A Simple and Fast Label Correcting Algorithm

for Shortest Paths*

Dimitri P. Bertsekas

Laboratory for Information and Decision Systems, M.l.T., Cambridge, Massachusetts 02139

We propose a new method for ordering the candidate nodes in label correcting methods for shortest
path problems. The method tries to scan nodes with small labels as early as possible and may be
viewed as a low-overhead approximation to Dijkstra’s algorithm. Compared with the D’Esopo~Pape
algorithm, our method is equally simple but much faster. Our method can also be combined with

the threshold algorithm, thereby considerably improving its practical performance.

Wiiey & Sons, inc.

© 1993 by John

1. A NEW NODE SELECTION STRATEGY
FOR LABEL CORRECTING METHODS

In this paper, we propose a new and simple label cor-
recting approach for finding shortest paths in a directed
graph. The set of nodes is denoted N and the set of
arcs is denoted . The numbers of nodes and arcs are
denoted s and N, respectively. The nodes are num-
bered 1, . .., N. Each arc (i, /) € & has a length a;;
associated with it. The length of a path (i}, i, . . . , i),
which consists exclusively of forward arcs, is equal to
the sum of the lengths of its arcs:

k-1
Zaii .
flom n*n+1

We want to find a shortest (minimum length) path from
a single origin (node 1) to each of the other nodes. We
assume throughout that there exists a path from the
origin to each other node and that all cycles have non-
negative length. This guarantees that the problem has
a solution.

*Research supported by NSF under Grants No. DDM-8903385
and CCR-9108058.

NETWORKS, Vol. 23 (1993) 703-709
© 1993 by John Wiley & Sons, Inc.

Most of the major shortest path methods can be
viewed as special cases of a prototype shortest path
algorithm given by Gallo and Pallottino [7, 8]. The

algorithm maintains a label vector (d,, d,, . . ., dy),
starting with
d, =0, d;, = oo, Vi#l, 1

and a set of nodes V, called the candidate list, start-
ing with

vV = {1}. @
The algorithm proceeds in iterations and terminates

when V is empty. The typical iteration (assuming that
V is nonempty) is as follows:

Typical lteration of the Generic Shortest
Path Algorithm

Remove a node i from the candidate list V. For each
outgoing arc (i, j) € o, withj # 1, if d; > d; + a;;, set

and add j to V if it does not already belong to V.

CCC 0028-3045/93/080703-07
703

704 BERTSEKAS

Different methods for selecting the node to exit the
candidate list V at each iteration yield different algo-
rithms. In label setting (Dijkstra) methods, the node
exiting V is a node whose label is minimum over all
other nodes in V. When the arc lengths a;; are nonnega-
tive, these methods require N iterations; each node
i # 1 enters and exits V exactly once.

Methods that do not follow the minimum label selec-
tion policy are referred to as label correcting. The node
selection is faster than in label setting methods, at the
expense of multiple entrances of nodes into V. These
methods use a queue Q to maintain the candidate list
V. At each iteration, the node removed from V is the
top node of Q. The methods differ in the strategy for
choosing the queue position to insert a node that enters
V. We describe three popular methods:

(a) The Bellman—Ford method (actually a variant of
the original method of [1} and [6]). Here, a node
that enters V is added at the bottom of Q. Despite
the generally larger number of iterations required
by the Bellman—Ford method over Dijkstra’s
method, in practice, the Bellman—Ford method can
be superior because of the smaller overhead per
iteration [11].

(b) The D-Esopo-Pape method [16]. Here, a node that

enters V for the first time is added to Q at the
bottom; a node that reenters V is added to Q at
the top. The number of iterations required by this
method is exponential in the worst case, as shown
through examples by Kershenbaum [12], and
Shier and Witzgall [17]. Despite this fact, the
D’Esopo-Pape algorithm has a good reputation in
practice. For sparse graphs, it usually outperforms
the Bellman-Ford method, and it is competitive
with the best label setting methods [5, 8]. No defin-
itive explanation has been given for this behavior.
We will refer to the original version of the
D’Esopo-Pape algorithm as the /st version to dis-
tinguish it from another polynomial version given
in [8, 14, 15], which we refer to as the 2nd version.
In the latter version, the quene Q is partitioned in
two disjoint queues, Q, and Q»; the node exiting V
is the top node of Q, if Q, is nonempty, and, other-
wise, it is the top node of Q,; a node that enters V
for the first time is added at the bottom of Q,; and
a node that reenters V is added at the bottom of
Q,. The practical performance of two versions is
roughly comparable based on the experiments of
[81.

