Topics in Reinforcement Learning:
Lessons from AlphaZero for
(Sub)Optimal Control and Discrete Optimization

Arizona State University
Course CSE 691, Spring 2022

Links to Class Notes, Videolectures, and Slides at
http://web.mit.edu/dimitrib/www/RLbook.html

Dimitri P. Bertsekas
dbertsek@asu.edu

Lecture 10
Approximate Policy Iteration and Q-Learning:
Centralized and Distributed Implementation Aspects

Bertsekas Reinforcement Learning 1/36



General Remarks on Approximate Policy Iteration and Variations

@ For large state space problems, policy iteration can only be implemented
approximately

@ |t requires approximation architectures (a value and/or a policy network) to go from
one iteration to the next

@ It is thus an off-line training method

@ It produces a sequence of policies. The last policy can be used for on line play
directly

@ Alternatively (and much more effectively) it can produce a policy and/or a cost
function approximation that can be used for on line play through an approximation
in value space/truncated rollout scheme.

@ This is the approach used in AlphaZero and TD-Gammon (relation to Newton’s
method)

@ Variants of the method include:

Optimistic (use very approximate policy evaluation/neural network training - just a few
samples and gradient iterations)

Q-learning versions (train Q-factors)

Distributed and multiagent versions
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0 Review of Exact and Approximate Policy lteration

e Approximate Pl with Parametric Approximation

© Q-Leaming

0 Least Squares Training and Simulation-Based Projection

e The Use of Parallel Computation in Approximate Policy Iteration
e State Space Partitioning - Distributed Training

e Multiagent Rollout and Policy Iteration
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Main Results - Discounted Problems

Infinite horizon discounted problems: States i, controls u € U(i), transition probs p;(u),
cost per stage g(i, u, ), discount factor o < 1

v

Bellman’s equation for optimal cost J* and policy cost J,,
J(i) = nzj(n,) > pi(u)(9(i, u, ) + ad* (),
ue ! ]:1

Ju(0) = 3Py (9 i), ) + ad ()
J=1

Value iteration convergence for optimal cost and policy cost
n
Jeaa (1) = min S py(u)(g(i i) + k(D). k="
ue ! j:1

(1) = 2 py((D) (900 41.f) + k(D). k=
2

Optimality condition
w is optimal if and only if it attains the min in Bellman’s equation
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Policy lteration (Pl) Algorithm: Generates a Sequence of Policies {14}

Initial Policy

Evaluate Cost Function J,, of Policy Cost
Current policy p Evaluation

Generate “Improved” Policy 1z Policy Improvement

Given the current policy 1%, a Pl consists of two phases:
@ Policy evaluation computes J,«(i), i =1,...,n, as the solution of the (linear)
Bellman equation system
%WP;mWWMﬂWWM%mmm)iﬂwwn
/:

@ Policy improvement then computes a new policy p**! as

w(0) e arg min 3 py(u)(9(is ) + adu (), i=1,..0m
<) =1

Optimistic PI: Like standard PI, but policy evaluation uses a finite number of VI. J
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Approximation in Value Space for Infinite Horizon Problems

Approximate minimization

First Step “Future”

min Zpij(u) (g(i,u,j) + ozj(]))

weU (i) =
Approximations: Computation of J:
Replace E{-} with nominal values Problem approximation
(certainty equivalence) Rollout

Approximate PI
Parametric approximation
Aggregation

Adaptive simulation
Monte Carlo tree search

We focus on rollout, and particularly on approximate Pl schemes, which
operate as follows:
@ Several policies p°, i', ..., u™ are generated, starting with an initial policy p°.

@ Each policy /¥ is evaluated approximately, with a cost function jﬂk, often with the
use of a parametric approximation/neural network approach.

@ The next policy 1**" is generated by policy improvement based on J .

@ The approximate evaluation j#m of the last policy in the sequence is used as the
lookahead approximation J in a one-step or multistep lookahead minimization.
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Rollout and Truncated Rollout

Lookahead Tree

Terminal Cost
Approximation .J

Selective Depth

Rollout Policy s

States ir42

(-step lookahead, truncated rollout, terminal cost approximation

@ (-step lookahead, then rollout with policy . for a limited number of steps, and
finally a terminal cost approximation J.

