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Polyhedral Convexity Template
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Fixed Point Problem Formulation

Problem: Solve x = T (x)

We assume that T : <n 7→ <n has a unique fixed point and is nonexpansive,∥∥T (x1)− T (x2)
∥∥ ≤ γ‖x1 − x2‖, ∀ x1, x2 ∈ <n,

where 0 ≤ γ ≤ 1 and ‖ · ‖ is some norm

Special focus for this talk: The linear case

x = Ax + b

where I − A is invertible and A has spectral radius ≤ 1

Bertsekas (M.I.T.) TD(λ) and the Proximal Algorithm 3 / 30



Proximal Algorithm - Convex Analysis (Martinet, 1970)

The proximal mapping P(c) : <n 7→ <n for x − T (x) = 0, where c > 0

P(c)(x) = Unique solution of y − T (y) =
1
c

(x − y)

The proximal algorithm is
xk+1 = P(c)(xk )

x∗ x∗ c v xkk xk+1+1 xk+2d z xP (c)(x)

) y − T (y) ) y − T (y)

) y − ) y −

+2 Slope = −1

c

) Proximal Mapping Proximal Algorithm ) Proximal Mapping Proximal Algorithm
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Policy Iteration in DP - Bellman’s Equation

Solve x = T (x) = minµ Tµ(x) where µ: a policy, Tµ(x) = Aµx + bµ

Policy iteration alternates between policy evaluation and policy improvement

xk = Tµk (xk ), (linear), µk+1 ∈ arg min
µ

Tµ(xk ), (componentwise)

Alternative policy evaluation based on the TD (Temporal Differences) mapping

For λ ∈ (0, 1) solve x = T (λ)
µ (x) where T (λ)

µ is the multistep linear mapping

T (λ)
µ = (1− λ)

∞∑
`=0

λ`T `+1
µ

that has the same fixed point as Tµ

Iterative policy evaluation: Iterate one or more times with Tµk or T (λ)
µk

xk+1 = Tµk (xk ) (value iteration) or xk+1 = T (λ)
µk (xk ) (λ-policy evaluation)

xk+1 = xk + γk
(
sampleT (λ)

µk (xk )− xk
)

with γk ↓ 0 (TD(λ) algorithm)
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Policy Evaluation with Subspace Projection for Very Large Problems

Use intermediate projection onto a subspace of basis functions

For a fixed policy, solve the projected equation x = ΠT (λ)(x) (Galerkin approximation)

xk

xk+2

xk+3

Extrapolated Forward-Backward Step Low-Dimensional Subspace

xk+1 = ΠT (λ)(xk)

) T (λ)(xk) ) T (λ)(x∗)

) x∗ = ΠT (λ)(x∗)

xk+1 = ΠT (λ)(xk ), Projected λ-policy evaluation

xk+1 = xk + γk Π
(
sample T (λ)(xk )− xk

)
, Projected TD(λ)

Simulation-based implementations (key characteristic of RL)

For large dimension (e.g., n > 1010) there is no alternative to simulation (because
of high-dimensional inner products)

How simulation is implemented makes a big difference; e.g., sample collection,
correlations, bias, choice of λ, etc. (We will not deal with that in this lecture.)

A lot of know-how has been accumulated over the last 30 years
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KEY POINT OF THIS TALK
TD(λ) Map for Policy Evaluation ≈ Proximal Map for the Lin. Bellman Eq

T P

T Px

T P (c)

T P (c)

λ =
c

c + 1
, c =

λ

1 − λ

T (λ)(x) = x + c+1
c

(
P (c)(x) − x

)

(

J T (x)

)
T (λ)(x) = (P (c)T )(x) = (TP (c))(x)

) P (c)(x) = x + λ
(
T (λ)(x) − x

)

Extrapolation Formula T (λ) = T · P (c) = P (c) · T

T (λ) IS FASTER

TD(λ) IS A STOCHASTIC PROXIMAL ALGORITHM FOR LINEAR FIXED POINTS
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Visualization
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Polyhedral Convexity Template

xk
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g

fS(s | H0)

x∗

X

Level Sets of f

∂f(x∗)

Significance Level
s s − t s + t
Space of Measurement X
H0 True Type I Error

1

Pc,f (z) ⌃f(x) 0 slope � c v xk xk+1 xk+2

w pW (·; x) z = g(w) g

⇤k � Dk(x, xk) ⇤k+1 � Dk+1(x, xk+1)

