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We propose a new method for ordering the candidate nodes in label correcting methods for shortest 
path problems. The method tries to scan nodes with small labels as early as possible and may be 
viewed as a low-overhead approximation to Dijkstra’s algorithm. Compared with the D’Esopo-Pape 
algorithm, our method is equally simple but much faster. Our method can also be combined with 
the threshold algorithm, thereby considerably improving its practical performance. 0 7993 by John 
Wiley & Sons, Inc. 

1. A NEW NODE SELECTION STRATEGY 
FOR LABEL CORRECTING METHODS 

In this paper, we propose a new and simple label cor- 
recting approach for finding shortest paths in a directed 
graph. The set of nodes is denoted X and the set of 
arcs is denoted d. The numbers of nodes and arcs are 
denoted Se and X, respectively. The nodes are num- 
bered 1, . . . , N. Each arc (i ,  59 E d has a length aij 
associated with it. The length of a path ( i l ,  i,., . . . , ik ) ,  
which consists exclusively of forward arcs, is equal to 
the sum of the lengths of its arcs: 

We want to find a shortest (minimum length) path from 
a single origin (node 1) to each of the other nodes. We 
assume throughout that there exists a path from the 
origin to each other node and that all cycles have non- 
negative length. This guarantees that the problem has 
a solution. 

*Research supported by NSF under Grants No. DDM-8903385 
and CCR-9108058. 

Most of the major shortest path methods can be 
viewed as special cases of a prototype shortest path 
algorithm given by Gallo and Pallottino [7, 81. The 
algorithm maintains a label vector (d, ,  d,, . . . , d N ) ,  
starting with 

(1) d ,  = 0, di = w, V i #  1, 

and a set of nodes V, called the candidate list, start- 
ing with 

v = (1). (2)  

The algorithm proceeds in iterations and terminates 
when V is empty. The typical iteration (assuming that 
V is nonempty) is as follows: 

Typical Iteration of the Generic Shortest 
Path Algorithm 

Remove a node i from the candidate list V. For each 
outgoing arc (i, 59 E Se, with j # 1, if 4 > di + aij ,  set 

dj : = di + aij  (3) 

and add j to V if it does not already belong to V.  

NETWORKS, Vol. 23 (1993) 703-709 
0 1993 by John Wiley & Sons, Inc. ccc 0028-3045/93/080703-07 

703 



704 BERTSEKAS 

Different methods for selecting the node to exit the 
candidate list V at each iteration yield different algo- 
rithms. In label setting (Dijkstra) methods, the node 
exiting V is a node whose label is minimum over all 
other nodes in V .  When the arc lengths aij are nonnega- 
tive, these methods require N iterations; each node 
i # 1 enters and exits V exactly once. 

Methods that do not foHow the minimum label selec- 
tion policy are referred to as label correcting. The node 
selection is faster than in label setting methods, at the 
expense of multiple entrances of nodes into V .  These 
methods use a queue Q to maintain the candidate list 
V. At each iteration, the node removed from V is the 
top node of Q. The methods differ in the strategy for 
choosing the queue position to insert a node that enters 
V. We describe three popular methods: 

(a) The Bellman-Ford method (actually a variant of 
the original method of [I] and [6]). Here, a node 
that enters V is added at the bottom of Q. Despite 
the generally larger number of iterations required 
by the Bellman-Ford method over Dijkstra’s 
method, in practice, the Bellman-Ford method can 
be superior because of the smaller overhead per 
iteration [ 1 11. 

