
TD(λ) and the Proximal Algorithm

Dimitri P. Bertsekas

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology

Optimization Methods Workshop

NIPS 2017

Bertsekas (M.I.T.) TD(λ) and the Proximal Algorithm 1 / 30

A Bridge Between Convex Analysis and Approximate Dynamic
Programming

Convex Analysis

Deterministic Problems
Geometric Ideas
Iterative Descent
Proximal Algorithms

Approximate DP

Stochastic Problems
Simulation Ideas
Value and Policy Iteration
Temporal Differences

4

Polyhedral Convexity Template

x0 x1 x2 x3 x4 f(x) X x

f(x0) + (x − x0)′g0

f(x1) + (x − x1)′g1

αx + (1 − α)y, 0 ≤ α ≤ 1

< 90◦

Level set
{
x | f(x) ≤ f∗ + αc2/2

}
Optimal solution set x0

X

xk − αkgk

xk+1 = PX(xk − αkgk)

x∗

xk

1

4

Polyhedral Convexity Template

x0 x1 x2 x3 x4 f(x) X x

f(x0) + (x − x0)′g0

f(x1) + (x − x1)′g1

αx + (1 − α)y, 0 ≤ α ≤ 1

< 90◦

Level set
{
x | f(x) ≤ f∗ + αc2/2

}
Optimal solution set x0

X

xk − αkgk

xk+1 = PX(xk − αkgk)

x∗

xk

1

C1 C2 H Normal xk�xk+1

ck xk xk+1

�k � 1
2ck kx � xkk2 �k f(xk)

Constraint set X x Ha Hb a w b sa sb a b yk = (Xk)�1xk yk+1

yk = (1, 1, 1)

(a) (b) xk xk+2 xk+3 xkrf(xk) xk+1 = xk + dk xk � ↵kDkrf(xk)

↵0
2x = b2 ↵0

1x = b1 a2 a1 (µ1 < 0) (µ2 > 0) �µ2a2 �µ1a1

{x | Ax = b, x � 0} x⇤ {x | Ax = b} {y | AXk = b}

Feasible directions at x d z � x⇤ x � x⇤ x⇤ = 0 x x⇤ � srf(x⇤)

Level sets of f �(t) = max{0, t} t �̃(t, �, c) x0
ref x1

exp x3
ref x4 =

x1
ref x5 = x3

ref x0 x1 x2 x3

Origin of Destination of OD Pair w rw x1 x2 x3 x4 rf(x) xk+2 xk+3

xk+2 � sk+2rf(xk+2) xk+1 � sk+1rf(xk+1) xk+1 = xk � skrf(xk)

Constraint set X z � x⇤ x � x⇤ x⇤ = 0 x rf(x⇤) Level sets of f
�(t) = max{0, t} t �̃(t, �, c) x0

ref x1
exp x3

ref x4 = x1
ref x5 = x3

ref

x0 x1 x2 x3 x4 x⇤ x̄ xk xk�1 xk+1 �1 1 0 �k ↵k x̄1 x̄0 x̄2 X1 X2 rf(x2)

d0 d1 y2 ⇠0 ⇠1 ⇠2 x0 x1 x2 x̄0 x̄1 d1 = Q�1/2w1 d0 = Q�1/2w0

y0 y1 y2 w0 w1 ⇠0 = �c10d0 d1 = ⇠1 + c10d0 d2 = ⇠2 + c20d0 + c21d1

xi xref xmax xmin xnew xexp x̂ xnew = xref (a) (b) (c) (d)

� �1 �2 �n�1 �n
Pn

i=1 ⇠i�i
1
�

�1+�n��
�1�n

1
�

�1+�n�
Pn

i=1
⇠i�i

�1�n

�(⇠) =
1Pn

i=1 ⇠i�i
 (⇠) =

nX

i=1

⇠i
�i

1

C1 C2 H Normal xk�xk+1

ck xk xk+1

�k � 1
2ck kx � xkk2 �k f(xk)

