Topics in Reinforcement Learning:
Lessons from AlphaZero for
(Sub)Optimal Control and Discrete Optimization

Arizona State University

Course CSE 691, Spring 2022

Links to Class Notes, Videolectures, and Slides at
http://web.mit.edu/dimitrib/www/RLbook.html

Dimitri P. Bertsekas
dbertsek@asu.edu

Lecture 12
Off-Line Training by Aggregation

Bertsekas Reinforcement Learning 1/35

0 Introduction to Aggregation

e Aggregation with Representative States: A Form of Discretization
e Aggregation with Representative Features

0 Examples of Feature-Based Aggregation

e What is the Aggregate Problem and How Do We Solve It?

@ Simulation-Based Solution of the Aggregate Problem

e Variants of Aggregation

Bertsekas Reinforcement Learning 2/35

Aggregation within the Approximation in Value Space Framework

Approximate minimization

First Step “Future”
n B
min ii(w)(g(,u,5) +ad(j
ueU@)j;pU()9(i .) + (7))
Approximations: Computation of J:
Replace E{-} with nominal values Problem approximation
(certainty equivalence) Rollout

Approximate PI
Parametric approximation
Aggregation

Adaptive simulation
Monte Carlo tree search

@ Aggregation is a form of problem approximation. We approximate our DP problem
with a “smaller/easier" version, which we solve optimally to obtain J.

@ |s related to feature-based parametric approximation (e.g., when Jis piecewise
constant, the features are 0-1 membership functions).

@ Can be combined with (global) parametric approximation (like a neural net) in two
ways. Either use the neural net to provide features, or add a local parametric
correction to a J obtained by a neural net.

@ Several versions: multistep lookahead, finite horizon, etc ...

Bertsekas Reinforcement Learning 4/35

lllustration: A Simple Classical Example of Approximation

Approximate the state space with a coarse grid of states

\ . .
|—— States (Fine Grid)

| — Representative States
(Coarse Grid)

@ Introduce a “small" set of “representative” states to form a coarse grid.

@ Approximate the original DP problem with a coarse-grid DP problem, called
aggregate problem (need transition probs. and cost from rep. states to rep. states).

@ Solve the aggregate problem by exact DP.

@ “Extend" the optimal cost function of the aggregate problem to an approximately
optimal cost function for the original fine-grid DP problem.

@ For example extend the solution by a nearest neighbor/piecewise constant
scheme (a fine grid state takes the cost value of the “nearest" coarse grid state).

Bertsekas Reinforcement Learning 5/35

Approximate the Problem by “Projecting” it onto Representative States

Representative States] Aggregation Probabilities

Dy
Relate
Original States to

Original State Space - Representative States

@ Introduce a finite subset of “representative states" A c {1, ..., n}. We denote them
by x and y.

@ Original system states j are related to rep. states y € A with aggregation
probabilities ¢, (“weights" satisfying ¢;, > 0, ¥, 4 ¢y = 1).

@ Aggregation probabilities express “similarity” or “proximity” of original to rep.
states.

@ Aggregate dynamics: Transition probabilities between rep. states x, y
n
Py (U) = 3 () Sy
i=1
@ Expected cost at rep. state x under control u:

G0,) = 3. py(u)g(x, u.))

J=1

Bertsekas Reinforcement Learning 7135

The Aggregate Problem

Original States

Dij (u)7 9(7- u,])

Aggregation

Probabilities
¢jy

j=1

@ If ry, x € A, are the optimal costs of the aggregate problem, approximate the
optimal cost function of the original problem by

JG)=> #yry;, j=1,...,n, (interpolation)
yeA

@ If ¢, =0or 1 foralljand y, J(j) is piecewise constant. It is constant on each set

Sy={jloy=1}, yeA, (called the footprint of y)

Bertsekas Reinforcement Learning 8/35

The Piecewise Constant Case (¢;, =0 or 1 for all j, y)

J(j) = Z,,(A DjyTy

¢jy =0o0r1
for all j and y

Each j connects
to a single x

Footprint Sets

The approximate cost function J = Yyea Gty is constant within Sy = {j | ¢ = 1}. J

Approximation error for the piecewise constant case (¢; = 0 or 1 for all j, y)
Consider the footprint sets
Sy={ilew=1} yeA

The (J* - J) error is small if J* varies little within each S,. In particular,

DD T JeSnyeA,

where € = maxyc4 max; s, |J* (1) - J*(j)| is the max variation of J* within the S, .