T
y3 x3 Slope = y3

rx(z) = �(ĉl⇧)(x, z)

rx(µ) � ⌅ µ Z (u, 1)

= Min Common Value w�

= Max Crossing Value q�

Positive Halfspace {x | a⇥x ⇥ b}

a�(C) C C ⇤ S⇤ d z x

Hyperplane {x | a⇥x = b} = {x | a⇥x = a⇥x}

x� x f
�
�x� + (1 � �)x

⇥

x x�

x0 � d x1 x2 x x4 � d x5 � d d

x̂0 x̂1 x̂2 x̂3

a0 a1 a2 a3

f(z)

z

X 0 u w (µ, ⇥) (u, w)
µ

⇥

⇥
u + w

1

x � T (x) y � T (y) rf(x) P (c)(x) xk xk+1 xk+2

1

x � T (x) y � T (y) rf(x) P (c)(x) xk xk+1 xk+2

1

x � T (x) y � T (y) rf(x) P (c)(x) xk xk+1 xk+2 Slope = �1

c

1

x − T (x) y − T (y) ∇f(x) x − P (c)(x) xk xk+1 xk+2 Slope = −1

c

T (λ)(x) = T (x) x = P (c)(x)

1

x − T (x) y − T (y) ∇f(x) x − P (c)(x) xk xk+1 xk+2 Slope = −1

c

T (λ)(x) = T (x) x = P (c)(x)

1

xc = ΠP (c)(xc) Bias (→ 0 as c → ∞) E(c)(x) = T (x) P (c)(xc)

x − T (x) = 1
c (x − x)

Q(λ) = (Ψ′ΞΦ)−1Ψ′ΞA(λ)Φ d(λ) = (Ψ′ΞΦ)−1Ψ′Ξb(λ) S = {Φr | r ∈ ℜs} x∗ Πx∗ x̃

xλ = ΠT (xλ) Πx∗ Bias (→ 0 as λ → 1) T (xλ) x Projection Πx
Solution Approximate solution

T (λ)(x) = T (x) x = P (c)(x)

x − T (x) y − T (y) ∇f(x) x − P (c)(x) xk xk+1 xk+2 Slope = −1

c

T (λ)(x) = T (x) x = P (c)(x)

Extrapolation by a Factor of 2 T (λ) = P (c) · T = T · P (c)

Extrapolation Formula T (λ) = P (c) · T = T · P (c)

Multistep Extrapolation T (λ) = P (c) · T = T · P (c)

1

The extrapolated iterate T (x) is closer to x∗ than the proximal iterate x

A FREE LUNCH
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Potential Implications of the TD-Proximal Relation

Benefit to the TD context
Clarify the nature of TD(λ) and other TD methods

Bring proximal methodology and insights to bear on exact and approximate DP

Benefit to the proximal context
Bring large scale DP/RL methodology to bear on the proximal mainstream

Develop new convex analysis algorithms based on DP/RL ideas
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Outline

1 Acceleration of the Proximal Algorithm for Linear Systems

2 Acceleration of the Proximal Algorithm for Nonlinear Systems

3 Acceleration of Forward-Backward and Proximal Gradient Algorithms

4 Linearized Proximal Algorithms for Nonlinear Systems
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The Extrapolation Formula

Let c > 0 and λ = c
c+1 . Consider the proximal mapping

P(c)(x) = Unique solution of y − T (y) =
1
c

(x − y)

Then:
T (λ) = T · P(c) = P(c) · T

and x , P(c)(x), and T (λ)(x) are colinear:

T (λ)(x) = P(c)(x) +
1
c
(
P(c)(x)− x

)

T P

T Px

T P (c)

T P (c)

λ =
c

c + 1
, c =

λ

1 − λ

T (λ)(x) = x + c+1
c

(
P (c)(x) − x

)

(

J T (x)

)
T (λ)(x) = (P (c)T )(x) = (TP (c))(x)

) P (c)(x) = x + λ
(
T (λ)(x) − x

)

Extrapolation Formula T (λ) = T · P (c) = P (c) · T
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Proof outline