(b) The D-Esopo-Pape method [ 161. Here, a node that 
enters V for the first time is added to Q at the 
bottom; a node that reenters V is added to Q at 
the top. The number of iterations required by this 
method is exponential in the worst case, as shown 
through examples by Kershenbaum [12], and 
Shier and Witzgall [17]. Despite this fact, the 
D’Esopo-Pape algorithm has a good reputation in 
practice. For sparse graphs, it usually outperforms 
the Bellman-Ford method, and it is competitive 
with the best label setting methods [5,8]. No defin- 
itive explanation has been given for this behavior. 
We will refer to the original version of the 
D’Esopo-Pape algorithm as the 1 st version to dis- 
tinguish it from another polynomial version given 
in [8, 14, 151, which we refer to as the 2nd version. 
In the latter version, the queue Q is partitioned in 
two disjoint queues, Q, and Q,; the node exiting V 
is the top node of Q ,  if Q, is nonempty, and, other- 
wise, it is the top node of Q2; a node that enters V 
for the first time is added at the bottom of Q2; and 
a node that reenters V is added at the bottom of 
Q,. The practical performance of two versions is 
roughly comparable based on the experiments of 
P I .  

(c) The threshold algorithm of Glover, Glover, and 
Klingman [9]. Here, the queue Q is partitioned in 
two disjoint queues, Q,  and Q2. At each iteration, 
the node removed from V is the top node of Q, and 

a node entering V is added to the bottom of Q2 or 
to the bottom of Q, depending on whether its label 
exceeds or does not exceed a certain threshold 
parameter, respectively. When Q, becomes empty, 
the threshold parameter is adjusted to a level above 
the minimum of the labels of nodes in Q2 according 
to some heuristic scheme, and the nodes of Q2, 
whose labels do not exceed the threshold, are re- 
moved from Q, and entered into Q,. We call the 
preceding algorithm the 1st version of the threshold 
method to distinguish it from another and appar- 
ently less effective version, which we call the 2nd 
version of the threshold algorithm. In the 2nd ver- 
sion, a node entering V is always added to the 
bottom of Q,, regardless of whether its label ex- 
ceeds the current threshold or not. The 1st version 
of the threshold algorithm has performed extremely 
well in computational tests with randomly gener- 
ated problems [8, 101. However, its performance 
is quite sensitive to the threshold adjustment 
scheme as well as to the cost structure of the prob- 
lem. In particular, if the threshold is chosen too 
small, the method becomes equivalent to an unso- 
phisticated version of Dijkstra’s algorithm, 
whereas if the threshold is chosen too large, the 
method becomes equivalent to the Bellman-Ford 
method. Thus, one may have to experiment with 
the threshold selection policy for a given class of 
problems, and even after considerable experimen- 
tation, one may be unable to find an effective ad- 
justment scheme; as an example, in the Euclidean 
gridhandom problems discussed in the next sec- 
tion, it is difficult to fine-tune the threshold selec- 
tion because of the large cost range. It should be 
noted, however, that a particular method to select 
the threshold given in [lo] and used in our experi- 
ments, has proved very effective for broad classes 
of randomly generated problems. 

The method proposed in this paper is motivated by 
the hypothesis that for many types of problems the 
number of iterations of a label correcting method 
strongly depends on the average rank of the node exit- 
ing V ,  where nodes are ranked in terms of the size of 
their label (nodes with small labels have small rank). 
Thus, for good performance, the queue insertion strat- 
egy used should try to place nodes with small labels 
near the top of the queue. This hypothesis is implicit 
in several shortest path methods such as the label set- 
ting and threshold methods, but has not been formu- 
lated explicitly thus far to our knowledge. Although 
we cannot prove this hypothesis, we believe it on the 
basis of experimental evidence, some of which is given 
in the next section. For a supporting heuristic argu- 
ment, note that for a nodej  to reenter V some node i 
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such that di + aij < dj must first exit V. Thus, the 
smaller dj was at the previous exit o f j  from V the less 
likely it is that di + aij will subsequently become less 
than dj for some node i E V and arc ( i , j ) .  In particular, 
if dj I mini,, di,  and the arc lengths aijare nonnegative, 
it is impossible that subsequent to the exit o f j  from V 
we will have di + aij < dj for some i E V. 

We now formally describe our queue insertion strat- 
egy, which we call Small Label First (SLF for short): 

SLF Strategy 
Whenever a nodej enters Q, its label dj is compared 
with the label di of the top node i of Q. If dj I di,  
node j is entered at the top of Q; otherwise, j is 
entered at the bottom of Q. 

