∗
S J ∈ E(X)

Fixed Point of T VI: T kJ Optimal Cost over C E(X) Cost 0

Jµ(2) = Jµ(3) = Jµ(4) = 1 Prob. = 1/2

Jµ(5) = Jµ(6) = Jµ(7) = 1

Jµ(1) = 0

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

For p = 0: Jp(1) = Jp(5) = 1

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

1

Amount demanded: u ∈ (0, 1]

Well-Behaved Region WS Fixed Point of T J∗ S = R(X)

Jµ for µ ∈ MS supJ∈S J J∗ = J∗
S J ∈ E(X)

Fixed Point of T VI: T kJ Optimal Cost over C E(X) Cost 0

Jµ(2) = Jµ(3) = Jµ(4) = 1 Prob. = 1/2

Jµ(5) = Jµ(6) = Jµ(7) = 1

Jµ(1) = 0

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

For p = 0: Jp(1) = Jp(5) = 1

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

1

Proposition
Assume that J∗S is a fixed point of T . Then:

(Uniqueness of fixed point) J∗S is the only fixed point of T within the set
WS =

{
J ∈ E(X ) | J∗S ≤ J ≤ J̃ for some J̃ ∈ S

}
(VI convergence) T k J → J∗S for every J ∈ WS

(Optimality condition) If µ∗ is S-regular, J∗S ∈ S, and Tµ∗J∗S = TJ∗S , then µ∗ is
MS-optimal. Conversely, if µ∗ isMS-optimal, then Tµ∗J∗S = TJ∗S .
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Proof ArgumentAmount demanded: u ∈ (0, 1]

Well-Behaved Region

Jµ for µ ∈ MS supJ∈S J J∗
S J ∈ E(X)

Fixed Point of T VI: T kJ Optimal Cost over C E(X) Cost 0

Jµ(2) = Jµ(3) = Jµ(4) = 1 Prob. = 1/2

Jµ(5) = Jµ(6) = Jµ(7) = 1

Jµ(1) = 0

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

For p = 0: Jp(1) = Jp(5) = 1

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

1

Amount demanded: u ∈ (0, 1]

Well-Behaved Region

Jµ for µ ∈ MS supJ∈S J J∗
S J ∈ E(X)

Fixed Point of T VI: T kJ Optimal Cost over C E(X) Cost 0

Jµ(2) = Jµ(3) = Jµ(4) = 1 Prob. = 1/2

Jµ(5) = Jµ(6) = Jµ(7) = 1

Jµ(1) = 0

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

For p = 0: Jp(1) = Jp(5) = 1

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

1

Amount demanded: u ∈ (0, 1]

Well-Behaved Region

Jµ for µ ∈ MS supJ∈S J J∗
S J ∈ E(X)

Fixed Point of T VI: T kJ Optimal Cost over C E(X) Cost 0

Jµ(2) = Jµ(3) = Jµ(4) = 1 Prob. = 1/2

Jµ(5) = Jµ(6) = Jµ(7) = 1

Jµ(1) = 0

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

For p = 0: Jp(1) = Jp(5) = 1

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

1

Amount demanded: u ∈ (0, 1]

Well-Behaved Region

Jµ for µ ∈ MS supJ∈S J J∗
S J ∈ E(X)

Fixed Point of T VI: T kJ Optimal Cost over C E(X) Cost 0

Jµ(2) = Jµ(3) = Jµ(4) = 1 Prob. = 1/2

Jµ(5) = Jµ(6) = Jµ(7) = 1

Jµ(1) = 0

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

For p = 0: Jp(1) = Jp(5) = 1

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

1

Amount demanded: u ∈ (0, 1]

Well-Behaved Region Fixed Point of T J∗ S

Jµ for µ ∈ MS supJ∈S J J∗
S J ∈ E(X)

Fixed Point of T VI: T kJ Optimal Cost over C E(X) Cost 0

Jµ(2) = Jµ(3) = Jµ(4) = 1 Prob. = 1/2

Jµ(5) = Jµ(6) = Jµ(7) = 1

Jµ(1) = 0

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

For p = 0: Jp(1) = Jp(5) = 1

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

1

Amount demanded: u ∈ (0, 1]