Main idea: Express the proximal mapping in terms of a power series
We have

P(c)(x) =

(
c + 1

c
I − A

)−1(
b +

1
c

x
)

and by a series expansion(
c + 1

c
I − A

)−1

=

(
1
λ

I − A
)−1

= λ(I − λA)−1 = λ

∞∑
`=0

(λA)`

Recall that

T (λ)(x) = (1− λ)
∞∑
`=0

λ`A`+1x +
∞∑
`=0

λ`A`b

Using these relations and the fact 1
c = 1−λ

λ
, it follows that

T (λ) = T · P(c) = P(c) · T
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Acceleration

The eigenvalues of T (λ) and P(c) are simply related:

θi = ζi · θi

where
θi = i th Eig(T (λ)), θi = i th Eig(P(c)), ζi = i th Eig(A)

Moreover, T (λ) and P(c) have the same eigenvectors

Spectral radius of T (λ) ≤ Spectral radius of P(c)
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1 Acceleration of the Proximal Algorithm for Linear Systems

2 Acceleration of the Proximal Algorithm for Nonlinear Systems

3 Acceleration of Forward-Backward and Proximal Gradient Algorithms

4 Linearized Proximal Algorithms for Nonlinear Systems
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Nonlinear System x = T (x) - Proximal Extrapolation

Assume that the system has a unique solution x∗, and T is nonexpansive:∥∥T (x1)− T (x2)
∥∥ ≤ γ‖x1 − x2‖, ∀ x1, x2 ∈ <n

where ‖ · ‖ is some Euclidean norm and γ is a scalar with 0 ≤ γ ≤ 1

Consider the proximal mapping P(c):

P(c)(x) = Unique solution of y − T (y) =
1
c

(x − y)

Define the extrapolated proximal mapping

E (c)(x) = x +
c + 1

c
(
P(c)(x)− x

)
Important difference: P(c)(x) and E (c)(x) cannot be easily computed by simulation

Similar to the linear case, we have

E (c)(x) = T
(
P(c)(x)

)
,

∥∥E (c)(x)− x∗
∥∥ ≤ γ∥∥P(c)(x)− x∗

∥∥
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Geometric Interpretation and Proof

x∗ d z x

) y − T (y)

) y −

+2 Slope = −1

c

x = P (c)(x)) E(c)(x) = T (x)

x − T (x) = 1
c (x − x)

From the definition of P(c), we have

T
(
P(c)(x)

)
= P(c)(x) +

1
c
(
P(c)(x)− x

)
so that

T
(
P(c)(x)

)
= x +

c + 1
c
(
P(c)(x)− x

) def
= E (c)(x)

Hence, using the assumption,∥∥E (c)(x)− x∗
∥∥ =

∥∥∥T
(
P(c)(x)

)
− x∗

∥∥∥ =
∥∥∥T
(
P(c)(x)

)
− T (x∗)

∥∥∥ ≤ γ∥∥P(c)(x)− x∗
∥∥
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1 Acceleration of the Proximal Algorithm for Linear Systems

2 Acceleration of the Proximal Algorithm for Nonlinear Systems

3 Acceleration of Forward-Backward and Proximal Gradient Algorithms

4 Linearized Proximal Algorithms for Nonlinear Systems
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Forward-Backward Splitting Algorithm for Fixed Point Problem
x = T (x)− H(x)

xk+1 = P(α)(xk − αH(xk )
)
, α > 0

≥ π/2 Pc,f(x)−x λ∗−cv∗ = (N1·N2)(λ∗−cv∗) 0 λ∗ N2(λ∗−cv∗) v∗ ∂h(x) x −∇f(x)

Slope Optimal dual proximal solution Optimal primal

x∗ = Pc,f (x∗) Nc,f(x)− x∗ Nc,f(x) X∗ x− x∗ < π/2 (N1 · N2)(yk) N2(yk)

xk−1 xk+1 yk yk+1 xk+2 ∇f(xk+1) yk − α∇f(yk) X

yk = xk − γk∇f(xk) yk = xk + βk(xk − xk−1)

x0 = x−1 x1 = y1 y2 x2 = x∗ xk+2 ∇f(xk+1)

y2 = x1 − α1∇f(x1) x2 = y2 + β2(xk − xk−1)