Constraint set X x Ha Hb a w b sa sb a b yk = (Xk)�1xk yk+1

yk = (1, 1, 1)

(a) (b) xk xk+2 xk+3 xkrf(xk) xk+1 = xk + dk xk � ↵kDkrf(xk)

↵0
2x = b2 ↵0

1x = b1 a2 a1 (µ1 < 0) (µ2 > 0) �µ2a2 �µ1a1

{x | Ax = b, x � 0} x⇤ {x | Ax = b} {y | AXk = b}

Feasible directions at x d z � x⇤ x � x⇤ x⇤ = 0 x x⇤ � srf(x⇤)

Level sets of f �(t) = max{0, t} t �̃(t, �, c) x0
ref x1

exp x3
ref x4 =

x1
ref x5 = x3

ref x0 x1 x2 x3

Origin of Destination of OD Pair w rw x1 x2 x3 x4 rf(x) xk+2 xk+3

xk+2 � sk+2rf(xk+2) xk+1 � sk+1rf(xk+1) xk+1 = xk � skrf(xk)

Constraint set X z � x⇤ x � x⇤ x⇤ = 0 x rf(x⇤) Level sets of f
�(t) = max{0, t} t �̃(t, �, c) x0

ref x1
exp x3

ref x4 = x1
ref x5 = x3

ref

x0 x1 x2 x3 x4 x⇤ x̄ xk xk�1 xk+1 �1 1 0 �k ↵k x̄1 x̄0 x̄2 X1 X2 rf(x2)

d0 d1 y2 ⇠0 ⇠1 ⇠2 x0 x1 x2 x̄0 x̄1 d1 = Q�1/2w1 d0 = Q�1/2w0

y0 y1 y2 w0 w1 ⇠0 = �c10d0 d1 = ⇠1 + c10d0 d2 = ⇠2 + c20d0 + c21d1

xi xref xmax xmin xnew xexp x̂ xnew = xref (a) (b) (c) (d)

� �1 �2 �n�1 �n
Pn

i=1 ⇠i�i
1
�

�1+�n��
�1�n

1
�

�1+�n�
Pn

i=1
⇠i�i

�1�n

�(⇠) =
1Pn

i=1 ⇠i�i
 (⇠) =

nX

i=1

⇠i
�i

1

C1 C2 H Normal xk�xk+1

ck xk xk+1

�k � 1
2ck kx � xkk2 �k f(xk)

Constraint set X x Ha Hb a w b sa sb a b yk = (Xk)�1xk yk+1

yk = (1, 1, 1)

(a) (b) xk xk+2 xk+3 xkrf(xk) xk+1 = xk + dk xk � ↵kDkrf(xk)

↵0
2x = b2 ↵0

1x = b1 a2 a1 (µ1 < 0) (µ2 > 0) �µ2a2 �µ1a1

{x | Ax = b, x � 0} x⇤ {x | Ax = b} {y | AXk = b}

Feasible directions at x d z � x⇤ x � x⇤ x⇤ = 0 x x⇤ � srf(x⇤)

Level sets of f �(t) = max{0, t} t �̃(t, �, c) x0
ref x1

exp x3
ref x4 =

x1
ref x5 = x3

ref x0 x1 x2 x3

Origin of Destination of OD Pair w rw x1 x2 x3 x4 rf(x) xk+2 xk+3

xk+2 � sk+2rf(xk+2) xk+1 � sk+1rf(xk+1) xk+1 = xk � skrf(xk)

Constraint set X z � x⇤ x � x⇤ x⇤ = 0 x rf(x⇤) Level sets of f
�(t) = max{0, t} t �̃(t, �, c) x0

ref x1
exp x3

ref x4 = x1
ref x5 = x3

ref

x0 x1 x2 x3 x4 x⇤ x̄ xk xk�1 xk+1 �1 1 0 �k ↵k x̄1 x̄0 x̄2 X1 X2 rf(x2)

d0 d1 y2 ⇠0 ⇠1 ⇠2 x0 x1 x2 x̄0 x̄1 d1 = Q�1/2w1 d0 = Q�1/2w0

y0 y1 y2 w0 w1 ⇠0 = �c10d0 d1 = ⇠1 + c10d0 d2 = ⇠2 + c20d0 + c21d1

xi xref xmax xmin xnew xexp x̂ xnew = xref (a) (b) (c) (d)