(c) The threshold algorithm of Glover, Glover, and
Klingman [9]. Here, the queue Q is partitioned in
two disjoint queues, Q, and Q,. At each iteration,
the node removed from V is the top node of Q, and

a node entering V is added to the bottom of Q, or
to the bottom of Q, depending on whether its label
exceeds or does not exceed a certain threshold
parameter, respectively. When Q, becomes empty,
the threshold parameter is adjusted to a level above
the minimum of the labels of nodes in Q, according
to some heuristic scheme, and the nodes of O,
whose labels do not exceed the threshold, are re-
moved from Q, and entered into Q,. We call the
preceding algorithm the st version of the threshold
method to distinguish it from another and appar-
ently less effective version, which we call the 2nd
version of the threshold algorithm. In the 2nd ver-
sion, a node entering V is always added to the
bottom of Q,, regardless of whether its label ex-
ceeds the current threshold or not. The Ist version
of the threshold algorithm has performed extremely
well in computational tests with randomly gener-
ated problems [8, 10]. However, its performance
is quite sensitive to the threshold adjustment
scheme as well as to the cost structure of the prob-
lem. In particular, if the threshold is chosen too
small, the method becomes equivalent to an unso-
phisticated version of Dijkstra’s algorithm,
whereas if the threshold is chosen too large, the
method becomes equivalent to the Bellman-Ford
method. Thus, one may have to experiment with
the threshold selection policy for a given class of
problems, and even after considerable experimen-
tation, one may be unable to find an effective ad-
justment scheme; as an example, in the Euclidean
grid/random problems discussed in the next sec-
tion, it is difficult to fine-tune the threshold selec-
tion because of the large cost range. It should be
noted, however, that a particular method to select
the threshold given in {10] and used in our experi-
ments, has proved very effective for broad classes
of randomly generated problems.

The method proposed in this paper is motivated by
the hypothesis that for many types of problems the
number of iterations of a label correcting method
strongly depends on the average rank of the node exit-
ing V, where nodes are ranked in terms of the size of
their label (nodes with small labels have small rank).
Thus, for good performance, the queue insertion strat-
egy used should try to place nodes with small labels
near the top of the queue. This hypothesis is implicit
in several shortest path methods such as the label set-
ting and threshold methods, but has not been formu-
lated explicitly thus far to our knowledge. Although
we cannot prove this hypothesis, we believe it on the
basis of experimental evidence, some of which is given
in the next section. For a supporting heuristic argu-
ment, note that for a node j to reenter V some node i

85UB217 SUOWIWIOD BAIIER1D) a|aed | jdde ay) Ag peusenob ae saoiiie YO ‘8sn JO Sanu 10} Aeld 1T auljuQ A8 |1 UO (SUO T IPUCD-PUE-SWLLIB)WOD A3 1M AReiq 1 Ul juo//Sdiy) SUORIPUOD pUe SW.d | Ul 88S *[520z/0T/0T] Uo Akelqiauljuo A1 ‘ojouyde | Jo anynsu| suesnydesse | Aq 8080EZ0EZE 1BU/Z00T OT/I0p/wod A3 1m Arelq 1 pul|uo//sdny woJy papeojumoq ‘g ‘€66T ‘LE00L60T

LABEL CORRECTING ALGORITHM FOR SHORTEST PATHS 705

such that d; + a; < d; must first exit V. Thus, the
smaller d; was at the previous exit of j from V the less
likely it is that d; + a;; will subsequently become less
than d; for some node i € V and arc (i, j). In particular,
ifd;=< min,ey d;, and thearclengths a,;are nonnegative,
it is impossible that subsequent to the exit of j from V
we will have d; + a;; < d;for some i € V.

We now formally describe our queue insertion strat-
egy, which we call Small Label First (SLF for short):

SLF Strategy

Whenever a node j enters @, its label d; is compared
with the label d; of the top node i of Q. If d; = 4,
node j is entered at the top of Q; otherwise, j is
entered at the bottom of Q.