Bertsekas Reinforcement Learning 9/35

Solution of the Aggregate Problem

Aggregation
Probabilities
7y

Data of aggregate problem (it is stochastlc even if the original is deterministic)
Pxy(U) = prj(u)¢]Y7 g(x,u) = ZPXJ(U)Q(X u,j), J(/) = Z ¢/yry
j=1

yeA

Exact methods

Once the aggregate model is computed (i.e., its transition probs. and cost per stage),
any exact DP method can be used: VI, Pl, optimistic PI, or linear programming.

v

Model-free simulation methods - Needed for large n, even if model is available

Given a simulator for the original problem, we can obtain a simulator for the aggregate
problem. Then use an (exact) model-free method to solve the aggregate problem.

Bertsekas Reinforcement Learning 10/35

Extension: Continuous State Space - POMDP Discretization

Continuous state space

@ The rep. states approach applies with no modification to continuous spaces
discounted problems.

@ The number of rep. states should be finite.

@ The cost per stage should be bounded for the “good"/contraction mapping-based
theory to apply to the original DP problem.

@ A simulation/model-free approach may still be used for the aggregate problem.

@ We thus obtain a general discretization method for continuous-spaces discounted
problems.

Discounted POMDP with a belief state formulation

@ Discounted POMDP models with belief states, fit neatly into the continuous state
discounted aggregation framework.

@ The aggregate/rep. states POMDP problem is a finite-state MDP that can be
solved for r* with any (exact) model-based or model-free method (VI, PI, etc).

@ The optimal aggregate cost r* yields an approximate cost function
J(Jj) = Xyea o1y » which defines a one-step or multistep lookahead suboptimal
control scheme for the original POMDP.

Bertsekas Reinforcement Learning 11/35

A Challenge Question - Think for Five Mins

B B
TTIT
T

Travel spe¢d ‘ ':::

.

1 m/se i

EyS |

s ¢ Gy -
A A TTIITT

1000 m 1000 m

Discretizing Continuous Motion

@ A self-driving car wants to drive from A to B through obstacles. Find the fastest
route.

@ Car speed is 1 m/sec in any direction.

@ We discretize the space with a fine square grid; restrict directions of motion to
horizontal and vertical.

@ We take the discretized shortest path solution as an approximation to the
continuous shortest path solution.

@ |s this a good approximation?

Bertsekas Reinforcement Learning 12/35

Answer to the Challenge Question

B B
TTIT

T
Travel spe¢d ‘ ':::

.

1 m/se I

. \‘ =
fo#o\ ' fo#o‘ .‘ I
A A TTIITT

1000 m 1000 m

Discretizing Continuous Motion
@ The discretization is FLAWED.
@ Example: Assume all motion costs 1 per meter, and no obstacles.
@ The continuous optimal solution (the straight A-to-B line) has length /2 kilometers.

@ The discrete optimal solution has length 2 kilometers regardless of how fine the
discretization is.

@ Here the state space is discretized finely but the control space is not.
@ This is not an issue in POMDP (the control space is finite).

Bertsekas Reinforcement Learning 13/35

From Representative States to Representative Features

The main difficulty with rep. states/discretization schemes:

@ |t may not be easy to find a set of rep. states and corresponding piecewise
constant or linear functions that approximate well J*.

@ Too many rep. states may be required for good approximate costs J(j).

Suppose we have a good feature vector F(i): We discretize the feature space
@ We introduce representative features that span adequately the feature space
F={F@i)|i=1,...,n}

@ We aim for an aggregate problem whose states are the rep. features.