Gradient Projection Step Extrapolation Step
Optimal F ⋆

k (λ) y f⋆(λ) λ Slope = −1/c Slope = 1/c p(u) p(u)+ c
2∥u∥2

uk+1 u

f(y) ℓ(y; x) +
L

2
∥y − x∥2

Slope = 1/c Slope = −1/c Slope =
xk − xk+1

ck
f(xk+1)

f(xk+1) + (x − xk+1)′gk+1 xk+3

βd(x)α d(xk+1) d(xk) Slope =
d(xk) − d(xk+1)

ck
f(x) δk+1

Augmented Lagrangian Method Proximal Algorithm Dual Proximal
Algorithm

z = Pc,f (z) Nc,f(z) ∂f(x) 0 slope −c v vk xk xk+1 = Pc(xk) = xk−vk xk+2 = Pc(xk+1)

Pc,M (z) M(x) ∂f(x) 0 slope − c v xk xk+1 xk+2 xk+1 = xk − cvk

w pW (·; x) z = g(w) g

1

≥ π/2 Pc,f(x)−x λ∗−cv∗ = (N1·N2)(λ∗−cv∗) 0 λ∗ N2(λ∗−cv∗) v∗ ∂h(x) x −∇f(x)

Slope Optimal dual proximal solution Optimal primal

x∗ = Pc,f (x∗) Nc,f(x)− x∗ Nc,f(x) X∗ x− x∗ < π/2 (N1 · N2)(yk) N2(yk)

xk−1 xk+1 yk yk+1 xk+2 ∇f(xk+1) yk − α∇f(yk) X

yk = xk − γk∇f(xk) yk = xk + βk(xk − xk−1)

x0 = x−1 x1 = y1 y2 x2 = x∗ xk+2 ∇f(xk+1)

y2 = x1 − α1∇f(x1) x2 = y2 + β2(xk − xk−1)

Gradient Projection Step Extrapolation Step
Optimal F ⋆

k (λ) y f⋆(λ) λ Slope = −1/α Slope = 1/c p(u) p(u)+ c
2∥u∥2

uk+1 u

f(y) ℓ(y; x) +
L

2
∥y − x∥2

Slope = 1/c Slope = −1/c Slope =
xk − xk+1

ck
f(xk+1)

f(xk+1) + (x − xk+1)′gk+1 xk+3

βd(x)α d(xk+1) d(xk) Slope =
d(xk) − d(xk+1)

ck
f(x) δk+1

Augmented Lagrangian Method Proximal Algorithm Dual Proximal
Algorithm

z = Pc,f (z) Nc,f(z) ∂f(x) 0 slope −c v vk xk xk+1 = Pc(xk) = xk−vk xk+2 = Pc(xk+1)

Pc,M (z) M(x) ∂f(x) 0 slope − c v xk xk+1 xk+2 xk+1 = xk − cvk

w pW (·; x) z = g(w) g

1

x0 x0 − α∇f(x0) x1 x2 x3 x∗ x1 − α∇f(x1) x2 ∂h(x) x − ∇f(x)

≥ π/2 Pc,f(x)−x λ∗−cv∗ = (N1·N2)(λ∗−cv∗) 0 λ∗ N2(λ∗−cv∗) v∗ ∂h(x) x −∇f(x)

Gradient Step Proximal Step dual proximal solution Optimal primal

x∗ = Pc,f (x∗) Nc,f(x)− x∗ Nc,f(x) X∗ x− x∗ < π/2 (N1 · N2)(yk) N2(yk)

xk−1 xk+1 yk yk+1 xk+2 ∇f(xk+1) yk − α∇f(yk) X

yk = xk − γk∇f(xk) yk = xk + βk(xk − xk−1)

x0 = x−1 x1 = y1 y2 x2 = x∗ xk+2 ∇f(xk+1)

y2 = x1 − α1∇f(x1) x2 = y2 + β2(xk − xk−1)

Gradient Projection Step Extrapolation Step
Optimal F ⋆

k (λ) y f⋆(λ) λ Slope = −1/α Slope = 1/c p(u) p(u)+ c
2∥u∥2

uk+1 u

f(y) ℓ(y; x) +
L

2
∥y − x∥2

Slope = 1/c Slope = −1/c Slope =
xk − xk+1

ck
f(xk+1)

f(xk+1) + (x − xk+1)′gk+1 xk+3

βd(x)α d(xk+1) d(xk) Slope =
d(xk) − d(xk+1)

ck
f(x) δk+1

Augmented Lagrangian Method Proximal Algorithm Dual Proximal
Algorithm

z = Pc,f (z) Nc,f(z) ∂f(x) 0 slope −c v vk xk xk+1 = Pc(xk) = xk−vk xk+2 = Pc(xk+1)