The SLF strategy can also be combined with the
Ist version of the threshold algorithm. In particular,
whenever a node j enters the queue Q, it is added to
the top or the bottom of @, depending on whether
d; = d; or d; > d;, where i is the top node of Q,. This
policy is also used when transferring to @, the nodes
of (O, whose labels do not exceed the current
threshold parameter, i.e., when Q, becomes empty,
the nodes of Q, are checked sequentially from first to
last, and if a node j satisfies the test for entry into Q,,
it is inserted at the top or the bottom of Q, depending
on whether d; = d; or d; > d;, where i is the top node
of Q,. Also, whenever a node j enters the queue Q,, it
is added to the top or the bottom of O, depending on
whether d; < d; or d; > d;, where i is the top node of
@,. We call the corresponding label correcting method
the SLF-threshold method.

Several variations of the SLF strategy are possible.
For example, whenever the label of a node j that is
already in the queue Q (or @, or (,, in the threshold
case) is decreased, one may compare the new label d;
with the label d; of the top node of the queue, and if
d; < d;, move j to the front of the queue. In our prelimi-
nary experiments, this reduced further the number of
iterations, which is consistent with our hypothesis of
correlation between number of iterations and average
rank of the node exiting V. Despite the smaller number
of iterations, the running time of this variant was gener-
ally larger because of the additional overhead. How-
ever, we have not experimented sufficiently with this
or other related schemes to conclude whether and for
what types of problems the reduction in number of
iterations is worth the extra overhead.

The complexity of the SLF algorithms is unknown
at present. It is possible to modify the SLF-threshold
algorithm along the lines of the 2nd version of the
threshold algorithm to obtain an O(N A) running time
bound for the case of nonnegative arc lengths; how-

ever, the modified algorithm is not as fast in practice
as the one described earlier, which is patterned after
the 1st version of the threshold algorithm. It is an open
question whether the SLF and SLF-threshold algo-
rithms are polynomial, but from examples that we have
constructed, we know that their worst-case complexity
is worse than the O(N A) bound of the Bellman—Ford
algorithm. In the next section, we compare computa-
tionally the SLF and SLF-threshold algorithms with
existing methods.

2. COMPUTATIONAL EXPERIMENTS

We have coded the SLF and SLF-threshold algorithms
by modifying in a minimal way the codes LDEQUE
and LTHRESH of Gallo and Pallottino [8], which im-
plement the 1st versions of the D’Esopo—-Pape and the
threshold algorithms, respectively. In summary, the
results are very encouraging for our algorithms. In par-
ticular, in our experiments, the SLF algorithm is con-
sistently faster than the D’Esopo-Pape method and
requires consistently fewer iterations than does the
Bellman-Ford method. The SLF-threshold algorithm
also requires consistently fewer iterations than does
the threshold algorithm, although both methods often
perform so well that their effectiveness is indistinguish-
able. However, for problems where choosing an appro-
priate threshold is difficult, the SLF-threshold algo-
rithm is significantly faster than is the threshold
algorithm.

We have tested the following five codes: The first
three were obtained by minor modifications (a few
FORTRAN statements) of the LDEQUE code of {8],
and the last two, by minor modifications of the
LTHRESH code of [8]:

B-F: This implements the Bellman—Ford method.

D’E-P: This implements the 1st version of the
D’Esopo—-Pape method.

SLF: This implements the SLF method.

THR: This implements the 1st version of the thresh-
old method.

SLF-THR: This implements the SLF-threshold
method.

Note that we have maintained intact the threshold
adjustment scheme of the code LTHRESH. This
scheme was suggested in [11] and is as follows:

Initially, the threshold parameter, denoted thresh,
is set at — 1. When the queue Q, becomes empty, we
update thresh according to

thresh + t + 1
dmin + t

if dmin < thresh +t + 1,

thresh = { .
otherwise,

85UBD| T SUOLIWOD BAIER1D) 8|dedl|dde au Aq peuienob 88 s3pile YO @SN 4O Sa|nJ 104 AReiq1T8UIUO AB|IAN UO (SUORIPUOD-PUR-SWIBIW0D" 4| 1M ARe1q 1[eul|UOy/:SAIY) SUORIPUOD PUe SWB L 84} 89S *[5202/0T/0T] U0 ARiqIT8uIIUO AB]IM ‘0jouYdS L JO 8Ininsu| sHesnydesse N Aq 8080EZ0EZE 1BU/Z00T OT/10p/wod" A3 | im"Axeiq1[pul|uo//sdiy Wiy papeo|umoq ‘g ‘66T ‘2E00L60T