@ We associate each rep. feature x with a subset of states /, that nearly map onto

feature x, i.e., F(i) ~ x, forall i e Iy

@ This is done with the help of weights dj; (called disaggregation probabilities) that
are 0 outside of /.

@ As before, we associate each state j with rep. features y using aggregation
probabilities ¢;,.
@ We construct an aggregate problem using d;, ¢,, and the original problem data.

v

Bertsekas Reinforcement Learning 15/35

lllustration of Feature-Based Aggregation Framework

Feature
@ Extraction CT o
> > L] L] L]

Representative Features
State Space Feature Space Aggregate States

Representative feature formation J

Original
System States

pij(u): g(iauv.j)

Disaggregation
Probabilities

dei =0fori¢ I,

Aggregation
Probabilities
Py

¢jy =1forjel,

Representative Features
Aggregate States

Transition diagram for the aggregate problem)

Bertsekas Reinforcement Learning 16/35

Working Break: Feature Formation Methods in Aggregation

Original
System States

pij(u), 9(i,u, j)
Disaggregation
Probabilities
dzi

dzi:Ofori¢Iz

Aggregation
Probabilities
iy

¢jy =1forjel,

Representative Features
Aggregate States

Question 1: Why is the rep. states model a special case of the rep. features model? J

Assume the following general principle for feature-based aggregation:

Choose features so that states i with similar features F (i) have similar J*(i), i.e., J*(/)
changes little within each of the “footprint" sets Iy = {i | dx > 0} and Sy = {j | ¢;, > 0}.

Question 2: Can you think of examples of useful features for aggregation schemes?)

Bertsekas Reinforcement Learning 17/35

Feature Formation Using Scoring Functions
Ry
i

R{

S1 S22 S3 Se Srm—1Sm

Idea: Suppose that we have a scoring function V(i) with V(i) ~ J*(i). Then group
together states with similar score.

@ We partition the range of values of V into m disjoint intervals Ry, ..., Rn.
@ We define a feature vector F(i) according to

F(iy=¢, allisuchthat V(i)eR, £=1,....m

e Defines a partition of the state space into the footprints S, = I, = {i | F(i) = ¢}.

Bertsekas Reinforcement Learning 19/35

Examples of Scoring Functions

@ Cost functions of heuristics or policies.
@ Approximate cost functions produced by neural networks.

Let the scoring function be the cost function J,, of a policy s
Let's compare with rollout:
@ Rollout uses as cost approximation J= Ju-

@ Score-based aggregation uses J,, as scoring function to form features. The
resulting J is a “nonlinear function of J,," that aims to approximate J*.

o If the scoring function quantization were so fine as to have a single feature value
per interval R,, we would have J = J* (much better than rollout).

@ Score-based aggregation can be viewed as a more sophisticated form of rollout.

@ Score-based aggregation is more computation-intensive, less suitable for on-line
implementation.

It is possible to use multiple scoring functions to generate more complex feature maps. J

Bertsekas Reinforcement Learning 20/35

Feature Formation Using Neural Networks

(i, v) Cost
i Approximation
State 4 y(0) i i i(i i
ate ¢ Ay(i) +b % ¢2(i,v) J(i,v) = r'¢(i,v)
% Bm(i,v)
State Linear Nonlinear Linear
Encoding Layer Layer Weighting
Parameter Parameter
v=(A4,b) FEATURES r

Suppose we have trained a NN that provides an approximation J(i) = r'é(i, v)
@ Features from the NN can be used to define rep. features.
@ Training of the NN yields lots of state-feature pairs.

@ Rep. features and footprint sets of states can be obtained from the NN training set
data, perhaps supplemented with additional (state,feature) pair data.

@ NN features may be supplemented by handcrafted features.

@ Feature-based aggregation yields a nonlinear function J of the features that
approximates J* (not J).

Bertsekas Reinforcement Learning 21/35

Policy lteration with Neural Nets, and Feature-Based Aggregation

Feature Vector

Neural F(7) R Eolfey Approximately
Current | Network Approximate Improvement Tmproved
Polic - . .
v Cost J,. (F(i)) Policy /1
Feature Aggregate
Neural | Vector States Aggregate |Approximately
> S li > L
Current | Network ampne 0 Piglsllem Improved
Policy u ptimization| A
v Policy fi

Several options for implementation of mixed NN/aggregation-based Pl

@ The NN-based feature construction process may be performed multiple times,
each time followed by an aggregate problem solution that constructs a new policy.

