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Classical Total Cost Stochastic Optimal Control (SOC)

System: Xk+1 = f(Xk, Uk, Wk)
@ xx: State at time k, from some space X
@ uk: Control at time k, from some space U

@ wi: Random “disturbance" at time k, from a countable space W, with
p(wi | Xk, Ux) given

Policies: m = {po, pi1, ...}

@ Each px maps states xx to controls ux = ux(Xxx) € U(Xk) (a constraint set)
@ Cost of 7 starting at xo, with discount factor « € (0, 1]:

Jr(x0) = limsupy_. E {34, 4 a"g(xm, i (xm), W) }

@ Optimal cost starting at xo: J*(x0) = infx Jx(x0)
@ Optimal policy 7*: Satisfies J,«(x) = J*(x) forall x € X
@ Stationary policies, those of the form {u, 11, . . .}, play a special role
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Bellman’s Equations In Shorthand

@ The cost of a stationary policy  starting from state x, denoted J,.(x), and the
optimal cost starting from state x, denoted J*(x), typically satisfy Bellman’s
equations

Ju(x) = E{g(x, u(x), w) + oy (f(x, u(x), w)) }, VxeX

J(x) = inf )E{g(x, u,w) + ad*(f(x,u,w))}, VxeX

ueU(x

Denote for all x € X and g,

H(x,u,J) = E{g(x,u,w) + aJ(f(x,u,w))}

(Tud)(x) = H(x, u(x),d),  (TI)(x) = ol (200 B

A key property is that T, and T are monotone

@ The Bellman equations can be viewed abstractly as the fixed point equations
Jp=Tudpand J* = TJ*

@ We are considering semicontractive problems where some T, are
“contraction-like" and others are not
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Results that we Aim for in Total Cost SOC

@ Characterization of the set of solutions of Bellman’s equations
J=T.d, J=TJ
Are J, and J* solutions?
@ If 4*(x) attains the min for all x,

1 (x) € argmin E{g(x, u, w) + aJ* (f(x,u, w)) }, VxeX
ueU(x)

(i.e., TuxJ* = TJ" in shorthand), then p* is optimal
@ The value iteration (V1) method converges: { T*J} — J* for appropriate initial J
@ The policy iteration (Pl) method converges: J,« — J*, where {1*V is generated by
Ik = T xd ik, (policy evaluation)

and
Toerde = Tk, (policy improvement)
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We Gave Four Pathological Examples: What is the Root of the

Anomalies?

A (partial) answer

The presence of policies that are not well-behaved in terms of VI (e.g., involve zero
length cycles in shortest path problems, or are unstable in linear quadratic problems)

We call these policies “irregular" and we investigate
@ What problems can they cause?
@ Under what assumptions are they “harmless"?
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Our Approach for Semicontractive Problems

@ Select a class of well-behaved/regular policies

@ Define a restricted optimization problem over the regular policies only

@ Show that the restricted problem has nice theoretical and algorithmic properties
@ Relate the restricted problem to the original

@ Under reasonable conditions, obtain strong theoretical and algorithmic results

Research Monograph

D. P. Bertsekas, Abstract Dynamic Programming, Athena Scientific, 2013; updated
chapters on-line
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Outline of this Lecture

° S-Regular Policies

e S-Regular Restricted Optimization
e Weak and Strong PI Properties
0 Stochastic Shortest Path Example

e Deterministic Optimal Control Example
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Shorthand Notation for Cost Functions

R the set of real numbers (—oo, o)

R(X) the set of real-valued functions J : X — %

E(X) the set of extended real-valued functions J : X — [—o0, o0]

J is the identically 0-function, J(x) = 0

N-stage cost of policy i starting from x with terminal cost function J:

N—1
(TN)(x) = E {a”J(XN) + > g (i n(x0), W")}

k=0

k-stage cost of policy u starting from x with 0 terminal cost:

k—1

(739109 = £ { a0t ) |
m=0

@ Infinite horizon cost of policy u starting from x:

Jy.(x) = limsup (TJ)(x)

k—o0
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S-Regular Policies

S-Regular policy S-Irregular policy
Tk

Definition of S-Regular Policy

Given a set of functions S C E(X), we say that a stationary policy x is S-regular if:
@ J,eSand J, =T,J,
o Tk~ J,forallJe S

A policy that is not S-regular is called S-irregular.