706

BERTSEKAS

TABLE I. Time in seconds/number of iterations required to solve NETGEN problems

N A B-F D’E-P SLF THR SLF-THR
500 5,000 0.117/992 0.100/995 0.083/750 0.066/517 0.050/513
1000 20,000 0.467/2516 0.583/3066 0.383/1956 0.200/1037 0.200/1036
1500 45,000 1.250/4071 1.820/5270 1.130/3184 0.533/1632 0.433/1577
2000 30,000 1.983/5044 2.683/5931 2.017/4281 0.867/2066 0.717/2058

All arc lengths are chosen according to a uniform distribution from the range [1,1000].

where

dmin = mind,,
€0,

{x-lmax fs=<17,

7x - Imax/s otherwise,
s = min{A/N, 35},

Imax is the maximum arc length, and the value of x is
chosen on the basis of the problem structure. We have
used the recommended value for random graphs x =
0.25, and this has worked well for all types of problems
tested, except for the Euclidean grid/random graphs
(see below), for which smaller values of x produced a
reduction of the number of iterations. However, for
these problems, the optimal value of x was highly prob-
lem-dependent.

We tested the five codes on several types of ran-
domly generated single-origin/all destination prob-
lems. In all cases, the origin was node 1, and with the
exception of the Euclidean grid/random graphs de-
scribed below, all the arc lengths were integer and were
chosen by a uniform distribution in the range [1,1000].
All times were measured on a 25 MHz Macintosh,
where the programs were compiled using the Absoft
compiler.

Generally, the execution time of the codes is roughly
proportional to the number of iterations, except if the
graph is very sparse (as in the grid problems of the
subsequent Tables II and III), in which case the effect

of overhead can be relatively significant. The Bell-
man-Ford method requires less overhead per iteration
than do the D’Esopo-Pape and SLF algorithms, which,
in turn, require less overhead per iteration than do the
threshold algorithms. The threshold method requires
a little less overhead per iteration than does the SLF-
threshold method. The results are as follows:

NETGEN Problems

These are problems generated by the popular public
domain generator NETGEN [13]. The graph density
was 2% in all cases (A = 0.02 - N?). The execution
times and the numbers of iterations for the five codes
are given in Table 1. It can be seen that for these
problems the two threshold algorithms are much faster
than are the others.

Grid/Random Problems

These are problems generated by a modified version
of the GRIDGEN generator of [2]. Here, the nodes are
arranged in a square planar grid with the origin node
1 being the southwest corner of the grid. There is a
grid arc connecting each pair of adjacent grid nodes in
each direction. Also, there are 2 - N additional arcs
with random starting and ending nodes. The execution
times and the numbers of iterations for the five codes
are given in Table II. It can be seen that for these
problems the two threshold algorithms are again much
faster than the others.

TABLE Il. Time in seconds/number of iterations required to solve grid/random problems

N A B-F D’E-P SLF THR SLF-THR
2,500 14,800 0.417/5690 0.400/5004 0.333/4260 0.217/2578 0.233/2560
5,625 33,450 0.933/11957 0.917/11356 0.717/8568 0.500/5755 0.533/5733

10,000 59,600 1.933/23471 1.767/21003 1.483/17001 0.950/10275 1.017/10226
15,625 93,250 3.333/40231 2.750/31822 2.100/23574 1.500/15833 1.620/15776

The number of nongrid arcs is 2 - N. All arc lengths are chosen according to a uniform distribution from the range [1,1000]. Note that
these are very sparse problems for which the overhead per iteration is relatively significant.