Well-Behaved Region WS Fixed Point of T J∗ S = R(X)

Jµ for µ ∈ MS supJ∈S J J∗ = J∗
S J ∈ E(X)

Fixed Point of T VI: T kJ Optimal Cost over C E(X) Cost 0

Jµ(2) = Jµ(3) = Jµ(4) = 1 Prob. = 1/2

Jµ(5) = Jµ(6) = Jµ(7) = 1

Jµ(1) = 0

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

For p = 0: Jp(1) = Jp(5) = 1

Jp(2) = Jp(5) = 1 BUT Jp(1) = 0

1

Let J ∈ WS , so that J∗S ≤ J ≤ J̃ for some J̃ ∈ S. We have for all k and S-regular µ,

J∗S = T k J∗S ≤ T k J ≤ T k J̃ ≤ T k
µ J̃ =⇒ T k J → J∗S

If J ′ is another fixed point of T that belongs to WS , start VI at J ′ to get that
J ′ = limk→∞ T k J ′ = J∗S .

If µ∗ satisfies Tµ∗J∗S = TJ∗S , then Tµ∗J∗S = J∗S , implying that J∗S = Jµ∗ . Thus µ∗ is
MS-optimal

Conversely, if µ∗ is MS-optimal, we have Jµ∗ = J∗S , so

TJ∗S = J∗S = Jµ∗ = Tµ∗Jµ∗ = Tµ∗J∗S

Bertsekas (M.I.T.) Semicontractive Dynamic Programming 18 / 31



Deterministic Shortest Path Example; S = <

a 1 2 t b

J� Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; �k) f(x; �k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x� = F (x�) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

⇥k Jk Qk+1 Jk+1 µk+1 ⇥k+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondi�erentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Di�erentials

Values f(x) Crossing points f�(y)

�f�
1 (y) f�

1 (y) + f�
2 (�y) f�

2 (�y)

Slope y� Slope y

1

a 1 2 t b

J� Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; �k) f(x; �k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x� = F (x�) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

⇥k Jk Qk+1 Jk+1 µk+1 ⇥k+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondi�erentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Di�erentials

Values f(x) Crossing points f�(y)

�f�
1 (y) f�

1 (y) + f�
2 (�y) f�

2 (�y)

Slope y� Slope y

1

a 1 2 t b Destination

J� Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; �k) f(x; �k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x� = F (x�) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

⇥k Jk Qk+1 Jk+1 µk+1 ⇥k+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondi�erentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances
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the most part, they are used to exclude from optimality the policies that
are not “well-behaved,” and to obtain results that are nearly as powerful
as their counterparts for the contractive models of Chapter 2.

3.1.1 Deterministic Shortest Path Problems

Let us consider the classical deterministic shortest path problem, discussed
in Example 1.2.7. Here, we have a graph of n nodes x = 1, . . . , n, plus
a destination t , and an arc length axy for each directed arc (x, y). The
objective is to find for each x a directed path that starts at x, ends at t,
and has minimum length (the length of a path is defined as the sum of the
lengths of its arcs). A standard assumption, which we will adopt here, is
that every node x is connected to the destination, i.e., there exists a path
from every x to t.

To formulate this shortest path problem as a DP problem, we embed
it within a “larger” problem, whereby we view all paths as admissible,
including those that do not terminate at t. We also view t as a cost-
free and absorbing node. Of course, we need to deal with the presence of
policies that do not terminate, and the most common way to do this is to
assume that all cycles have strictly positive length, in which case policies
that do not terminate cannot be optimal. However, it is not uncommon to
encounter shortest path problems with zero length cycles, and even negative
length cycles. We will thus not impose any assumption on the sign of the
cycle lengths, particularly since we aim to use the shortest path problem
to illustrate behavior that arises in a broader undicounted/noncontractive
DP setting.

As noted in Section 1.2, we can formulate the problem in terms of an
abstract DP model where the states are the nodes x = 1, . . . , n, and the
controls available at x can be identified with the outgoing neighbors of x
[the nodes u such that (x, u) is an arc]. The mapping H that defines the
corresponding abstract DP problem is

H(x, u, J) =

⇢
axu + J(u) if u 6= t,
axt if u = t,

x = 1, . . . , n.