@ Without terminal approximation, this is a single Pl combined with multistep
lookahead.

@ With a terminal approximation, this is a single optimistic PI combined with
multistep lookahead.

v

Performance bounds: They improve as ¢ increases and J ~ J* (within a constant shift).
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Approximate (Nonoptimistic) Policy Iteration - Performance Bound

Jux

Error Zone

J*

ol 1 2 ] il

Typical Behavior: Oscillations within an error zone

@ “Size" of the zone depends on the “approximation quality" of policy evaluation (9)
and policy improvement (e).

@ When the generated policies converge, the performance bound is better.
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Parametric Approximation and Model-Based Actor-Critic Schemes

Initial Policy

I:Zvaluatc Approximate Cost Approximate Policy
Ju(4,T) of Current Policy Evaluation
Critic

A

Generate “Improved” Policy 7i by | Policy Improvement
Lookahead Min Based on J,(i,T) Actor

Introduce a differentiable parametric architecture Ju(i, r) for policy evaluation

@ Examples: A linear featured-based architecture or a neural net.

@ Approximate policy evaluation/training: Generate state-cost pairs (i°, 3°), where
B° is a sample cost corresponding to i°. Use least squares/regression:

a .
reargmind_ (Ju(i°,r) - ,85)2
=
@ 3° is generated by simulating a trajectory that starts at i°, using u for some

number N of stages, accumulating the corresponding discounted costs, and
adding a terminal cost approximation o™ J(iy).
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Training, Exploration, and Other Issues

@ The training problem q
Feargmin ¥ (J.(i%,r) - 8°)
=
is well-suited for incremental gradient:
rk+1 _ I’k _ ’}/kvjp,(isk, fk)(j”(/sk, I’k) _ ,Bsk)

where (i*, 3% is the state-cost sample pair that is used at the kth iteration.

@ Trajectory reuse: Given a long trajectory (io, /1, - - ., in), We can obtain cost
samples for all the states iy, i1, s, . . ., by using the tail portions of the trajectory.

@ Exploration: When evaluating . with trajectory reuse, we generate many cost
samples that start from states frequently visited by p. Then the cost of
underrepresented states may be estimated inaccurately, causing potentially
serious errors in the calculation of the improved policy 7.

@ Bias-variance tradeoff: As the trajectory length N increases, the cost samples 8°
become more accurate but also more “noisy."

@ Cost shaping: Replace g(i, u,j) with g(i, u,j) = g(i,u,j) + aV(j) - V(i), to
approximate J,, — V rather than J,,. Suboptimal policies depend on V, and V can

capture much of the “nonlinearity” in J,,. Allows the use of enhanced
approximations.
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A Working Break: Think About Exploration in Approximate Pl

Initial Policy

Evaluate Approximate Cost Approximate Policy
Ju(4,T) of Current Policy Evaluation
Critic

A

Generate “Improved” Policy fi by Policy Improvement
Lookahead Min Based on J,(i,7) Actor

How would you introduce both exploration and trajectory reuse into policy evaluation? J

@ What kind of schemes would diversify the cost samples of a given policy p?
@ How would they work for deterministic problems?
@ How would they work if we estimate Q-factors?

Answer: Many starting states, short trajectories, terminal cost approximation, use of an
“off-policy".
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Approximate Pl Schemes with Q-Factors

Initial Policy

Evaluate Approximate Q-Factors Approximate Policy
Q,.(i, u,7) of Current Policy p Evaluation
Critic

A,

Generate “Improved” Policy i Policy Improvement

7i(i) € argmingep ;) Qhu(i-, u,T) Actor

Introduce a parametric architecture (5“(/, u, r) for Q-factor evaluation

@ Approximate policy evaluation/training: Generate training triplets (i°, u®, 3%), where
B° is a sample Q-factor corresponding to (i°, u®). Use least squares/regression:

9 .
Feargmin ) (Qu(i%,u’,r) - ﬂs)z
=
@ 3° is generated by simulating a trajectory that starts at (i°, u®), using u for some

number N of stages, accumulating the corresponding discounted costs, and
adding a terminal cost approximation a™J(iy).
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Approximate Pl with Approximation in Policy Space on Top of

Approximation in Value Space

Trajectory Reuse and Exploration Issues

@ Trajectory reuse is more problematic in Q-factor evaluation than in cost evaluation;
each trajectory generates state-control pairs of the special form (i, u(i)) at every
stage after the first, so pairs (i, u) with u + (i) are not adequately explored.