85UB01 7 SUOLULLIOD BAIIID) B|edl|dde au Ag pausenob afe S3RILR WO 8SN JO SBINI 10} ARIG1T BUINUO A1 UO (SUORIPUOD-PUR-SWSHLLOD" A3 IM* A22.0]1BU1UO//SAIY) SUOHIPUOD pUe SWB 1 8U3 885 *[5202/0T/0T] U0 ARIqIT8UIUO A8|IM ‘0j0UL0S L JO 3INIsU| SHesnydesse N Aq 8080E20EZE 1PU/2Z00T OT/I0p/W0d" A3 1M AR 1o |UO//SANY WOy papeo|umod ‘g ‘e66T ‘ZE00L60T

LABEL CORRECTING ALGORITHM FOR SHORTEST PATHS 707

TABLE ill. Time in seconds/number of iterations required to solve Euclidean grid/random problems

N A B-F D’E-P SLF THR SLF-THR
2,500 14,800 1.500/20485 6.650/91002 1.280/16472 1.470/21694 1.150/16367
5,625 33,450 7.280/96223 332.2/4487805 5.400/67828 6.420/92316 4.430/62143

10,000 59,600 14.60/187703 279.2/3723865 10.30/127625 12.73/178212 8.667/118979
15,625 93,250 19.97/255349 326.0/4145800 13.88/169516 18.00/250200 11.95/161669

The number of nongrid arcs is 2 -+ N. All grid arc lengths are chosen according to a uniform distribution from the range [1,1000]. The

length of each nongrid arc connecting node (i, j) to node (k,) is r - ey, where e, is the Euclidean distance e, =

VG- kP + G+ D2

and r is an integer chosen according to a uniform distribution from the range [1, 1000].

Euclidean Grid/Random Problems

In these problems, the nodes and arcs were generated
in the same way as in the preceding grid/random prob-
lems. The length of each arc connecting grid node
(i, j) to grid node (k,) is r - e;;y, where e is the
Euclidean distance:

ek = V@i -k + (-1

and r is an integer chosen according to a uniform distri-
bution from the range [1,1000]. The execution times
and the numbers of iterations for the five codes are
given in Table III. There are several surprises here:
First, the D’Esopo-Pape algorithm performs very
poorly; we have not seen in the literature any report
of a class of randomly generated sparse problems
where this algorithm exhibits such poor behavior. Sec-
ond, the threshold and SLF-threshold algorithms work
only slightly better than do the Bellman-Ford and SLF
algorithms, respectively, because the threshold adjust-
ment scheme is not working effectively (the cost range
here is very broad). We have therefore conducted some

experimentation with the parameter x of the threshold
adjustment scheme, and we were able to reduce the
number of iterations of the threshold and SLF-thresh-
old algorithms (see Table I1V). However, the optimal
value of x was highly problem-dependent and varied
by several orders of magnitude depending on the num-
ber of nongrid arcs, as can be seen from Table IV.
Note that for this class of problems the SLF-threshold
algorithm is considerably faster than the others, except
when the threshold is set to a very low value.

Fully Dense Problems

In these problems, all the possible N(N — 1) arcs are
present. The computational study in [8] showed that
high problem density favors label setting over label
correcting methods. It is therefore interesting to test
whether the SLF strategy increases the effectiveness
of label correcting methods to the point where they
can challenge the best label setting methods. We have
thus compared the five label correcting codes with the
code SHEAP of [8], which is a label setting method

TABLE IV. Time in seconds/number of iterations required to solve Euclidean grid/random problems with the
threshold and the SLF-threshold algorithms using different values of the threshold parameter x

N A Method x =25 x = 025 x=.0025 x=.00025 x = .000025
2,500 9,801 THR 0.200/4294 0.150/2665 0.233/2501 0.800/2500 1.317/2500
SLF-THR 0.183/3301 0.150/2564 0.267/2502 0.883/2500 1.433/2500
2,500 14,800 THR 1.470/21694 1017/15272 0.367/5240 0.233/2674 0.567/2503
SLF-THR 1.150/16367 0.783/11242 0.317/4067 0.267/2658 0.617/2501
2,500 29,800 THR 2.450/20249 1.733/14256 0.617/4539 0.550/3993 0.967/2500
SLFTHR 1.800/14798 1.300/10637 0.550/3993 0.443/2607 1.017/2501
10,000 39,601 THR 2.117/44332 1.517/31733 0.733/14422 0.650/10149 1.367/10002
SLF-THR 0.867/16710 0.817/15358 0.650/11468 0.717/10116 1.517/10001
10,000 59,600 THR 12.73/178212 11.33/159890 5.917/82770 1.233/14576 1.533/10229
SLF-THR 8.667/118979 7.800/107661 4.783/64564 1.200/13125 1.650/10198
10,000 99,600 THR 16.67/130108 13.52/105622 7.883/60626 2.117/13893 2.550/10151
SLF-THR 11.05/86259 10.83/84386 6.067/45971 2.000/12604 2.683/10141

The six problems have 1,2 - N, 8- N, 1,2 - N, and 6 - N nongrid arcs, respectively.