� �1 �2 �n�1 �n
Pn

i=1 ⇠i�i
1
�

�1+�n��
�1�n

1
�

�1+�n�
Pn

i=1
⇠i�i

�1�n

�(⇠) =
1Pn

i=1 ⇠i�i
 (⇠) =

nX

i=1

⇠i
�i

1

C1 C2 H Normal xk�xk+1

ck xk xk+1

�k � 1
2ck kx � xkk2 �k f(xk)

Constraint set X x Ha Hb a w b sa sb a b yk = (Xk)�1xk yk+1

yk = (1, 1, 1)

(a) (b) xk xk+2 xk+3 xkrf(xk) xk+1 = xk + dk xk � ↵kDkrf(xk)

↵0
2x = b2 ↵0

1x = b1 a2 a1 (µ1 < 0) (µ2 > 0) �µ2a2 �µ1a1

{x | Ax = b, x � 0} x⇤ {x | Ax = b} {y | AXk = b}

Feasible directions at x d z � x⇤ x � x⇤ x⇤ = 0 x x⇤ � srf(x⇤)

Level sets of f �(t) = max{0, t} t �̃(t, �, c) x0
ref x1

exp x3
ref x4 =

x1
ref x5 = x3

ref x0 x1 x2 x3

Origin of Destination of OD Pair w rw x1 x2 x3 x4 rf(x) xk+2 xk+3

xk+2 � sk+2rf(xk+2) xk+1 � sk+1rf(xk+1) xk+1 = xk � skrf(xk)

Constraint set X z � x⇤ x � x⇤ x⇤ = 0 x rf(x⇤) Level sets of f
�(t) = max{0, t} t �̃(t, �, c) x0

ref x1
exp x3

ref x4 = x1
ref x5 = x3

ref

x0 x1 x2 x3 x4 x⇤ x̄ xk xk�1 xk+1 �1 1 0 �k ↵k x̄1 x̄0 x̄2 X1 X2 rf(x2)

d0 d1 y2 ⇠0 ⇠1 ⇠2 x0 x1 x2 x̄0 x̄1 d1 = Q�1/2w1 d0 = Q�1/2w0

y0 y1 y2 w0 w1 ⇠0 = �c10d0 d1 = ⇠1 + c10d0 d2 = ⇠2 + c20d0 + c21d1

xi xref xmax xmin xnew xexp x̂ xnew = xref (a) (b) (c) (d)

� �1 �2 �n�1 �n
Pn

i=1 ⇠i�i
1
�

�1+�n��
�1�n

1
�

�1+�n�
Pn

i=1
⇠i�i

�1�n

�(⇠) =
1Pn

i=1 ⇠i�i
 (⇠) =

nX

i=1

⇠i
�i

1

C1 C2 H Normal xk�xk+1

ck xk xk+1

�k � 1
2ck kx � xkk2 �k f(xk)

Separating hyperplane

Constraint set X x Ha Hb a w b sa sb a b yk = (Xk)�1xk yk+1

yk = (1, 1, 1)

(a) (b) xk xk+2 xk+3 xkrf(xk) xk+1 = xk + dk xk � ↵kDkrf(xk)

↵0
2x = b2 ↵0

1x = b1 a2 a1 (µ1 < 0) (µ2 > 0) �µ2a2 �µ1a1

{x | Ax = b, x � 0} x⇤ {x | Ax = b} {y | AXk = b}

Feasible directions at x d z � x⇤ x � x⇤ x⇤ = 0 x x⇤ � srf(x⇤)