@ For this reason, it is necessary to make an effort to include in the samples a rich
enough set of trajectories that start at pairs (i, u) with u # (7).

@ An alternative approach: First compute in model-free fashion a cost function
approximation J,.(j,r), and then use a second sampling process and regression
to approximate further the (already approximate) Q-factor

a 7 . o—_
> pi(u)(9(i, u,)) + ad, (), 7)),
j=1
with some QL(L u, ) possibly obtained with a policy approximation architecture.

@ This is model-free approximate PI that is based on approximation in policy space
on top of approximation in value space. It is more complex, but allows trajectory
reuse and thus deals better with the exploration issue.
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Q-Learning with Lookup Table Representation

Recall the VI Algorithm for Q-Factors Qx.1 = FQx where F is the operator
(FQ)(i,u) = pj(u) (g(i, u,j) +a nbl(n) Q(j, v)) , for all (i, u)
=1 veU(j

F is a contraction with modulus «, so VI converges to Q*.

Q-Learning is a simulation-based VI algorithm for Q-factors, based on
“asynchronous DP" ideas [iterate on a single pair (i, u) at a time]

@ An infinitely long sequence of state-control pairs {(i*, u*)} is generated according
to some (essentially arbitrary) probabilistic mechanism.

@ For each pair (i, u*), a state j* is generated according to the probabilities px;(u").
/

@ Then only the Q-factor of (i, u¥) is updated using a stepsize v ¢ (0, 1]; all other
Q-factors are left unchanged:

Q1 (i, 0) = (1 =Yk (i, u) + Y (FeQo) (i,u),  forall (i,u),
where (FcQy) (i, u) = Q(i, u) if (i,u) # (i, u*), and
(FQ) (", u") = g(i*, ", [) + min QG vy if (i u) = (F,uF)
veU(jk)

@ To guarantee convergence some technical conditions are needed, e.g., v — 0.

4
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Optimistic Policy Iteration Methods with Q-Factor Approximation

Introduce a linear parametric architecture C)(/’, u,r) = ¢(i,u)’r, and iterate on r. Each
value of r defines a policy, which generates controls. As r is iterated on the policy

changes.
v

SARSA: At iteration k, we have r*, i*, and we have chosen a control u¥

@ We simulate the next transition (i, /*") using the transition probabilities py;(u*).

@ We generate u**" with the minimization "' € arg MiNeyiksty Q" u, r*) [In
some schemes, u**" is chosen with a small probability to be a different element of
U(i**") to enhance exploration.]

@ We update the parameter vector via

where ~ is a positive stepsize, and gx is given by

Qk = gb(ik,u )/ k (chb( k+1 k+1) g(l

k k+1)

@ The vector ¢(i*, u*)qgx can be interpreted as an approximate gradient direction,
and q is referred to as a temporal difference.
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A Projection View of Approximate Policy Evaluation

@ Approximation of solution of Bellman’s equation J,, = T,,J,, with a parametric
architecture amounts to replacing J,, with a vector in

M= {(J(1 ,r),...,J(n,r)) | all parameter vectors r}
@ A common approach uses projection onto M:
MN(J) e argmin |J - V|
VeM
where .
MIF= 326 (JD)",

where J(i) are the components of J, and &; are some positive weights.

Three general approaches for approximation of J,, using projection

@ Project J,, onto M to obtain M(J,), which is used in place of J,..

@ Start with some approximation J of J,,, perform N Vls to obtain T,'J, and project
onto M to obtain M(T/YJ). We then use M(T}J) in place of J,..

@ Solve a projected equation J,, = 1N(T,J,), and use the solution in place of J,.
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Approximate Projection by Monte-Carlo Simulation

@ We focus on the case where the manifold M is a subspace M = {®r|reR™}
where ¢ is an n x m matrix with rows denoted by ¢(i)’,i=1,...,n.