A stationary policy µ defines the subgraph whose arcs are
�
x, µ(x)

�
,

x = 1, . . . , n. We say that µ is proper if this graph is acyclic, i.e., it consists
of a tree of paths leading from each node to the destination. If µ is not
proper, it is called improper . Thus there exists a proper policy if and only
if each node is connected to t with a path. Furthermore, an improper policy
has cost greater than �1 starting from every initial state if and only if all
the cycles of the corresponding subgraph have nonnegative cycle cost.

Let us now get a sense of what may happen by considering the simple
one-node example shown in Fig. 3.1.1. Here there is a single state 1 in
addition to the termination state t. At state 1 there are two choices: a
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Jµ0 Jµ2 . . . PI-generated sequence

Bellman Eq: J(1) = min
�
b, a + J(1)

 
µ is <-Regular

Bellman Eq: J(1) = min
�
b, J(1)

 
µ0 is <-Irregular

1

Jµ0 Jµ2 . . . PI-generated sequence

Bellman Eq: (TJ)(1) = min
�
b, a + J(1)

 
µ is <-Regular

Bellman Eq: J(1) = (TJ)(1) = min
�
b, J(1)

 
µ0 is <-Irregular

1

u, Cost b Jµ0 Jµ2 . . . PI-generated sequence

PI Improvement Eq: µ1 ∈ argmin{b, a + Jµ0} = arg min{b, a + b}

Bellman Eq: J(1) = (TJ)(1) = min
{
b, J(1)

}
µ′ is ℜ-Irregular

1

J∗S is the only fixed point of T in the well-behaved region

T k J → J∗S for every J in the well-behaved region J ∈ E(X )
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How do we Choose S so that J∗
S is a Fixed Point of T?

One approach: Choose S so that J∗S = J∗, and prove that J∗ is a fixed point of T . J∗ is
a fixed point of T for several broad classes of problems, e.g., all deterministic
problems, all problems where the cost per stage g is uniformly nonnegative, or
uniformly nonpositive, etc

We will Follow Another Approach Based on Policy Iteration (PI)
The approach applies when S is “well-behaved" with respect to PI: roughly,
starting from an S-regular policy µ0, PI generates S-regular policies

The significance of S-regularity is that {Jµk } is monotonically nonincreasing, and
its limit is a fixed point of T
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The Weak PI property

Key Fact

If {µk} is generated by PI and consists of S-regular policies then

J∗S ≤ Jµk+1 ≤ Jµk , ∀ k

Proof: Jµk = Tµk Jµk ≥ TJµk = Tµk+1 Jµk ≥ limm→∞ T m
µk+1 Jµk = Jµk+1
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Jµ(5) = Jµ(6) = Jµ(7) = 1

Jµ(1) = 0
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We distinguish between two versions of PI-related assumptions, strong and weak,
which lead to corresponding strong and weak results

Definition
We say that S has the weak PI property if there exists a sequence of S-regular policies
{µk} that can be generated by the PI algorithm
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Weak PI Property Theorem
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Jµ0 Jµ1 Jµ2 . . . PI-generated sequence

Well-Behaved Region WS Fixed Point of T J∗ S = R(X)

Jµ for µ ∈ MS supJ∈S J J∗ = J∗
S J ∈ E(X)

Fixed Point of T VI: T kJ Optimal Cost over C E(X) Cost 0
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Let S have the weak PI property and {µk} be a generated sequence of S-regular
policies. Then:

Jµk ↓ J∗S and J∗S is a fixed point of T

The well-behaved theorem applies, so J∗S is the only fixed point of T within the
well-behaved region, and VI converges to J∗S starting from within that region

Proof Argument
S-regularity guarantees that Jµk is monotonically nonincreasing so Jµk ↓ J∞
We have

Jµk+1 ≤ Tµk+1 Jµk = TJµk ≤ Tµk Jµk = Jµk

By a limit and continuity argument, J∞ is a fixed point of T and J∞ = J∗S
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The Strong PI property

Definition
We say that S has the strong PI property if it has the weak PI property and starting
from an S-regular policy, PI generates only S-regular policies (i.e., the set of S-regular
policies is nonempty and is closed under PI)

Verifying the Strong PI Property for S = R(X )

S has the strong PI property if:

There exists at least one S-regular policy

The set
{u ∈ U(x) | H(x , u, J) ≤ λ}

is compact for every J ∈ S, x ∈ X , and λ ∈ <.