The SLF strategy can also be combined with the 
1st version of the threshold algorithm. In particular, 
whenever a node j  enters the queue Q,, it is added to 
the top or the bottom of Q, depending on whether 
d j  I di or dj > d i ,  where i is the top node of Q, .  This 
policy is also used when transferring to Q, the nodes 
of Q2 whose labels do not exceed the current 
threshold parameter, i.e. , when Q, becomes empty, 
the nodes of Q2 are checked sequentially from first to 
last, and if a nodej  satisfies the test for entry into Q,, 
it is inserted at the top or the bottom of Q, depending 
on whether dj 5 di or dj > di, where i is the top node 
of Q,. Also, whenever a nodej enters the queue Q2, it 
is added to the top or the bottom of Q2 depending on 
whether dj 5 di or dj > di, where i is the top node of 
Q,. We call the corresponding label correcting method 
the SLF-threshold method. 

Several variations of the SLF strategy are possible. 
For example, whenever the label of a node j that is 
already in the queue Q (or Q,  or Q2, in the threshold 
case) is decreased, one may compare the new label dj 
with the label di of the top node of the queue, and if 
dj < di,  movej to the front of the queue. In our prelimi- 
nary experiments, this reduced further the number of 
iterations, which is consistent with our hypothesis of 
correlation between number of iterations and average 
rank of the node exiting V. Despite the smaller number 
of iterations, the running time of this variant was gener- 
ally larger because of the additional overhead. How- 
ever, we have not experimented sufficiently with this 
or other related schemes to conclude whether and for 
what types of problems the reduction in number of 
iterations is worth the extra overhead. 

The complexity of the SLF algorithms is unknown 
at present. It is possible to modify the SLF-threshold 
algorithm along the lines of the 2nd version of the 
threshold algorithm to obtain an O(N A )  running time 
bound for the case of nonnegative arc lengths; how- 

ever, the modified algorithm is not as fast in practice 
as the one described earlier, which is patterned after 
the 1st version of the threshold algorithm. It is an open 
question whether the SLF and SLF-threshold algo- 
rithms are polynomial, but from examples that we have 
constructed, we know that their worst-case complexity 
is worse than the O(N A )  bound of the Bellman-Ford 
algorithm. In the next section, we compare computa- 
tionally the SLF and SLF-threshold algorithms with 
existing methods. 

2. COMPUTATIONAL EXPERIMENTS 

We have coded the SLF and SLF-threshold algorithms 
by modifying in a minimal way the codes LDEQUE 
and LTHRESH of Gallo and Pallottino [8], which im- 
plement the 1st versions of the D’Esopo-Pape and the 
threshold algorithms, respectively. In summary, the 
results are very encouraging for our algorithms. In par- 
ticular, in our experiments, the SLF algorithm is con- 
sistently faster than the D’Esopo-Pape method and 
requires consistently fewer iterations than does the 
Bellman-Ford method. The SLF-threshold algorithm 
also requires consistently fewer iterations than does 
the threshold algorithm, although both methods often 
perform so well that their effectiveness is indistinguish- 
able. However, for problems where choosing an appro- 
priate threshold is difficult, the SLF-threshold algo- 
rithm is significantly faster than is the threshold 
algorithm. 

We have tested the following five codes: The first 
three were obtained by minor modifications (a few 
FORTRAN statements) of the LDEQUE code of [8], 
and the last two, by minor modifications of the 
LTHRESH code of [8]: 

B-F: This implements the Bellman-Ford method. 
D’E-P: This implements the 1st version of the 

SLF: This implements the SLF method. 
THR: This implements the 1st version of the thresh- 

SLF-THR: This implements the SLF-threshold 

D’Esopo-Pape method. 

old method. 

method. 