@ The projection MM(J) is of the form ®r*, where
n
r*earg rryn |&r - J|Z = arg mqiﬂn S &i(o()'r- J(i))2
remrm rerm =
@ This minimization can be done in closed form,

n 71 n
= (;:Emb(i)gb(/)') $260() ()

View the two terms as expectations and approximate them by MC simulation
@ Generate samples i, s=1,...,q, according to £, and form the estimates

% i(ﬁ(i%(/‘sy : i@-@(fw)’, }7 ié(fsws . iw(w(i)

where 3° is a sample of J(i¥) plus a “zero mean noise" term n(i°) (see the text).
e Estimate r* by 7 = (27, 6(°)¢(i°)) " £2, 6(i°)B°
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Connection with Least Squares

The solution of the simulation-based approximate projection

g 14
= (Z ¢(is)¢(f5)’) > o(i°)B°
t=1 t=1
is also obtained by the least squares minimization

q
T earg rm%r)n > (@*(,-S)rr _ ﬁs)z
N =1

Thus simulation-based projection can be implemented in two equivalent ways

@ Replacing expected values in the exact projection formula by simulation-based
estimates.

@ Replacing the exact least squares/projection problem with a simulation-based
least squares approximation.

@ |t is not necessary that the simulation produces independent samples.

@ It is sufficient that the long term empirical frequencies by which the indices i
appear in the simulation sequence are consistent with the probabilities &;.

@ We do not need the probabilities &; (the simulation determines them implicitly).
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Rollout and Approximate Policy Iteration: Consider the Computations

Bl Approximation Approximation
»| Policy _|in Value Space _|in Policy Space
“ Value Policy
Network Network
Value Data Policy Data
Rollout Policy

Lots of computation needed for off-line training and on-line play
@ Collection of training data may require lots of simulation/computation
@ The training algorithm (e.g., gradient method) may be slow
@ Exploring adequately a large state space is an issue

@ On-line play requires minimization and truncated rollout, possibly under tight time
constraints

HOW DO WE USE PARALELLIZATION IN ROLLOUT AND APPROXIMATE PI? |
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Four Possible Types of Parallelization

Q-factor parallelization: At the current state x, one-step lookahead/rollout does a
separate Q-factor calculation for each control u € U(x). These calculations are
decoupled and can be executed in parallel.

Monte Carlo parallelization: Each of the Q-factor calculations involves a Monte Carlo
simulation when the problem is stochastic. Monte Carlo simulation can be parallelized.

Multiprocessor parallelization: Use a state space partition, and execute separate (but
coupled) value and policy approximations on each subset in parallel.

Multiagent parallelization: When the control has m components, u = (u',...,u™) the
lookahead minimization at x involves the computation of as many as n™ Q-factors,
where n is the max number of possible values of u'. Multiagent (possibly autonomous)
schemes can reduce the computation dramatically.

WE WILL FOCUS ON THE LAST TWO J
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Multiprocessor Parallelization: State Space Partitioning

Feature 3%
Extraction

»
>

State Space Feature Space

Partition the state space into several subsets and construct a separate policy and value
approximation in each subset. J

@ Use features to generate the partition.
@ How do we implement truncated rollout and policy iteration with partitioning? J
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Distributed Asynchronous Policy lteration (Williams and Baird, 1993,

Bertsekas and Yu, 2010)

An old and fairly obvious training idea:
@ Assign one processor to each subset of the partition.

@ Each processor uses a local value and a local policy approximation, and maintains
asynchronous communication to other processors.

@ Update values locally on each subset (policy evaluation by value iteration).

@ Update policies locally on each subset (policy improvement, possibly using
multiagent parallelization).

@ Communicate asynchronously local values and policies to other processors.

However:

@ The obvious algorithm fails (for the lookup table representation case - a
counterexample by Williams and Baird, 1993).

@ The DPB-HJY algorithm, 2010, corrects this difficulty and proves convergence
(assuming a lookup table representation for policies and cost functions).

@ Admits extension to neural net approximations (some error bounds available).

Bertsekas Reinforcement Learning 28/36



Approximate Policy Iteration with

Local Value and Policy Networks

Each Set Has a Local Value Network
and a Local Policy Network

—— Initial State

Truncated Rollout
LN Using the
Local Policy Network

Terminal Cost
Supplied by
Local Value Network

Terminal State

State Space Partition

@ Start with some base policy and a value network for each set.
@ Obtain a policy and a value network for the truncated rollout policy. Repeat.
@ Partitioning may be a good way to deal with adequate state space exploration.
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Distributed RL for POMDP (Bhatacharya, Badyal, Wheeler, Gil,
Bertsekas Paper, 2020)

@ 20 potentially damaged locations along a pipeline.