Pc,M (z) M(x) ∂f(x) 0 slope − c v xk xk+1 xk+2 xk+1 = xk − cvk

1

x0 x0 − α∇f(x0) x1 x2 x3 x∗ x1 − α∇f(x1) x2 ∂h(x) x − ∇f(x)

≥ π/2 Pc,f(x)−x λ∗−cv∗ = (N1·N2)(λ∗−cv∗) 0 λ∗ N2(λ∗−cv∗) v∗ ∂h(x) x −∇f(x)

Gradient Step Proximal Step dual proximal solution Optimal primal

x∗ = Pc,f (x∗) Nc,f(x)− x∗ Nc,f(x) X∗ x− x∗ < π/2 (N1 · N2)(yk) N2(yk)

xk−1 xk+1 yk yk+1 xk+2 ∇f(xk+1) yk − α∇f(yk) X

yk = xk − γk∇f(xk) yk = xk + βk(xk − xk−1)

x0 = x−1 x1 = y1 y2 x2 = x∗ xk+2 ∇f(xk+1)

y2 = x1 − α1∇f(x1) x2 = y2 + β2(xk − xk−1)

Gradient Projection Step Extrapolation Step
Optimal F ⋆

k (λ) y f⋆(λ) λ Slope = −1/α Slope = 1/c p(u) p(u)+ c
2∥u∥2

uk+1 u

f(y) ℓ(y; x) +
L

2
∥y − x∥2

Slope = 1/c Slope = −1/c Slope =
xk − xk+1

ck
f(xk+1)

f(xk+1) + (x − xk+1)′gk+1 xk+3

βd(x)α d(xk+1) d(xk) Slope =
d(xk) − d(xk+1)

ck
f(x) δk+1

Augmented Lagrangian Method Proximal Algorithm Dual Proximal
Algorithm

z = Pc,f (z) Nc,f(z) ∂f(x) 0 slope −c v vk xk xk+1 = Pc(xk) = xk−vk xk+2 = Pc(xk+1)

Pc,M (z) M(x) ∂f(x) 0 slope − c v xk xk+1 xk+2 xk+1 = xk − cvk

1

xc = ΠP (c)(xc) Bias (→ 0 as c → ∞) E(c)(x) = T (x) P (c)(xc)

−H(x) z = x − αH(x) x = P (α)(z) x − T (x) = 1
c (x − x)

x − T (x) = 1
c (x − x)

Q(λ) = (Ψ′ΞΦ)−1Ψ′ΞA(λ)Φ d(λ) = (Ψ′ΞΦ)−1Ψ′Ξb(λ) S = {Φr | r ∈ ℜs} x∗ Πx∗ x̃

xλ = ΠT (xλ) Πx∗ Bias (→ 0 as λ → 1) T (xλ) x Projection Πx
Solution Approximate solution

T (λ)(x) = T (x) x = P (c)(x)

x − T (x) y − T (y) ∇f(x) x − P (c)(x) xk xk+1 xk+2 Slope = −1

c

T (λ)(x) = T (x) x = P (c)(x)

Extrapolation by a Factor of 2 T (λ) = P (c) · T = T · P (c)

Extrapolation Formula T (λ) = P (c) · T = T · P (c)

Multistep Extrapolation T (λ) = P (c) · T = T · P (c)

1

x � T (x) y � T (y) rf(x) P (c)(x) xk xk+1 xk+2

1

xc = ΠP (c)(xc) Bias (→ 0 as c → ∞) E(c)(x) = T (x) P (c)(xc)

−H(x) z = x − αH(x) x = P (α)(z) Forward Step

x − T (x) = 1
c (x − x) x − T (x) = 1

c (x − x)

Q(λ) = (Ψ′ΞΦ)−1Ψ′ΞA(λ)Φ d(λ) = (Ψ′ΞΦ)−1Ψ′Ξb(λ) S = {Φr | r ∈ ℜs} x∗ Πx∗ x̃

xλ = ΠT (xλ) Πx∗ Bias (→ 0 as λ → 1) T (xλ) x Projection Πx
Solution Approximate solution

