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Fixed Point Problem Formulation

Problem: Solve x = T(x)
We assume that T : " — R” has a unique fixed point and is nonexpansive,

HT(X1) = T(Xg)“ < ’)/||X1 = Xg”, Y X1, X € §Rn,

where 0 <~ < 1and | - || is some norm

Special focus for this talk: The linear case

X=Ax+b

where | — A'is invertible and A has spectral radius < 1
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Proximal Algorithm - Convex Analysis (Martinet, 1970)

The proximal mapping P(©) : " — R" for x — T(x) = 0, where ¢ > 0

P©(x) = Unique solution of y — T(y) = %(X —y)

The proximal algorithm is
X1 = P(C)(Xk)

Y
y g | Tht2  Thyl T Y
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Policy lteration in DP - Bellman’s Equation

Solve x = T(x) = min, T,(x) where p: a policy, T,,(x) = A.x + b,
Policy iteration alternates between policy evaluation and policy improvement

Xk = T, (Xx), (linear), uk+1 € argmin T, (xx), (componentwise)
12

Alternative policy evaluation based on the TD (Temporal Differences) mapping

For A € (0,1) solve x = TfN(X) where Tfﬁ) is the multistep linear mapping
TV =(1=X)> AT
£=0

that has the same fixed point as T,

Iterative policy evaluation: Iterate one or more times with 7, or T,Sf)

@ X1 = Ty, (Xk) (value iteration) or Xy 1 = T,(li)(xk) (A-policy evaluation)
@ Xkr1 = Xk + Yk (sample Tﬁi)(xk) — Xk) with v« . 0 (TD(X) algorithm)
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Policy Evaluation with Subspace Projection for Very Large Problems

Use intermediate projection onto a subspace of basis functions
For a fixed policy, solve the projected equation x = 1T (x) (Galerkin approximation) }

/ 70 (ay) TO)(a)
it A i
i el

. . — T (2
Tpy1 = TN (z1) ki Ey)

Low-Dimensional Subspace

Xep1 = NTN(x),  Projected A-policy evaluation

Xkt1 = Xk + kM (sample T (x) — Xk), Projected TD()\)

Simulation-based implementations (key characteristic of RL)

@ For large dimension (e.g., n > 10'°) there is no alternative to simulation (because
of high-dimensional inner products)

@ How simulation is implemented makes a big difference; e.g., sample collection,
correlations, bias, choice of A, etc. (We will not deal with that in this lecture.)

@ A lot of know-how has been accumulated over the last 30 years
6/30
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KEY POINT OF THIS TALK

/

PO@) =z +ATW(2) —2) TO(z) =2+ =<LL(PO)(z) - =)

Extrapolation Formula T3 =T . P(c) = p(e) . T

T 1S FASTER
TD(A) IS A STOCHASTIC PROXIMAL ALGORITHM FOR LINEAR FIXED POINTS
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Visualization

A y—T(y)

N

T-T(T)= %(CL’ —T)
T e
A foe 4 x v
TN (z)=T(z) =P (x)
The extrapolated iterate T(Xx) is closer to x* than the proximal iterate X
A FREE LUNCH J
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Potential Implications of the TD-Proximal Relation

Benefit to the TD context
@ Clarify the nature of TD(A) and other TD methods
@ Bring proximal methodology and insights to bear on exact and approximate DP

v

Benefit to the proximal context
@ Bring large scale DP/RL methodology to bear on the proximal mainstream
@ Develop new convex analysis algorithms based on DP/RL ideas
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0 Acceleration of the Proximal Algorithm for Linear Systems
e Acceleration of the Proximal Algorithm for Nonlinear Systems
e Acceleration of Forward-Backward and Proximal Gradient Algorithms

0 Linearized Proximal Algorithms for Nonlinear Systems
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The Extrapolation Formula

Let ¢ > 0 and A = -%.. Consider the proximal mapping

(C)(x) = Unique solution of y — T(y) = 1E(X —y)

Then:
TN =T17.pO=pl.T

and x, P((x), and T™)(x) are colinear:

(x) = PO + L (PO - x)

TO(2) = (POT)(x) = (TPO)(x)

/

PO(z) =2+ AT (z) —z) TO(x) =2+ LL(PE)(z) —z)

Extrapolation Formula T =T .- P(¢) = P(e) . T
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Proof outline

Main idea: Express the proximal mapping in terms of a power series

PO(x) = <°+1 /—A>_1 <b+1Ex>

and by a series expansion

c+1 A - =N
( 5 I—A) _(X/—A> =\I/—)A)" )\;/\A)

We have

Recall that - -
TVX) =1 =)D XA+ > XA

Using these relations and the fact 1 = 152, it follows that

TN _ 7.p _ ple) . T
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Acceleration

The eigenvalues of TV and P(©) are simply related:

0;i = ¢ -0

where 3
0; = ith Eig(T®W), 6, = ith Eig(P'?), ¢ = ith Eig(A)

Moreover, T and P(©) have the same eigenvectors

Spectral radius of T < Spectral radius of P(°) ]

Bertsekas (M.L.T.) TD(X) and the Proximal Algorithm



e Acceleration of the Proximal Algorithm for Nonlinear Systems
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Nonlinear System x = T(x) - Proximal Extrapolation