@ Damage of each location is imperfectly known; evolves according to a Markov
chain (5 levels of damage). Number of states: ~ 10'°

@ Repair robot moves left or right, visits and repairs locations. May want to give
preference to “urgent" repairs.

@ Belief space partitioning with 6 policy networks and 3 value networks.

Cost C for Partitioned Architecture

== pAPLT (6 policy nets, 3 value nets)
mm= pAPI-NT (6 policy nets)
6800 API (1 policy net)

6600

Cost

6400

6200

6000

Base policy Iteration 1 Iteration 2 Iteration 3 _Iteration 4.
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Parallelization of Agent-by-Agent Policy Improvement

Simplified minimization (one-agent-at-a-time in a given order) reduces dramatically the
cost of policy improvement, but it is an inherently serial computation. Each agent
needs the rollout control of the preceding agents in the order.

How can we parallelize it? J

Precomputed signaling

@ Obstacle to parallelization/agent autonomy: To compute the kth agent rollout
control we need the rollout controls of the preceding agents i < k

@ Signaling remedy: Use precomputed substitute “guesses” fi;i(x) in place of the
preceding rollout controls fi;(x)

Signaling possibilities
@ Use the base policy controls for signaling zi(x) = wi(x), i=1,...,k -1 (this may
work poorly)
@ Use a neural net representation of the rollout policy controls for signaling
wi(x) ~ fi(x), i=1,...,k =1 (this requires off-line computation)
@ Other, problem-specific possibilities
S — S —
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Multirobot Repair of a Network of Damaged Sites (Bhatacharya, Kailas,
Badyal, Gil, Bertsekas Paper, 2021)

Agent 1
Agent2
Agent 3
Agent 4

Damage level 0
Damage level 1

Damage level 2

Damage level 3

e

25"

Damage level 4

@ Damage level of each site is unknown, except when inspected. It deteriorates
according to a known Markov chain unless the site is repaired

@ Control choice of each robot: Inspect and repair (which takes one unit time), or
inspect and move to a neighboring site

@ State of the system: The set of robot locations, plus the belief state of the site
damages (the joint probability distribution of the damage levels of the sites)

@ Stage cost at each unrepaired site: Depends on the level of its damage
@ A POMDP with ~ 10 states and ~ 107 controls
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Approximate Policy lteration with Policy Nets (Bhatacharya, Kailas,

Badyal, Gil, Bertsekas Paper, 2021)

Cost improvement of approximate Pl

7000
6180 B 8 agents
6000 5551 B 10 agents
5000
7 4000
o)
o
3000
1958
2000 A
1599
1342 1463 15551377
Bl =l
Base policy Iter 1 Iter 2 Iter 3

@ Recall that a policy network must be used to represent a policy generated by PI
@ As a result the Pl training must be done off-line

@ Typical performance: Large cost improvement at first few iterations, which tails off
and ends up in an oscillation as the number of generated policies increases
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Concluding Remarks on Distributed RL

RL is a VERY computationally intensive methodology.
Distributed asynchronous computation is an obvious answer.
It is important to identify methods that are amenable to distributed computation.

One-time rollout with a base policy, multiagent parallelization, and/or local value
and policy networks is well-suited. Often easy to implement, typically reliable.

@ Repeated rollout (i.e, approximate policy iteration) with partitioned architecture
and multiagent parallelization, and/or local value and policy networks is
well-suited, but is more complicated and more ambitious.

@ Multiagent rollout parallelization has many applications to discrete/combinatorial
optimization problems.

There are many interesting analytical and implementation challenges.
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About the Next Lecture

Note:

The performance shown in the graphs of the two robot repair problems corresponds to
the off-line trained policies. The performance of the corresponding on line play/rollout
algorithm using the last policy obtained from off-line policy iteration is much better.

We will cover additional methods:
@ The linear programming approach
@ Approximation in policy space
@ Policy gradient methods
@ Random search methods

As preparation:
Review videolecture 11 of the 2021 ASU course
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