Level sets of f �(t) = max{0, t} t �̃(t, �, c) x0
ref x1

exp x3
ref x4 =

x1
ref x5 = x3

ref x0 x1 x2 x3

Origin of Destination of OD Pair w rw x1 x2 x3 x4 rf(x) xk+2 xk+3

xk+2 � sk+2rf(xk+2) xk+1 � sk+1rf(xk+1) xk+1 = xk � skrf(xk)

Constraint set X z � x⇤ x � x⇤ x⇤ = 0 x rf(x⇤) Level sets of f
�(t) = max{0, t} t �̃(t, �, c) x0

ref x1
exp x3

ref x4 = x1
ref x5 = x3

ref

x0 x1 x2 x3 x4 x⇤ x̄ xk xk�1 xk+1 �1 1 0 �k ↵k x̄1 x̄0 x̄2 X1 X2 rf(x2)

d0 d1 y2 ⇠0 ⇠1 ⇠2 x0 x1 x2 x̄0 x̄1 d1 = Q�1/2w1 d0 = Q�1/2w0

y0 y1 y2 w0 w1 ⇠0 = �c10d0 d1 = ⇠1 + c10d0 d2 = ⇠2 + c20d0 + c21d1

xi xref xmax xmin xnew xexp x̂ xnew = xref (a) (b) (c) (d)

� �1 �2 �n�1 �n
Pn

i=1 ⇠i�i
1
�

�1+�n��
�1�n

1
�

�1+�n�
Pn

i=1
⇠i�i

�1�n

�(⇠) =
1Pn

i=1 ⇠i�i
 (⇠) =

nX

i=1

⇠i
�i

1

Bertsekas (M.I.T.) TD(λ) and the Proximal Algorithm 2 / 30

Fixed Point Problem Formulation

Problem: Solve x = T (x)

We assume that T : <n 7→ <n has a unique fixed point and is nonexpansive,∥∥T (x1)− T (x2)
∥∥ ≤ γ‖x1 − x2‖, ∀ x1, x2 ∈ <n,

where 0 ≤ γ ≤ 1 and ‖ · ‖ is some norm

Special focus for this talk: The linear case

x = Ax + b

where I − A is invertible and A has spectral radius ≤ 1

Bertsekas (M.I.T.) TD(λ) and the Proximal Algorithm 3 / 30

Proximal Algorithm - Convex Analysis (Martinet, 1970)

The proximal mapping P(c) : <n 7→ <n for x − T (x) = 0, where c > 0

P(c)(x) = Unique solution of y − T (y) =
1
c

(x − y)

The proximal algorithm is
xk+1 = P(c)(xk)

x∗ x∗ c v xkk xk+1+1 xk+2d z xP (c)(x)

) y − T (y)) y − T (y)

) y −) y −

+2 Slope = −1

c

) Proximal Mapping Proximal Algorithm) Proximal Mapping Proximal Algorithm

Bertsekas (M.I.T.) TD(λ) and the Proximal Algorithm 4 / 30

Policy Iteration in DP - Bellman’s Equation

Solve x = T (x) = minµ Tµ(x) where µ: a policy, Tµ(x) = Aµx + bµ

Policy iteration alternates between policy evaluation and policy improvement

xk = Tµk (xk), (linear), µk+1 ∈ arg min
µ

Tµ(xk), (componentwise)

Alternative policy evaluation based on the TD (Temporal Differences) mapping

For λ ∈ (0, 1) solve x = T (λ)
µ (x) where T (λ)

µ is the multistep linear mapping

T (λ)
µ = (1− λ)

∞∑
`=0

λ`T `+1
µ

that has the same fixed point as Tµ

Iterative policy evaluation: Iterate one or more times with Tµk or T (λ)
µk

xk+1 = Tµk (xk) (value iteration) or xk+1 = T (λ)
µk (xk) (λ-policy evaluation)

xk+1 = xk + γk
(
sampleT (λ)

µk (xk)− xk
)

with γk ↓ 0 (TD(λ) algorithm)