T (λ)(x) = T (x) x = P (c)(x)

x − T (x) y − T (y) ∇f(x) x − P (c)(x) xk xk+1 xk+2 Slope = −1

c

T (λ)(x) = T (x) x = P (c)(x)

Extrapolation by a Factor of 2 T (λ) = P (c) · T = T · P (c)

Extrapolation Formula T (λ) = P (c) · T = T · P (c)

Multistep Extrapolation T (λ) = P (c) · T = T · P (c)

1

xc = ΠP (c)(xc) Bias (→ 0 as c → ∞) E(c)(x) = T (x) P (c)(xc)

−H(x) z = x − αH(x) x = P (α)(z) Forward Step

x − T (x) = 1
c (x − x) x − T (x) = 1

c (x − x)

Q(λ) = (Ψ′ΞΦ)−1Ψ′ΞA(λ)Φ d(λ) = (Ψ′ΞΦ)−1Ψ′Ξb(λ) S = {Φr | r ∈ ℜs} x∗ Πx∗ x̃

xλ = ΠT (xλ) Πx∗ Bias (→ 0 as λ → 1) T (xλ) x Projection Πx
Solution Approximate solution

T (λ)(x) = T (x) x = P (c)(x)

x − T (x) y − T (y) ∇f(x) x − P (c)(x) xk xk+1 xk+2 Slope = −1

c

T (λ)(x) = T (x) x = P (c)(x)

Extrapolation by a Factor of 2 T (λ) = P (c) · T = T · P (c)

Extrapolation Formula T (λ) = P (c) · T = T · P (c)

Multistep Extrapolation T (λ) = P (c) · T = T · P (c)

1

xc = ΠP (c)(xc) Bias (→ 0 as c → ∞) E(c)(x) = T (x) P (c)(xc)

−H(x) z = x − αH(x) x = P (α)(z) Forward Step

x − T (x) = 1
c (x − x) x − T (x) = 1

c (x − x)

Q(λ) = (Ψ′ΞΦ)−1Ψ′ΞA(λ)Φ d(λ) = (Ψ′ΞΦ)−1Ψ′Ξb(λ) S = {Φr | r ∈ ℜs} x∗ Πx∗ x̃

xλ = ΠT (xλ) Πx∗ Bias (→ 0 as λ → 1) T (xλ) x Projection Πx
Solution Approximate solution

T (λ)(x) = T (x) x = P (c)(x)

x − T (x) y − T (y) ∇f(x) x − P (c)(x) xk xk+1 xk+2 Slope = −1

c

T (λ)(x) = T (x) x = P (c)(x)

Extrapolation by a Factor of 2 T (λ) = P (c) · T = T · P (c)

Extrapolation Formula T (λ) = P (c) · T = T · P (c)

Multistep Extrapolation T (λ) = P (c) · T = T · P (c)

1

xc = ΠP (c)(xc) Bias (→ 0 as c → ∞) E(c)(x) = T (x) P (c)(xc)

−H(x) z = x − αH(x) x = P (α)(z) Forward Step

x − T (x) + H(x) = 1
α (z − x) + H(x) x − T (x) = 1

c (x − x)

Q(λ) = (Ψ′ΞΦ)−1Ψ′ΞA(λ)Φ d(λ) = (Ψ′ΞΦ)−1Ψ′Ξb(λ) S = {Φr | r ∈ ℜs} x∗ Πx∗ x̃

xλ = ΠT (xλ) Πx∗ Bias (→ 0 as λ → 1) T (xλ) x Projection Πx
Solution Approximate solution

T (λ)(x) = T (x) x = P (c)(x)

x − T (x) y − T (y) ∇f(x) x − P (c)(x) xk xk+1 xk+2 Slope = −1

c

T (λ)(x) = T (x) x = P (c)(x)

Extrapolation by a Factor of 2 T (λ) = P (c) · T = T · P (c)

Extrapolation Formula T (λ) = P (c) · T = T · P (c)

Multistep Extrapolation T (λ) = P (c) · T = T · P (c)

1

x � T (x) y � T (y) rf(x) P (c)(x) xk xk+1 xk+2

1

Properties (Lions and Mercier, 1979, Gabay, 1983, Tseng, 1991):
If T is nonexpansive, and H is single-valued and strongly monotone, the F-B
algorithm converges to x∗ if α is sufficiently small