Note that we have maintained intact the threshold 
adjustment scheme of the code LTHRESH. This 
scheme was suggested in [ I  11 and is as follows: 

Initially, the threshold parameter, denoted thresh, 
is set at - 1. When the queue Q, becomes empty, we 
update thresh according to 

thresh = 
thresh + t + 1 
dmin + t otherwise, 

if dmin I thresh + t + 1, 
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TABLE 1. Time in secondshumber of iterations required to solve NETGEN problems 

SLF THR SLF-THR N A B-F D’E-P 

500 5,000 0.1171992 0.1001995 0.0831750 0.06615 17 0.05015 13 
1000 20,000 0.467125 16 0.58313066 0.38311956 0.20011037 0.20011036 
1500 45,000 1.25014071 1.82015270 1.13013184 0.53311632 0.43311577 
2000 80,000 1.98315044 2.68315931 2.0171428 1 0.86712066 0.71712058 

All arc lengths are chosen according to a uniform distribution from the range [1,1000]. 

where 

dmin = min di, 
ieQ2 

x * lmax 

7 x .  lmaxls otherwise, 
if s I 7 ,  

t = {  

s = min{A/N, 35}, 

lmax is the maximum arc length, and the value of x is 
chosen on the basis of the problem structure. We have 
used the recommended value for random graphs x = 
0.25, and this has worked well for all types of problems 
tested, except for the Euclidean gridhandom graphs 
(see below), for which smaller values of x produced a 
reduction of the number of iterations. However, for 
these problems, the optimal value of x was highly prob- 
lem-dependent . 

We tested the five codes on several types of ran- 
domly generated single-originlall destination prob- 
lems. In all cases, the origin was node 1, and with the 
exception of the Euclidean gridhandom graphs de- 
scribed below, all the arc lengths were integer and were 
chosen by a uniform distribution in the range [ 1,10001. 
All times were measured on a 25 MHz Macintosh, 
where the programs were compiled using the Absoft 
compiler. 

Generally, the execution time of the codes is roughly 
proportional to the number of iterations, except if the 
graph is very sparse (as in the grid problems of the 
subsequent Tables I1 and 1111, in which case the effect 

of overhead can be relatively significant. The Bell- 
man-Ford method requires less overhead per iteration 
than do the D’Esopo-Pape and SLF algorithms, which, 
in turn, require less overhead per iteration than do the 
threshold algorithms. The threshold method requires 
a little less overhead per iteration than does the SLF- 
threshold method. The results are as follows: 

NETGEN Problems 

These are problems generated by the popular public 
domain generator NETGEN [13]. The graph density 
was 2% in all cases (A = 0.02 N2) .  The execution 
times and the numbers of iterations for the five codes 
are given in Table I. It can be seen that for these 
problems the two threshold algorithms are much faster 
than are the others. 

GridlRandom Problems 
These are problems generated by a modified version 
of the GRIDGEN generator of [2]. Here, the nodes are 
arranged in a square planar grid with the origin node 
1 being the southwest corner of the grid. There is a 
grid arc connecting each pair of adjacent grid nodes in 
each direction. Also, there are 2 - N additional arcs 
with random starting and ending nodes. The execution 
times and the numbers of iterations for the five codes 
are given in Table 11. It can be seen that for these 
problems the two threshold algorithms are again much 
faster than the others. 

TABLE II. Time in secondshumber of iterations required to solve grid/random problems 

N A B-F D’E-P SLF THR SLF-THR 

2,500 14,800 0.41715690 0.40015004 0.33314260 0.21712578 0.23312560 
5,625 33,450 0.93311 1957 0.917111356 0.71718568 0.50015755 0.53315133 

10,Ooo 59,600 1.933/23471 1.767121003 1.4831 17001 0.9501 10275 1 .O 171 10226 
15,625 93,250 3.33314023 1 2.750131822 2.100123574 1 SO01 15833 1.6201 15776 

The number of nongrid arcs is 2 . N .  All arc lengths are chosen according to a uniform distribution from the range [1,1000]. Note that 
these are very sparse problems for which the overhead per iteration is relatively significant. 
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LABEL CORRECTING ALGORITHM FOR SHORTEST PATHS 707 

TABLE 111. Time in seconds/number of iterations required to solve Euclidean grid/random problems 