Bertsekas (M.I.T.) TD(λ) and the Proximal Algorithm 5 / 30

Policy Evaluation with Subspace Projection for Very Large Problems

Use intermediate projection onto a subspace of basis functions

For a fixed policy, solve the projected equation x = ΠT (λ)(x) (Galerkin approximation)

xk

xk+2

xk+3

Extrapolated Forward-Backward Step Low-Dimensional Subspace

xk+1 = ΠT (λ)(xk)

) T (λ)(xk)) T (λ)(x∗)

) x∗ = ΠT (λ)(x∗)

xk+1 = ΠT (λ)(xk), Projected λ-policy evaluation

xk+1 = xk + γk Π
(
sample T (λ)(xk)− xk

)
, Projected TD(λ)

Simulation-based implementations (key characteristic of RL)

For large dimension (e.g., n > 1010) there is no alternative to simulation (because
of high-dimensional inner products)

How simulation is implemented makes a big difference; e.g., sample collection,
correlations, bias, choice of λ, etc. (We will not deal with that in this lecture.)

A lot of know-how has been accumulated over the last 30 years
Bertsekas (M.I.T.) TD(λ) and the Proximal Algorithm 6 / 30

KEY POINT OF THIS TALK
TD(λ) Map for Policy Evaluation ≈ Proximal Map for the Lin. Bellman Eq

T P

T Px

T P (c)

T P (c)

λ =
c

c + 1
, c =

λ

1 − λ

T (λ)(x) = x + c+1
c

(
P (c)(x) − x

)

(

J T (x)

)
T (λ)(x) = (P (c)T)(x) = (TP (c))(x)

) P (c)(x) = x + λ
(
T (λ)(x) − x

)

Extrapolation Formula T (λ) = T · P (c) = P (c) · T

T (λ) IS FASTER

TD(λ) IS A STOCHASTIC PROXIMAL ALGORITHM FOR LINEAR FIXED POINTS

Bertsekas (M.I.T.) TD(λ) and the Proximal Algorithm 7 / 30

Visualization

4

Polyhedral Convexity Template

xk

xk+1

g

fS(s | H0)

x∗

X

Level Sets of f

∂f(x∗)

Significance Level
s s − t s + t
Space of Measurement X
H0 True Type I Error

1

Pc,f (z) ⌃f(x) 0 slope � c v xk xk+1 xk+2

w pW (·; x) z = g(w) g

⇤k � Dk(x, xk) ⇤k+1 � Dk+1(x, xk+1)

T
y3 x3 Slope = y3

rx(z) = �(ĉl⇧)(x, z)

rx(µ) � ⌅ µ Z (u, 1)

= Min Common Value w�

= Max Crossing Value q�

Positive Halfspace {x | a⇥x ⇥ b}

a�(C) C C ⇤ S⇤ d z x

Hyperplane {x | a⇥x = b} = {x | a⇥x = a⇥x}

x� x f
�
�x� + (1 � �)x

⇥

x x�

x0 � d x1 x2 x x4 � d x5 � d d

x̂0 x̂1 x̂2 x̂3

a0 a1 a2 a3

f(z)

z

X 0 u w (µ, ⇥) (u, w)
µ

⇥

⇥
u + w

1

x � T (x) y � T (y) rf(x) P (c)(x) xk xk+1 xk+2

1

x � T (x) y � T (y) rf(x) P (c)(x) xk xk+1 xk+2

1

x � T (x) y � T (y) rf(x) P (c)(x) xk xk+1 xk+2 Slope = �1

c

1

x − T (x) y − T (y) ∇f(x) x − P (c)(x) xk xk+1 xk+2 Slope = −1

c

T (λ)(x) = T (x) x = P (c)(x)

1

x − T (x) y − T (y) ∇f(x) x − P (c)(x) xk xk+1 xk+2 Slope = −1

c

T (λ)(x) = T (x) x = P (c)(x)