For a minimization problem where H is the gradient of a strongly convex function,
FB = the proximal gradient algorithm
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Extrapolation and Acceleration

Extrapolated forward-backward algorithm

zk = xk − αH(xk ), xk = P(α)(zk ) (Forward-Backward Iteration)

xk+1 = xk +
1
α

(xk − zk )− H(xk ) (Extrapolation)

λ Slope = −1/α

3 x∗

) y − T (y)

) Forward Step

) y −xk

zk = xk − αH(xk)

xk − T (xk) + H(xk) = 1
α (zk − xk) + H(xk)

) Forward-Backward Step

) Forward-Backward Step

) xk = P (α)(zk)

Extrapolated Forward-Backward Step

Extrapolated Forward-Backward Step xk+1 = T (xk) − H(xk)

−H(y)

We have
xk+1 = T (xk )− H(xk )

so there is acceleration if T − H is contractive
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Connect with TD: Apply Policy Iteration Ideas to the Proximal Context

Problem: Solve “concave" fixed point problem x = T (x) = minµ Tµ(x)

i th component of Tµ(x) = a
(
i, µ(i)

)′x + b
(
i, µ(i)

)
, µ(i) ∈M(i) (Linear)

) y − T (y)

) y −

+2 Slope = −1

c

xk

Linearized Mapping

Newton iterate
xµk

y − Tµk
(y)

) x̄k = P
(c)
µk (xk)

) T
(λ)
µk (xk) = Tµk

(x̄k)

} x∗

The policy iteration algorithm

xµk = Tµk (xµk ), µk+1 ∈ arg min
µ

Tµ(xµk ), (“Newton" method)

The λ-policy iteration algorithm

xk+1 = T (λ)
µk (xk ), µk+1 ∈ arg min

µ
Tµ(xk+1), (“prox-linear" method)

Bertsekas (M.I.T.) TD(λ) and the Proximal Algorithm 25 / 30



A Fundamental Difficulty

The algorithm chases a moving target

The TD(λ) mapping T (λ)
µk “targets" the fixed point of Tµk , but as µk changes so

does the target ...

This is why some policy iteration algorithms may not converge (particularly with
cost function approximation) ...
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Convergence Under Monotonicity Assumptions

Assume the following:
For all µ, the matrix Aµ has nonnegative components

The mappings Tµ are all contractions with respect to a common sup-norm (this
can be relaxed ...)

Then:
T is a contraction and its fixed point is x∗ = minµ xµ
A sequence {xk} generated from an initial condition x0 such that x0 ≥ T (x0) is
monotonically nonincreasing and converges to x∗ (this can be improved ...)

Proof idea:
Based on DP/policy iteration arguments

Monotonicity is critical

Once projection is introduced in policy iteration, monotonicity may be lost

Bertsekas (M.I.T.) TD(λ) and the Proximal Algorithm 27 / 30



Convergence of Randomized Version Without Monotonicity

Assume the following:
The setM is finite

The mappings Tµ and T are all contractions with respect to a common norm

We use a randomized form of the linearized iteration:

xk+1 = Tµk (xk ), with probability p,

xk+1 = T (λ)
µk (xk ), with probability 1− p,

followed by µk+1 ∈ arg minµ Tµ(xk )

Then:
For any starting point x0, a sequence {xk} generated by the algorithm converges to the
fixed point of T with probability one

Randomization resolves the “moving target" problem
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Concluding Remarks

Proximal and multistep/TD iterations for fixed point problems are closely
connected

x , P(c)(x), and T (λ)(x) are colinear and simply related (no line search needed)

TD(λ) mapping is “faster" than proximal

A free lunch: Acceleration of the proximal algorithm. It can be substantial,
particularly for small c

Extrapolation formula provides new insight and justification for TD-type methods
I TD(λ) is stochastic version of the proximal algorithm
I TD(λ) with subspace approximation is stochastic version of the projected proximal

The ideas extend to the forward-backward algorithm and potentially other
algorithmic contexts that involve fixed points and proximal operators

The relation between proximal and TD methods extends to classes of nonlinear
fixed point problems using linearization/policy iteration ideas
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Thank you!
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