85UBD| T SUOLIWOD BAIER1D) 8|dedl|dde au Aq peuienob 88 s3pile YO @SN 4O Sa|nJ 104 AReiq1T8UIUO AB|IAN UO (SUORIPUOD-PUR-SWIBIW0D" 4| 1M ARe1q 1[eul|UOy/:SAIY) SUORIPUOD PUe SWB L 84} 89S *[5202/0T/0T] U0 ARiqIT8uIIUO AB]IM ‘0jouYdS L JO 8Ininsu| sHesnydesse N Aq 8080EZ0EZE 1BU/Z00T OT/10p/wod" A3 | im"Axeiq1[pul|uo//sdiy Wiy papeo|umoq ‘g ‘66T ‘2E00L60T

708 BERTSEKAS

TABLE V. Time in seconds/number of iterations required to solve fully dense problems for the label correcting
methods compared with the times of the label setting code SHEAP and the auction code AUCT-GR

N B-F DE-P SLF THR SLF-THR SHEAP AUCT-GR
150 0.483/400 1.000/639 0.550/344 0.300/223 0.200/191 0.250 0.200
200 0.883/550 1.783/854 1.033/480 0.733/394 0.383/290 0.400 0.350
250 1.233/626 2.333/894 1.560/581 0.950/410 0.650/389 0.617 0.517
300 1.750/745 3.567/1141 2.033/633 1.850/677 0.817/411 0.883 0.750

All arc lengths are chosen according to a uniform distribution from the range [1,1000].

based on a binary heap implementation. SHEAP gave This version uses graph reduction as developed by
the best performance for fully dense problems in the Bertsekas et al. [4], and works well for dense problems.
tests of [8]. We have also included a comparison with ~ The execution times for the seven codes are given in
AUCT-GR, which is an implementation of a version Table V. Again, the D-Esopo-Pape algorithm performs

of the author’s auction algorithm for shortest paths [3]. poorly relative to the Bellman-Ford method, similar
0.6 -
-~
o
[
@
o
o
[
E . o
.
0.5 4 . .
o}
ap .
@]
g @ []
o
*
[]
e ~0‘
0.4 4 o R
<
-
0.3
] Qo
B B-F
¢ DE-P
02 + SLF
9 Threshold
° # SLF - Threshold
L
.1 T T v T T T T 1
1 2 3 4 5

Number of iterations per node

Fig. 1. Plot of average rank and number of iterations per node (total number of iterations divided by the number of
nodes) for the five label correcting methods tested. Each data point corresponds to a problem of Table I, il, or V.

85UB017 SUOWIWIOD aA 18810 3|t jdde 8y} Aq peuenob ae ssjoiie VO 88N JO S3|N. 104 A%eid1T8UIIUO AB]IM U (SUOIPUOD-PUe-SWe) L0 A8 | IM Afe.d jpul[Uo//:Sdny) SUORIPUOD pue swia | 8y} 88S *[5202/0T/0T] Uo ArigiTauliuo AB|IM ‘0jouyds L Jo InHisu| sHesnuydesse (Nl A 8080£Z0EZE 1BU/200T '0T/I0P/W00 A8 |1 Aeiq iUl juo//Scny wouy papeojumoq ‘g ‘€66T ‘£E00.60T

LABEL CORRECTING ALGORITHM FOR SHORTEST PATHS 709

to the results of {8]. The SLF strategy is particularly
effective for these dense problems. In particular, the
SLF-threshold algorithm is much faster than is the
threshold algorithm and slightly outperforms the heap-
based label-setting algorithm. However, the auction
code maintains an edge over all the other codes.

Correlation of Average Rank and
Number of Iterations

We mentioned earlier that the motivation for the strat-
egy described in this paper is based on the hypothesis
that the number of iterations of a label correcting
method strongly depends on how successful the
method is in selecting nodes with relatively small labels
to exit V. To substantiate experimentally this hypothe-
sis, we have recorded for each iteration the ratio

Number of remaining nodes in V with label smaller than d;
Number of remaining nodes in V

s

where i is the node exiting V (the ratio is defined to be
zero if there are no remaining nodes in V after / exits
V). The average rank of a method for a given problem
is the sum of these ratios over all iterations, divided
by the number of iterations. Thus, the average rank of
a label setting method is 0 for all problems, and the
closer the average rank of a label correcting method is
to 0, the more successful the method is in selecting
nodes with relatively small label to exit V.