@ The S-regular p are the ones for which J, is the unique and stable equilibrium
point of T, within S

@ The S-regular i are well-behaved" with respect to VI (at least within S)
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S-Regular Policies: lllustration for S = R

1,7

//0
Definition of S-Regularity

Given a set of functions S C E(X), a stationary policy p is S-regular if:
@ J,eSandJ, = T,J,
o Tk~ J,forallJe S
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Examples of S-Regular Policies in SOC

Definition of S-Regularity

Given a set of functions S C E(X), a stationary policy w is S-regular if:
@ J,eSandJ, =T.J,
@ Tk~ J,forallJe S

Examples

@ All u such that J, € Sand T, is a contraction mapping over S are S-regular: i.e.,
T.,:S— Sand

ITud = TSI <BIJ=J], VIS eS
where g € (0,1)

@ n-state shortest path problems: If S = R”, the S-regular policies are precisely the
terminating policies

@ In linear quadratic problems: If S is the set of positive semidefinite quadratic
functions, the linear stabilizing controllers are S-regular
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S-Regular Policies: Dependence on the Choice of S

T,J

S-regular

=N

<
é
<

Definition of S-Regularity

Given a set of functions S C E(X), a stationary policy n is S-regular if:
@ J,eSandJ, = T,J,
o Tk~ J,forallJe S
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S-Regular Restricted Problem

Jy for pe Mg
s B NN
e s JEEX)
S

Given aset S € E(X)

@ Let M be the set of all S-regular policies
@ Consider the restricted optimization problem: Minimize J,, over the S-regular p
@ Let Js be the optimal cost function over S-regular policies only:

S = inf Ju(x),  xeX

@ Since S-regular policies is a subset of the set of all policies,

J < Js
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Well-Behaved Region Theorem

Given a set S C E(X) consider

Js(x) = inf Ju(x), xeX

HEMg

where Mg is the set of all S-regular policies

Fixed Pomt of T J, for p € Ms

J"/// \\\ supses J N

:! J e E(X)

Well-Behaved Region Wg

Proposition
Assume that Js is a fixed point of T. Then:
@ (Uniqueness of fixed point) Js is the only fixed point of T within the set
Ws = {J e E(X)|Js <J < JforsomeJ € S}
@ (VI convergence) TXJ — J3 for every J € Ws
@ (Optimality condition) If x* is S-regular, J; € S, and T,-Js = TJ3, then p* is
M-optimal. Conversely, if u* is Mg-optimal, then T,~Js = TJg.
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Proof Argument

Fixed Pomt of T T, for p € Ms

/// S

=1 J € B(X)

Well-Behaved Region Wg

@ LetJ e Ws, sothat J5 < J < Jfor some J € S. We have for all k and S-regular .,
Js=TUs<TU<TI< T = TK = J§

o If J' is another fixed point of T that belongs to Ws, start VI at J' to get that
J =limgo TR = U

o If u* satisfies T,~J3s = TJg, then T,~Jg = Jg, implying that J5 = J.«. Thus p* is
Mg-optimal

@ Conversely, if u* is Ms-optimal, we have J,» = Jg, so

TJS = J5 = dpe = Tuedye = T J3
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Deterministic Shortest Path Example; S = &

Stationary policy costs u/, Cost 0 Bellman Eq
Ju(1) =, Ju(1) =0 J(1) = (TJ)(1) = min {b, J(1)}
Destination

Optimal cost J*(1) = min{b, 0} u, Cost b

T =Jg=Jy,=b<0 Ju=0

7 .