@ Assume that the system has a unique solution x*, and T is nonexpansive:
| T(x1) = TO)|| < vllxt — xell, V X1, X2 € R
where || - || is some Euclidean norm and ~ is a scalar with 0 < v < 1
@ Consider the proximal mapping P(©:

P(x) = Unique solution of y — T(y) = 1E(x —Yy)
@ Define the extrapolated proximal mapping

c+1

EO(x) = x + (PP(x) — x)

@ Important difference: P{°)(x) and E(°)(x) cannot be easily computed by simulation

v

Similar to the linear case, we have

EOMX) = T(POx)),  [|EMx) —x*|| <~||P9x) - x*
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Geometric Interpretation and Proof

YRR z v
EC@(x)=T(T) 7=

From the definition of P(¥), we have
T(P(x)) = PO(x) + = (P9 (x) — x)

so that
c+1

T(PO(x)) = x+ =~ (P9(x) - x) & E@(x)
Hence, using the assumption,

<allP200 —¢'|

IECQ ) - x*|| = | T(POx) - x*

- HT(P(C)(X)) ~T(x")
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e Acceleration of Forward-Backward and Proximal Gradient Algorithms
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Forward-Backward Splitting Algorithm for Fixed Point Problem
x = T(x) — H(x)

T-T@) +HT) =1(:-7)+HT)

! Forward Step
1 z=x—aH(x)

Proximal Step
T = P)(z)

/
—H(@) Slope = —1/a

Properties (Lions and Mercier, 1979, Gabay, 1983, Tseng, 1991):

@ If T is nonexpansive, and H is single-valued and strongly monotone, the F-B
algorithm converges to x™* if « is sufficiently small

@ For a minimization problem where H is the gradient of a strongly convex function,
FB = the proximal gradient algorithm
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Extrapolation and Acceleration

Extrapolated forward-backward algorithm
zk = Xk —aH(xk), Xk = P“)(z)  (Forward-Backward lteration)

Xi+1 = Xk + j;(?k — zx) — H(Xk) (Extrapolation)

y—T(y)
N

Ty, —([(Tk) + H(Tk) = % (2 — k) + H(T0)

Forward Step
2 = xp — oH (x)

Extrapolated
Forward-Backward Step
w1 = T(Tx) — H(Tk)

Forward-Backward Step /
Ty, = P@)(21) ~H) Siope = —1/a

We have
Xk+1 = T(Yk) = H(Yk)

so there is acceleration if T — H is contractive
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Connect with TD: Apply Policy lteration Ideas to the Proximal Context

Problem: Solve “concave"” fixed point problem x = T(x) = min, T,(x) J

ith component of T,.(x) = a(i, u(i))'x + b(i, u(i)),  p(i) € M(i) (Linear)

Linearized Mapping

: Y- Tuk (v)
/i/Slopc =—=
z | 4 Tp Yy
= - ple).
Newton iterate ! ]‘, = Py (1)
T (a0) = T (70)
The policy iteration algorithm
X = Tue(Xur), ki1 € arg m“in T (X)), (“Newton" method)
v
The A-policy iteration algorithm
Xicrll = T (Xk)s ks € arg mJn T (X)), (“prox-linear" method)
25/30
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A Fundamental Difficulty

@ The algorithm chases a moving target

@ The TD(\) mapping T\, “targets" the fixed point of T,,,, but as jx changes so
does the target ...

@ This is why some policy iteration algorithms may not converge (particularly with
cost function approximation) ...
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Convergence Under Monotonicity Assumptions

Assume the following:
@ For all u, the matrix A, has nonnegative components

@ The mappings T, are all contractions with respect to a common sup-norm (this
can be relaxed ...)

Then:
@ T is a contraction and its fixed point is x* = min,, X,

@ A sequence {xx} generated from an initial condition xo such that xo > T(xo) is
monotonically nonincreasing and converges to x* (this can be improved ...)

Proof idea:
@ Based on DP/policy iteration arguments
@ Monotonicity is critical
@ Once projection is introduced in policy iteration, monotonicity may be lost
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Convergence of Randomized Version Without Monotonicity

Assume the following:

@ The set M is finite
@ The mappings T, and T are all contractions with respect to a common norm
@ We use a randomized form of the linearized iteration:

Xir1 = Tpp (Xk), with probability p,

Xer1 = TS (x),  with probability 1 — p,
followed by p+1 € argmin, T, (xk)

Then:

For any starting point xo, @ sequence {xx} generated by the algorithm converges to the
fixed point of T with probability one

v

Randomization resolves the “moving target" problem J
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Concluding Remarks

@ Proximal and multistep/TD iterations for fixed point problems are closely
connected

@ x, P9(x), and T™(x) are colinear and simply related (no line search needed)
@ TD()A) mapping is “faster" than proximal

@ A free lunch: Acceleration of the proximal algorithm. It can be substantial,
particularly for small ¢

@ Extrapolation formula provides new insight and justification for TD-type methods

TD(\) is stochastic version of the proximal algorithm
TD(X) with subspace approximation is stochastic version of the projected proximal

@ The ideas extend to the forward-backward algorithm and potentially other
algorithmic contexts that involve fixed points and proximal operators

@ The relation between proximal and TD methods extends to classes of nonlinear
fixed point problems using linearization/policy iteration ideas
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Thank you!
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