N A B-F D’E-P SLF THR SLF-THR 

2,500 14,800 1.500/20485 6.650/91002 1.280/16472 1.470/21694 1.150/ 16367 
5,625 33,450 7.280196223 332.2/4487805 5.400/67828 6.420/92316 4.430/62143 

10,000 59,600 14.60/ 187703 279.2/3723865 10.30/127625 12.73/178212 8.667/118979 
15,625 93,250 19.97/255349 326.0/4145800 13.88/ 1695 16 18.00/250200 1 1.95/ 161 669 

The number of nongrid arcs is 2 . N .  All grid arc lengths are chosen according to a uniform distribution from the range [1,1000]. The 
length of each nongrid arc connecting node (i, 5’) to node (k ,  0 is r . e,,klr where e,,,k, is the Euclidean distance e,,kl = v(i - k)2 + 0’ + /I* 
and r is an integer chosen according to a uniform distribution from the range [ l ,  10001. 

Euclidean GridlRandom Problems 

In these problems, the nodes and arcs were generated 
in the same way as in the preceding gridhandom prob- 
lems. The length of each arc connecting grid node 
(i, J]  to grid node (k ,  I )  is r eij,kl, where eij,kl is the 
Euclidean distance: 

and r is an integer chosen according to a uniform distri- 
bution from the range [1,1000]. The execution times 
and the numbers of iterations for the five codes are 
given in Table 111. There are several surprises here: 
First, the D’Esopo-Pape algorithm performs very 
poorly; we have not seen in the literature any report 
of a class of randomly generated sparse problems 
where this algorithm exhibits such poor behavior. Sec- 
ond, the threshold and SLF-threshold algorithms work 
only slightly better than do the Bellman-Ford and SLF 
algorithms, respectively, because the threshold adjust- 
ment scheme is not working effectively (the cost range 
here is very broad). We have therefore conducted some 

experimentation with the parameter x of the threshold 
adjustment scheme, and we were able to reduce the 
number of iterations of the threshold and SLF-thresh- 
old algorithms (see Table IV). However, the optimal 
value of x was highly problem-dependent and varied 
by several orders of magnitude depending on the num- 
ber of nongrid arcs, as can be seen from Table IV. 
Note that for this class of problems the SLF-threshold 
algorithm is considerably faster than the others, except 
when the threshold is set to a very low value. 

Fully Dense Problems 

In these problems, all the possible N ( N  - 1)  arcs are 
present. The computational study in [S] showed that 
high problem density favors label setting over label 
correcting methods. It is therefore interesting to test 
whether the SLF strategy increases the effectiveness 
of label correcting methods to the point where they 
can challenge the best label setting methods. We have 
thus compared the five label correcting codes with the 
code SHEAP of [S], which is a label setting method 

TABLE IV. Time in seconds/number of iterations required to solve Euclidean grid/random problems with the 
threshold and the SLF-threshold algorithms using different values of the threshold parameter x 

~~ 

N A Method x = .25 x = .025 x = .0025 x = .00025 x = .000025 

2,500 9,801 THR 0.200/4294 0.150/2665 0.233/2501 0.800/2500 1.317/2500 
SLF-THR 0.183/3301 0.150/2564 0.267/2502 0.883/2500 1.433/2500 

2,500 14,800 THR 1.470/21694 1.017/ 15272 0.367/5240 0.233/2674 0.567/2503 
SLF-THR 1.1501 16367 0.783/11242 0.3 17/4067 0.267/2658 0.617/2501 

2,500 29,800 THR 2.450/20249 1.733/ 14256 0.6 17/4539 0.550/3993 0.967/2500 
SLF-THR 1.8001 14798 1.3001 10637 0.550/3993 0.443/2607 1.017/2501 

10,OOO 39,601 THR 2.117/44332 1.517/3 1733 0.733/14422 0.650/10149 1.367/10002 
SLF-THR 0.867/ 167 10 0.817/15358 0.650/11468 0.717/10116 1.517/10001 