Set of Fixed Points of T Well-Behaved Region

J=Jy=0 Jg=Ju,=b>0
_ I

I
Set of Fixed Points of T’ Well-Behaved Region

@ Js is the only fixed point of T in the well-behaved region
e T*J — Jg for every J in the well-behaved region J € E(X) J
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How do we Choose S so that Jg is a Fixed Point of T?

One approach: Choose S so that Js = J*, and prove that J* is a fixed point of 7. J* is
a fixed point of T for several broad classes of problems, e.g., all deterministic
problems, all problems where the cost per stage g is uniformly nonnegative, or
uniformly nonpositive, etc

We will Follow Another Approach Based on Policy Iteration (Pl)

@ The approach applies when S is “well-behaved" with respect to PI: roughly,
starting from an S-regular policy 1°, Pl generates S-regular policies

@ The significance of S-regularity is that {J « } is monotonically nonincreasing, and
its limit is a fixed point of T

PI-generated sequence
— 7 \ AN
J3 Jp2 Jp Jyo supeg J

R — .

A

J € E(X)

y
vy |
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The Weak PI property

Key Fact

If {4} is generated by Pl and consists of S-regular policies then
Js < J#k+1 < J‘Lk, Vv k

Proof: Juk = TukJuk > TJHI( = Tuk” Juk > [iMm— oo T:}H Juk = Juk”

PI-generated sequence

— 7 \ AN
J§ o Jp2 Jur Jyo Supyeg J
e - — . senwm
We distinguish between two versions of Pl-related assumptions, strong and weak,
which lead to corresponding strong and weak results J

Definition
We say that S has the weak Pl property if there exists a sequence of S-regular policies
{u*} that can be generated by the Pl algorithm
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Weak Pl Property Theorem

Fixed Point of T'

PI-generated sequence
* _—
J§ T2 i Jyo supjegsJ
L :! J € E(X)
Well-Behaved Region Wg

Let S have the weak Pl property and {.%} be a generated sequence of S-regular
policies. Then:
@ J . | Jsand Js is a fixed point of T

@ The well-behaved theorem applies, so Js is the only fixed point of T within the
well-behaved region, and VI converges to Jg starting from within that region
Proof Argument

@ S-regularity guarantees that J,« is monotonically nonincreasing so J,« | Joo
@ We have

J#;m < Tuk+1 Juk = TJHk < T#kJ#k = Juk
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The Strong PI property

Definition

We say that S has the strong PI property if it has the weak PI property and starting
from an S-regular policy, Pl generates only S-regular policies (i.e., the set of S-regular
policies is nonempty and is closed under Pl)

Verifying the Strong PI Property for S = R(X)
S has the strong Pl property if:
@ There exists at least one S-regular policy

@ The set
{ue U(x) | H(x,u,J) < A}

is compact forevery J € S, x € X, and \ € .
@ For every J € S and S-irregular policy u, there exists a state x € X such that

lim sup (T/{J)(x) = oo
k— oo

(so S-irregular policies cannot be optimal)

Bertsekas (M.L.T.) Semicontractive Dynamic Programming 24/31



Strong PI Property Theorem for S = R(X)

Assume the conditions of the preceding slide hold (so that the strong Pl property
holds), and also Js € R(X) and is bounded below. Then:

@ Ji = J*, and J* is the unique fixed point of T within R(X)

@ We have T"J — J* for every J € R(X)

@ A policy p* is optimal if and only if T,,~J* = TJ*, and there exists at least one
optimal policy

@ Starting from an S-regular policy 1.°, Pl generates a sequence {u*} of S-regular
policies such that J « | J*