For every J ∈ S and S-irregular policy µ, there exists a state x ∈ X such that

lim sup
k→∞

(T k
µJ)(x) =∞

(so S-irregular policies cannot be optimal)
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Strong PI Property Theorem for S = R(X )

Assume the conditions of the preceding slide hold (so that the strong PI property
holds), and also J∗S ∈ R(X ) and is bounded below. Then:

J∗S = J∗, and J∗ is the unique fixed point of T within R(X )

We have T k J → J∗ for every J ∈ R(X )

A policy µ∗ is optimal if and only if Tµ∗J∗ = TJ∗, and there exists at least one
optimal policy

Starting from an S-regular policy µ0, PI generates a sequence {µk} of S-regular
policies such that Jµk ↓ J∗

Amount demanded: u ∈ (0, 1]
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Note the stronger conclusions:

J∗S = J∗ and is the unique fixed point of T within R(X ) (not just within WS)

VI converges starting anywhere within R(X )

PI converges assuming we know an initial S-regular policy
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Revisit: Deterministic Shortest Path Example, S = <

a 1 2 t b

J� Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; �k) f(x; �k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x� = F (x�) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

⇥k Jk Qk+1 Jk+1 µk+1 ⇥k+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondi�erentiability and piecewise linearity are common features.

Primal Problem Description
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Vertical Distances

Crossing Point Di�erentials

Values f(x) Crossing points f�(y)
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Nondi�erentiability and piecewise linearity are common features.
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2 (�y) f�

2 (�y)

Slope y� Slope y

1

Sec. 3.1 Pathologies of Noncontractive DP Models 7

the most part, they are used to exclude from optimality the policies that
are not “well-behaved,” and to obtain results that are nearly as powerful
as their counterparts for the contractive models of Chapter 2.

3.1.1 Deterministic Shortest Path Problems

Let us consider the classical deterministic shortest path problem, discussed
in Example 1.2.7. Here, we have a graph of n nodes x = 1, . . . , n, plus
a destination t , and an arc length axy for each directed arc (x, y). The
objective is to find for each x a directed path that starts at x, ends at t,
and has minimum length (the length of a path is defined as the sum of the
lengths of its arcs). A standard assumption, which we will adopt here, is
that every node x is connected to the destination, i.e., there exists a path
from every x to t.

To formulate this shortest path problem as a DP problem, we embed
it within a “larger” problem, whereby we view all paths as admissible,
including those that do not terminate at t. We also view t as a cost-
free and absorbing node. Of course, we need to deal with the presence of
policies that do not terminate, and the most common way to do this is to
assume that all cycles have strictly positive length, in which case policies
that do not terminate cannot be optimal. However, it is not uncommon to
encounter shortest path problems with zero length cycles, and even negative
length cycles. We will thus not impose any assumption on the sign of the
cycle lengths, particularly since we aim to use the shortest path problem
to illustrate behavior that arises in a broader undicounted/noncontractive
DP setting.

As noted in Section 1.2, we can formulate the problem in terms of an
abstract DP model where the states are the nodes x = 1, . . . , n, and the
controls available at x can be identified with the outgoing neighbors of x
[the nodes u such that (x, u) is an arc]. The mapping H that defines the
corresponding abstract DP problem is

H(x, u, J) =

⇢
axu + J(u) if u 6= t,
axt if u = t,

x = 1, . . . , n.

A stationary policy µ defines the subgraph whose arcs are
�
x, µ(x)

�
,

x = 1, . . . , n. We say that µ is proper if this graph is acyclic, i.e., it consists
of a tree of paths leading from each node to the destination. If µ is not
proper, it is called improper . Thus there exists a proper policy if and only
if each node is connected to t with a path. Furthermore, an improper policy
has cost greater than �1 starting from every initial state if and only if all
the cycles of the corresponding subgraph have nonnegative cycle cost.