@ Alternatively: The NN training and feature construction may be done only once
with some “good" policy.

@ After each cycle of NN-based feature formation, we may add problem-specific
handcrafted features, and/or features from previous cycles.

@ Note: Deep NNs may produce fewer and more sophisticated final features

Bertsekas Reinforcement Learning 22/35

A Simple Version of the Aggregate Problem

Original
System States

pij(u), (i, u, j)
Disaggregation
Probabilities
d:m',

dei =0fori¢ I,

Aggregation
Probabilities
Yy

¢jy =1forjel,

Representative Features
Aggregate States

Patterned after the simpler rep. states model.)

Aggregate dynamics and costs

@ Aggregate dynamics: Transition probabilities between rep. features x, y
n
Py () = 3 dhi Y pi(u) by
iely =1
@ Expected cost per stage: .,
Q(Xv U) = Z de ZpX/(u>g(X7 U,j)

il j=1

Bertsekas Reinforcement Learning 24/35

The of the Simple Version of the Aggregate Problem

Original
System States

pij(u), (i, u, j)
Disaggregation
Probabilities
d:m',

dei =0fori¢ I,

Aggregation
Probabilities
Yy

¢jy =1forjel,

Representative Features
Aggregate States

There is an implicit assumption in the aggregate dynamics and cost formulas

B (U) = X e i)y, GOx) = 3 e S pg(u)g(x, .)

il j=1 il j=1

For a given rep. feature x, the same control v is applied at all states i in the footprint Ix.

So the simple aggregate problem is legitimate, but the approximation J of J* may not
be very good. We will address this issue in the next lecture.

Bertsekas Reinforcement Learning 25/35

More Accurate Version: The Enlarged Aggregate Problem

Enlarged State Space
pij(u), 9(i,u, j)

Cost Jo Cost Ji

Zontrols u are associated

Disaggregation with states i
Probabilities

Aggregation
Probabilities
7y

Cost r* Representative Features

Bellman equations for the enlarged problem
ry = Z dyido (i), xXeA,
Jo(i) = m|n Zp,,(u)((i, u,) + adi(j)), i=1,...,n,
J1(j)_z¢jyr;7 j=17~"7n
yeA

r* solves uniquely the composite Bellman equation r* = Hr*:

= (Hr*)(x) = de, m|n Zp,,(u) (g(/ uj)+ay’ qﬁ/yry) xXeA

yeA

Bertsekas Reinforcement Learning 26/35

Approximation error for the piecewise constant case (¢; =0 or 1 for all j, y)
Consider the footprint sets

Sy={loy=1} yed

The (J* - J) error is small if J* varies little within each S,. In particular,

€

D -Fls=, S, yea,

where € = maxye4 Max;jes, |J* (1) - J*(j)| is the max variation of J* within S, .

Implication

Choose representative features x so that J* varies little over the footprint of x.

This is a generally valid qualitative guideline

Holds for the more general piecewise linear interpolation case.

Bertsekas Reinforcement Learning 27/35

Simulation-Based Asynchronous Value lteration for the Aggregate

Problem

A sampled version of VI for solving r* = Hr*: r®*1 ~ (1 — %) rk + ~¥H(rk) with

(Hr)(x) = de: iy ZPU(U) (Q(l uj) + o E;\dwfy), xeA
ye

Note that H is a contraction.

At time k iterate for a single rep. feature x, and keep all other rX unchanged

el = (1= +7 mm ZPIKJ(U) (Q(lk uj)+e), ¢>/yfy)
yeA

where ik is a sample from Iy, selected according to dj,;, and +K is a stepsize

Convergence result [Tsitsiklis and Van Roy (1995)]

With +* — 0 and other technical conditions, this iteration converges to the unique

solution r*. Some similarity with (exact) Q-learning proofs.