Jyu for pe Mg
i e
< R(X)
) S = R(X) i

Note the stronger conclusions:
@ J3 = J* and is the unique fixed point of T within R(X) (not just within Ws)
@ VI converges starting anywhere within R(X)
@ Pl converges assuming we know an initial S-regular policy
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Revisit: Deterministic Shortest Path Example, S = R

', Cost a
' is R-Irregular
Bellman Eq: J(1) = min {b, a + J(1)}

Destination

PI Improvement Eq: u, Cost b
pt € argmin{b, a + Jyo} = argmin{b, a +b} \ + JTTT==
it is R-Regular

Case a =0, Weak PI Property Holds
@ Ji;=b,J" =min{b,0}
@ Set of fixed points of T = (—oo, b]
@ Well-behaved region is Ws = {J | J5 < J} = [b, )
@ J3 is the unique fixed point of T within Ws (but if b > 0, we have J* < J3)
@ VI converges to J* starting anywhere within Ws
@ Pl convergence is problematic

Case a > 0, Strong Pl Property Holds
@ J; = J* is the unique fixed point of T within S
@ VI converges to J* for all initial conditions. PI also converges ...
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Stochastic Shortest Path (SSP) Problems

Problem Formulation
@ Finite state space X = {1,..., n} plus a termination state ¢
@ Transition probabilities py, (u)
@ U(x) is finite for all x € X
@ Cost per stage g(x, u) and no discounting (« = 1)

Proper policies

@ u is proper if the termination state ¢ is reached w.p.1 under p (is improper
otherwise)

@ Let S= R(X) =R". Then p is S-regular if and only if it is proper

Contraction properties
@ The mapping T, of a policy x is a weighted sup-norm contraction iff u proper
@ If all stationary policies are proper, then T is a sup-norm contraction, and the
problem behaves like a discounted problem

@ SSP is a prime example of a semicontractive model (when some policies are
proper/contractions/regular while others are not)
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Stochastic Shortest Path Problems Results

Case where improper policies have infinite cost (strong Pl property holds)

If there exists a proper policy and for every improper p, J.(x) = oo for some x, then:
@ J* is the unique fixed point of T in R"
@ VI converges to J* starting from every J € ®"
@ Pl converges to an optimal proper policy, if started with a proper policy

Case where improper policies have finite cost (due to zero length “cycles")
Let J be the optimal cost function over proper stationary policies only, and assume that
J and J* are real-valued. Then, by the weak PI property theorem:
@ Jis the unique fixed point of T in the set {J € R" | J > J}
@ VI converges to J starting from any J > J
@ Pl need not converge to an optimal policy even if started with a proper policy
@ Arelated line of analysis also applies: Use a “perturbed" version of the problem
(add a 6« > 0 to g, with o, | 0)
@ A “perturbed" version of Pl (add a 6« > 0 to g, with dx | 0) converges to an optimal
policy within the class of proper policies, if started with a proper policy

@ An improper policy may be (overall) optimal, while J* need not be a fixed point of T

Bertsekas (M.L.T.) Semicontractive Dynamic Programming 29/31



Application to Nonnegative Cost Deterministic Optimal Control

Classic problem of regulation to a terminal set
@ System: xx1 = f(X«, Ux). Cost per stage: g(xk, ux) > 0
@ Cost-free and absorbing terminal set of states X that we aim to reach or approach
asymptotically at minimum cost
o letS={Je E"(X)|J(x)=0,VxeX}
@ The terminating policies (reach X; in a finite number of steps from all x with
J*(x) < o0) are S-regular

Assumptions (implying that the strong Pl property holds)

@ J*(x) > 0forall x ¢ Xp (implies that S-irregular policies have infinite cost)

@ Controllability: For all x with J*(x) < co and e > 0, there exists a terminating
policy u that reaches X starting from x with cost J,,(x) < J*(x) + ¢

@ A compactness condition

Results
@ J* is the unique solution of Bellman’s equation within S
@ VI converges to J* starting fromany J € S
@ Pl converges to J* starting from a terminating policy
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