Figure 1 plots the average rank as a function of
the number of iterations per node for the problems of
Tables I, II, and V and the five label-correcting meth-
ods. The results for the problems of Table III were
qualitatively similar, but they were not plotted because
the large number of iterations for the D’Esopo-Pape
method would extend the horizontal axis of the plot
excessively. Overall the SLF-threshold method at-
tained consistently the smallest average rank as well
as the smallest number of iterations. As Figure 1 shows,
the positive correlation between average rank and num-
ber of iterations is consistent and very strong.

REFERENCES

[11 R. Bellman, Dynamic Programming. Princeton Uni-
versity Press, Princeton, NJ (1957).

[2] D. P. Bertsekas, Linear Network Optimization: Algo-

Bl

(4]

[5]

(el

[8]
9]

[10]

(11
(12]

[13]

[14]

[15]

[16]

[17]

rithms and Codes. M.I.T. Press, Cambridge, MA
(1991).
D. P. Bertsekas, The auction algorithm for shortest
paths. SIAM J. Optimization 1 (1991) 425-447.
D. P. Bertsekas, S. Pallottino, and M. G. Scutelld,
Polynomial auction algorithms for shortest paths. LIDS
Report P-2107, M.I.T. (May 1992).
R. Dial, F. Glover, D. Karney, and D. Klingman, A
computational analysis of alternative algorithms and
labeling techniques for finding shortest path trees. Net-
works 9 (1979) 215-248.
L. R. Ford, Jr., Network flow theory. Report P-923,
The Rand Corporation, Santa Monica, CA (1956).
G. Gallo and S. Pallottino, Shortest path methods: A
unified approach. Math. Program. Study 26, (1986)
38-64.
G. Gallo and S. Pallottino, Shortest path algorithms.
Ann Operations Res. T (1988) 3-79.
F. Glover, R. Glover, and D. Klingman, The threshold
shortest path algorithm. Nerworks 14(1) (1986).
F. Glover, D. Klingman, N. Phillips, and R. F. Schnei-
der, New polynomial shortest path algorithms and their
computational attributes. Management Sci. 31 (1985)
1106-1128.
B. Golden, Shortest-path algorithms: A comparison.
Operations Res. 44 (1976) 1164-1168.
A. Kershenbaum, A note on finding shortest path trees.
Networks 11 (1981) 399-400.
D. Klingman, A. Napier, and J. Stutz, NETGEN—A
program for generating large scale (un) capacitated as-
signment, transportation, and minimum cost flow net-
work problems. Management Sci. 20 (1974) 814-822.
S. Pallottino, Adaptation de I’algorithme de d’Esopo-
Pape pour la determination de tous les chemins le plus
courts: Ameliorations et simplifications. Centre de Re-
cherche sur les Transports, no. 136 (1979).
S. Pallottino, Shortest path methods: Complexity, in-
terrelations and new propositions. Networks 14
(1984) 257-267.
U. Pape, Implementation and efficiency of
Moore—algorithms for the shortest path problem.
Math. Program. 7 (1974) 212-222.
D. R. Shier, and C. Witzgall, Properties of labeling
methods for determining shortest path trees. J. Res.
Natl. Bur. Stand. 86 (1981) 317.

Received April 1992
Accepted November 1992

85UBD| T SUOLIWOD BAIER1D) 8|dedl|dde au Aq peuienob 88 s3pile YO @SN 4O Sa|nJ 104 AReiq1T8UIUO AB|IAN UO (SUORIPUOD-PUR-SWIBIW0D" 4| 1M ARe1q 1[eul|UOy/:SAIY) SUORIPUOD PUe SWB L 84} 89S *[5202/0T/0T] U0 ARiqIT8uIIUO AB]IM ‘0jouYdS L JO 8Ininsu| sHesnydesse N Aq 8080EZ0EZE 1BU/Z00T OT/10p/wod" A3 | im"Axeiq1[pul|uo//sdiy Wiy papeo|umoq ‘g ‘66T ‘2E00L60T