1

xc = ΠP (c)(xc) Bias (→ 0 as c → ∞) E(c)(x) = T (x) P (c)(xc)

x − T (x) = 1
c (x − x)

Q(λ) = (Ψ′ΞΦ)−1Ψ′ΞA(λ)Φ d(λ) = (Ψ′ΞΦ)−1Ψ′Ξb(λ) S = {Φr | r ∈ ℜs} x∗ Πx∗ x̃

xλ = ΠT (xλ) Πx∗ Bias (→ 0 as λ → 1) T (xλ) x Projection Πx
Solution Approximate solution

T (λ)(x) = T (x) x = P (c)(x)

x − T (x) y − T (y) ∇f(x) x − P (c)(x) xk xk+1 xk+2 Slope = −1

c

T (λ)(x) = T (x) x = P (c)(x)

Extrapolation by a Factor of 2 T (λ) = P (c) · T = T · P (c)

Extrapolation Formula T (λ) = P (c) · T = T · P (c)

Multistep Extrapolation T (λ) = P (c) · T = T · P (c)

1

The extrapolated iterate T (x) is closer to x∗ than the proximal iterate x

A FREE LUNCH

Bertsekas (M.I.T.) TD(λ) and the Proximal Algorithm 8 / 30

Potential Implications of the TD-Proximal Relation

Benefit to the TD context
Clarify the nature of TD(λ) and other TD methods

Bring proximal methodology and insights to bear on exact and approximate DP

Benefit to the proximal context
Bring large scale DP/RL methodology to bear on the proximal mainstream

Develop new convex analysis algorithms based on DP/RL ideas

Bertsekas (M.I.T.) TD(λ) and the Proximal Algorithm 9 / 30

References for this Talk

D. P. Bertsekas, “Proximal Algorithms and Temporal Differences for Large Linear
Systems: Extrapolation, Approximation, and Simulation," Report LIDS-P-3205,
MIT, Oct. 2016 (rev. Nov. 2017)

Related book references:
D. P. Bertsekas, Abstract Dynamic Programming, 2nd Edition, in press

D. P. Bertsekas, Convex Optimization Algorithms, 2015

D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming, 1996

Related works on Monte Carlo solution methods for linear systems:
D. P. Bertsekas and H. Yu, “Projected Equation Methods for Approximate Solution
of Large Linear Systems," J. of Comp. and Applied Mathematics, Vol. 227, 2009

M. Wang and D. P. Bertsekas, “Convergence of Iterative Simulation-Based
Methods for Singular Linear Systems", Stoch. Systems, Vol. 3, 2013

M. Wang and D. P. Bertsekas, “Stabilization of Stochastic Iterative Methods for
Singular and Nearly Singular Linear Systems", Math. of Op. Res., Vol. 39, 2013

Bertsekas (M.I.T.) TD(λ) and the Proximal Algorithm 10 / 30

Outline

1 Acceleration of the Proximal Algorithm for Linear Systems

2 Acceleration of the Proximal Algorithm for Nonlinear Systems

3 Acceleration of Forward-Backward and Proximal Gradient Algorithms

4 Linearized Proximal Algorithms for Nonlinear Systems

Bertsekas (M.I.T.) TD(λ) and the Proximal Algorithm 11 / 30

The Extrapolation Formula

Let c > 0 and λ = c
c+1 . Consider the proximal mapping

P(c)(x) = Unique solution of y − T (y) =
1
c

(x − y)

Then:
T (λ) = T · P(c) = P(c) · T

and x , P(c)(x), and T (λ)(x) are colinear:

T (λ)(x) = P(c)(x) +
1
c
(
P(c)(x)− x

)

T P

T Px

T P (c)

T P (c)

λ =
c

c + 1
, c =

λ

1 − λ

T (λ)(x) = x + c+1
c

(
P (c)(x) − x

)

(

J T (x)

)
T (λ)(x) = (P (c)T)(x) = (TP (c))(x)

) P (c)(x) = x + λ
(
T (λ)(x) − x

)