10,000 59,600 THR 12.73 / 1782 12 1 1.33/ 159890 5.9 17/82770 1.233 / 14576 1.533 / 10229 

10,OOO 99,600 THR 16.67/130108 13.52/105622 7.883160626 2.117/13893 2.550/10151 
SLF-THR 11.05/86259 10.83/84386 6.067/4597 1 2.000/ 12604 2.683 / 101 4 1 

SLF-THR 8.6671 1 18979 7.800/ 10766 1 4.783 /64564 1.200/ 13 125 1.650/ 10 198 

The six problems have 1, 2 ‘ N ,  8 . N ,  1 ,  2 . N, and 6 . N nongrid arcs, respectively. 
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708 BERTSEKAS 

TABLE V. Time in secondslnumber of iterations required to solve fully dense problems for the label correcting 
methods compared with the times of the label setting code SHEAP and the auction code AUCT-GR 

N B-F D'E-P SLF THR SLF-THR SHEAP AUCT-GR 

150 0.4831400 1.0001639 0.5501344 0.3001223 0.2001 191 0.250 0.200 
200 0.8831550 1.7831854 1.0331480 0.7331394 0.3831290 0.400 0.350 
250 1.2331626 2.3331894 1.5601581 0.95014 10 0.6501389 0.617 0.517 
300 1.7501745 3.5671 1 14 1 2.0331633 1.8501677 0.8171411 0.883 0.750 

All arc lengths are chosen according to a uniform distribution from the range [1,1000]. 

based on a binary heap implementation. SHEAP gave 
the best performance for fully dense problems in the 
tests of 181. We have also included a comparison with 
AUCT-GR, which is an implementation of a version 
of the author's auction algorithm for shortest paths 131. 

This version uses graph reduction as developed by 
Bertsekas et al. 141, and works well for dense problems. 
The execution times for the seven codes are given in 
Table V. Again, the D-Esopo-Pape algorithm performs 
poorly relative to the Bellman-Ford method, similar 

0 

0 

4 4 
4 
4 

4 

* 
"4, 

0 

0 

B - F  
4 D E - P  

SLF 
0 Threshold 

SLF - Threshold 

0.1 f I I I i 

1 2 3 4 5 

Number of iterations per node 

Fig. 1. Plot of average rank and number of iterations per node (total number of iterations divided by the number of 
nodes) for the five label correcting methods tested. Each data point corresponds to a problem of Table I, I I ,  or V. 
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LABEL CORRECTING ALGORITHM FOR SHORTEST PATHS 709 

to the results of [8]. The SLF strategy is particularly 
effective for these dense problems. In particular, the 
SLF-threshold algorithm is much faster than is the 
threshold algorithm and slightly outperforms the heap- 
based label-setting algorithm. However, the auction 
code maintains an edge over all the other codes. 

Correlation of Average Rank and 
Number of Iterations 

We mentioned earlier that the motivation for the strat- 
egy described in this paper is based on the hypothesis 
that the number of iterations of a label correcting 
method strongly depends on how successful the 
method is in selecting nodes with relatively small labels 
to exit V. To substantiate experimentally this hypothe- 
sis, we have recorded for each iteration the ratio 

Number of remaining nodes in V with label smaller than d j  
Number of remaining nodes in V 

where i is the node exiting V (the ratio is defined to be 
zero if there are no remaining nodes in V after i exits 
V). The average rank of a method for a given problem 
is the sum of these ratios over all iterations, divided 
by the number of iterations. Thus, the average rank of 
a label setting method is 0 for all problems, and the 
closer the average rank of a label correcting method is 
to 0, the more successful the method is in selecting 
nodes with relatively small label to exit V. 

Figure 1 plots the average rank as a function of 
the number of iterations per node for the problems of 
Tables I, 11, and V and the five label-correcting meth- 
ods. The results for the problems of Table I11 were 
qualitatively similar, but they were not plotted because 
the large number of iterations for the D’Esopo-Pape 
method would extend the horizontal axis of the plot 
excessively. Overall the SLF-threshold method at- 
tained consistently the smallest average rank as well 
as the smallest number of iterations. As Figure 1 shows, 
the positive correlation between average rank and num- 
ber of iterations is consistent and very strong. 
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