Let us now get a sense of what may happen by considering the simple
one-node example shown in Fig. 3.1.1. Here there is a single state 1 in
addition to the termination state t. At state 1 there are two choices: a

Jµ0 Jµ1 Jµ2 . . . PI-generated sequence

Well-Behaved Region WS Fixed Point of T J∗ S = R(X)

Jµ for µ ∈ MS supJ∈S J J∗ = J∗
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PI Improvement Eq: µ1 ∈ argmin{b, a + Jµ0} = arg min{b, a + b}
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{
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u, Cost b Jµ0 Jµ2 . . . PI-generated sequence
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{
b, J(1)

}
µ′ is ℜ-Irregular

1

Case a = 0, Weak PI Property Holds
J∗S = b, J∗ = min{b, 0}
Set of fixed points of T = (−∞, b]

Well-behaved region is WS = {J | J∗S ≤ J} = [b,∞)

J∗S is the unique fixed point of T within WS (but if b > 0, we have J∗ < J∗S )

VI converges to J∗ starting anywhere within WS

PI convergence is problematic

Case a > 0, Strong PI Property Holds
J∗S = J∗ is the unique fixed point of T within S

VI converges to J∗ for all initial conditions. PI also converges ...
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Stochastic Shortest Path (SSP) Problems

Problem Formulation
Finite state space X = {1, . . . , n} plus a termination state t

Transition probabilities pxy (u)

U(x) is finite for all x ∈ X

Cost per stage g(x , u) and no discounting (α = 1)

Proper policies
µ is proper if the termination state t is reached w.p.1 under µ (is improper
otherwise)

Let S = R(X ) = <n. Then µ is S-regular if and only if it is proper

Contraction properties
The mapping Tµ of a policy µ is a weighted sup-norm contraction iff µ proper

If all stationary policies are proper, then T is a sup-norm contraction, and the
problem behaves like a discounted problem

SSP is a prime example of a semicontractive model (when some policies are
proper/contractions/regular while others are not)
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Stochastic Shortest Path Problems Results

Case where improper policies have infinite cost (strong PI property holds)
If there exists a proper policy and for every improper µ, Jµ(x) =∞ for some x , then:

J∗ is the unique fixed point of T in <n

VI converges to J∗ starting from every J ∈ <n

PI converges to an optimal proper policy, if started with a proper policy

Case where improper policies have finite cost (due to zero length “cycles")

Let Ĵ be the optimal cost function over proper stationary policies only, and assume that
Ĵ and J∗ are real-valued. Then, by the weak PI property theorem:

Ĵ is the unique fixed point of T in the set {J ∈ <n | J ≥ Ĵ}
VI converges to Ĵ starting from any J ≥ Ĵ

PI need not converge to an optimal policy even if started with a proper policy

A related line of analysis also applies: Use a “perturbed" version of the problem
(add a δk > 0 to g, with δk ↓ 0)

A “perturbed" version of PI (add a δk > 0 to g, with δk ↓ 0) converges to an optimal
policy within the class of proper policies, if started with a proper policy

An improper policy may be (overall) optimal, while J∗ need not be a fixed point of T
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Application to Nonnegative Cost Deterministic Optimal Control

Classic problem of regulation to a terminal set
System: xk+1 = f (xk , uk ). Cost per stage: g(xk , uk ) ≥ 0

Cost-free and absorbing terminal set of states X0 that we aim to reach or approach
asymptotically at minimum cost

Let S =
{

J ∈ E+(X ) | J(x) = 0, ∀ x ∈ X0
}

The terminating policies (reach X0 in a finite number of steps from all x with
J∗(x) <∞) are S-regular

Assumptions (implying that the strong PI property holds)

J∗(x) > 0 for all x /∈ X0 (implies that S-irregular policies have infinite cost)

Controllability: For all x with J∗(x) <∞ and ε > 0, there exists a terminating
policy µ that reaches X0 starting from x with cost Jµ(x) ≤ J∗(x) + ε

A compactness condition

Results
J∗ is the unique solution of Bellman’s equation within S

VI converges to J∗ starting from any J ∈ S

PI converges to J∗ starting from a terminating policy
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