Extrapolation Formula T (λ) = T · P (c) = P (c) · T
Bertsekas (M.I.T.) TD(λ) and the Proximal Algorithm 13 / 30

Proof outline

Main idea: Express the proximal mapping in terms of a power series
We have

P(c)(x) =

(
c + 1

c
I − A

)−1(
b +

1
c

x
)

and by a series expansion(
c + 1

c
I − A

)−1

=

(
1
λ

I − A
)−1

= λ(I − λA)−1 = λ

∞∑
`=0

(λA)`

Recall that

T (λ)(x) = (1− λ)
∞∑
`=0

λ`A`+1x +
∞∑
`=0

λ`A`b

Using these relations and the fact 1
c = 1−λ

λ
, it follows that

T (λ) = T · P(c) = P(c) · T

Bertsekas (M.I.T.) TD(λ) and the Proximal Algorithm 14 / 30

Acceleration

The eigenvalues of T (λ) and P(c) are simply related:

θi = ζi · θi

where
θi = i th Eig(T (λ)), θi = i th Eig(P(c)), ζi = i th Eig(A)

Moreover, T (λ) and P(c) have the same eigenvectors

Spectral radius of T (λ) ≤ Spectral radius of P(c)

Bertsekas (M.I.T.) TD(λ) and the Proximal Algorithm 15 / 30

1 Acceleration of the Proximal Algorithm for Linear Systems

2 Acceleration of the Proximal Algorithm for Nonlinear Systems

3 Acceleration of Forward-Backward and Proximal Gradient Algorithms

4 Linearized Proximal Algorithms for Nonlinear Systems

Bertsekas (M.I.T.) TD(λ) and the Proximal Algorithm 17 / 30

Nonlinear System x = T (x) - Proximal Extrapolation

Assume that the system has a unique solution x∗, and T is nonexpansive:∥∥T (x1)− T (x2)
∥∥ ≤ γ‖x1 − x2‖, ∀ x1, x2 ∈ <n

where ‖ · ‖ is some Euclidean norm and γ is a scalar with 0 ≤ γ ≤ 1

Consider the proximal mapping P(c):

P(c)(x) = Unique solution of y − T (y) =
1
c

(x − y)

Define the extrapolated proximal mapping

E (c)(x) = x +
c + 1

c
(
P(c)(x)− x

)
Important difference: P(c)(x) and E (c)(x) cannot be easily computed by simulation

Similar to the linear case, we have

E (c)(x) = T
(
P(c)(x)

)
,

∥∥E (c)(x)− x∗
∥∥ ≤ γ∥∥P(c)(x)− x∗

∥∥
Bertsekas (M.I.T.) TD(λ) and the Proximal Algorithm 18 / 30

Geometric Interpretation and Proof

x∗ d z x

) y − T (y)

) y −

+2 Slope = −1

c

x = P (c)(x)) E(c)(x) = T (x)

x − T (x) = 1
c (x − x)

From the definition of P(c), we have

T
(
P(c)(x)

)
= P(c)(x) +

1
c
(
P(c)(x)− x

)
so that

T
(
P(c)(x)

)
= x +

c + 1
c
(
P(c)(x)− x

) def
= E (c)(x)

Hence, using the assumption,∥∥E (c)(x)− x∗
∥∥ =

∥∥∥T
(
P(c)(x)

)
− x∗

∥∥∥ =
∥∥∥T
(
P(c)(x)

)
− T (x∗)

∥∥∥ ≤ γ∥∥P(c)(x)− x∗
∥∥

Bertsekas (M.I.T.) TD(λ) and the Proximal Algorithm 19 / 30

1 Acceleration of the Proximal Algorithm for Linear Systems

2 Acceleration of the Proximal Algorithm for Nonlinear Systems

3 Acceleration of Forward-Backward and Proximal Gradient Algorithms

4 Linearized Proximal Algorithms for Nonlinear Systems

Bertsekas (M.I.T.) TD(λ) and the Proximal Algorithm 21 / 30

Forward-Backward Splitting Algorithm for Fixed Point Problem
x = T (x)− H(x)

xk+1 = P(α)(xk − αH(xk)
)
, α > 0

≥ π/2 Pc,f(x)−x λ∗−cv∗ = (N1·N2)(λ∗−cv∗) 0 λ∗ N2(λ∗−cv∗) v∗ ∂h(x) x −∇f(x)