Bertsekas Reinforcement Learning

29/35

Simulation-Based Policy Iteration

Uses policy evaluation/policy improvement to generate policy/cost pairs { (1%, r*)}.
Converges monotonically (r**" < r) and finitely (r* = r* for sufficiently large k).

Policy evaluation of current policy z*

Solve the (linear) composite Bellman equation r* = Hukr" for ¥, where

(Hur)(x) = Zn;dxi Z:Pfj(uk(f)) (g(/,,/‘(i)J) +a 2;\% ry) , xeA
i= J= ye

Two possibilities:
@ lteratively: Using a sampled version of VI with sampling for both / and for j.
@ By matrix inversion: Write the equation r* = H,«r in matrix form as r = A“r + b".
Evaluate A and b* by simulation, and set r* = (/- A¥)~"b¥.

Policy improvement by one-step lookahead

(i) = arg m|n Zp,,(u) (g(/ uj)+ay’ q&,yry) i=1,....n

yeA

Bertsekas Reinforcement Learning 30/35

Biased Aggregation - Suppose we Know a Good Approximation V ~ J*;

How do we Correct it?

Aggregation-based
Correction

(piecewise constant or

piecewise linear)

~
Corrected V'

State

We add a “bias" function V to the cost structure of the enlarged aggregate problem)

Cost Jo Enlarged Siate Space Cost Ji
Dij (u)’ 9(7‘7 uv])
Disaggregation Aggregation
probabilities probabilities
T iy
Cost —V (7) Cost V(j)

Cost r*

Representative Features

Bertsekas Reinforcement Learning 32/35

Some Results for Biased Aggregation

Enlarged State Space 6 Cost J;

Aggregation
probabilities
Piy

Cost V(j)

Cost Jo

Disaggregation
probabilities

Cost =V (7)

Cost r* (U _ _ _ _ __ _ _ _p _______
Representative Features

Let (r*, Jo, J1) be the solution [note that J(j) = V(j) + Eyea djy1;]

@ When V = J* then r* =0, Jy = J1 = J*, and any optimal policy for the aggregate
problem is optimal for the original problem.

@ When V = J, for some policy 1, the policy produced by aggregation is a rollout
policy based on p, when there is a single rep. feature. Suggests that with multiple
rep. features the aggregation/rollout policy should be much better than rollout.

@ Error bounds similar to the ones for the case V = 0 suggest to choose rep.
features and footprint sets within which V — J* varies little.

@ We do not know J*, but we may use T*V (k value iterations on V) as an
approximation. Then use V - T*V as a scoring function to form rep. features.

Bertsekas Reinforcement Learning 33/35

N-Step Feature-Based Aggregation

N Stages
— — — — — — — — — — — — — — — — — >
pij (1) pij(u) pij (1)
O D@ e D)
g(i, u, 5) 9(1,4,9) > Original g(i, u, 5)

Disaggregation System States Aggregation
Probabilities Probabilities
dai 3 y Piy
dei =0 fori ¢ I, ¢jy =1forjel,

@ i . @
Representative Features

Aggregate States

@ The composite system consists of N + 2 stochastic Bellman equations.
@ Simulation-based version of VI is hard to implement.
@ Simulation-based version of Pl is possible, but policies are multistep.

A simpler case: Deterministic problem and representative states (no features)

@ Then each VIl iteration involves solution of an N-stage deterministic DP (shortest
path) problem: r**' = Hy(r*), where Hy is the N-stage DP operator.

@ This algorithm embodies the idea of aggregation in both space and time.

Bertsekas Reinforcement Learning 34 /35

About the Next and Final Lecture

WE WILL GIVE AN OVERVIEW OF THE ENTIRE COURSE

Bertsekas Reinforcement Learning 35/35

	Introduction to Aggregation
	Aggregation with Representative States: A Form of Discretization
	Aggregation with Representative Features
	Examples of Feature-Based Aggregation
	What is the Aggregate Problem and How Do We Solve It?
	Simulation-Based Solution of the Aggregate Problem
	Variants of Aggregation