Slope Optimal dual proximal solution Optimal primal

x∗ = Pc,f (x∗) Nc,f(x)− x∗ Nc,f(x) X∗ x− x∗ < π/2 (N1 · N2)(yk) N2(yk)

xk−1 xk+1 yk yk+1 xk+2 ∇f(xk+1) yk − α∇f(yk) X

yk = xk − γk∇f(xk) yk = xk + βk(xk − xk−1)

x0 = x−1 x1 = y1 y2 x2 = x∗ xk+2 ∇f(xk+1)

y2 = x1 − α1∇f(x1) x2 = y2 + β2(xk − xk−1)

Gradient Projection Step Extrapolation Step
Optimal F ⋆

k (λ) y f⋆(λ) λ Slope = −1/c Slope = 1/c p(u) p(u)+ c
2∥u∥2

uk+1 u

f(y) ℓ(y; x) +
L

2
∥y − x∥2

Slope = 1/c Slope = −1/c Slope =
xk − xk+1

ck
f(xk+1)

f(xk+1) + (x − xk+1)′gk+1 xk+3

βd(x)α d(xk+1) d(xk) Slope =
d(xk) − d(xk+1)

ck
f(x) δk+1

Augmented Lagrangian Method Proximal Algorithm Dual Proximal
Algorithm

z = Pc,f (z) Nc,f(z) ∂f(x) 0 slope −c v vk xk xk+1 = Pc(xk) = xk−vk xk+2 = Pc(xk+1)

Pc,M (z) M(x) ∂f(x) 0 slope − c v xk xk+1 xk+2 xk+1 = xk − cvk

w pW (·; x) z = g(w) g

1

≥ π/2 Pc,f(x)−x λ∗−cv∗ = (N1·N2)(λ∗−cv∗) 0 λ∗ N2(λ∗−cv∗) v∗ ∂h(x) x −∇f(x)

Slope Optimal dual proximal solution Optimal primal

x∗ = Pc,f (x∗) Nc,f(x)− x∗ Nc,f(x) X∗ x− x∗ < π/2 (N1 · N2)(yk) N2(yk)

xk−1 xk+1 yk yk+1 xk+2 ∇f(xk+1) yk − α∇f(yk) X

yk = xk − γk∇f(xk) yk = xk + βk(xk − xk−1)

x0 = x−1 x1 = y1 y2 x2 = x∗ xk+2 ∇f(xk+1)

y2 = x1 − α1∇f(x1) x2 = y2 + β2(xk − xk−1)

Gradient Projection Step Extrapolation Step
Optimal F ⋆

k (λ) y f⋆(λ) λ Slope = −1/α Slope = 1/c p(u) p(u)+ c
2∥u∥2

uk+1 u

f(y) ℓ(y; x) +
L

2
∥y − x∥2

Slope = 1/c Slope = −1/c Slope =
xk − xk+1

ck
f(xk+1)

f(xk+1) + (x − xk+1)′gk+1 xk+3

βd(x)α d(xk+1) d(xk) Slope =
d(xk) − d(xk+1)

ck
f(x) δk+1

Augmented Lagrangian Method Proximal Algorithm Dual Proximal
Algorithm

z = Pc,f (z) Nc,f(z) ∂f(x) 0 slope −c v vk xk xk+1 = Pc(xk) = xk−vk xk+2 = Pc(xk+1)

Pc,M (z) M(x) ∂f(x) 0 slope − c v xk xk+1 xk+2 xk+1 = xk − cvk

w pW (·; x) z = g(w) g

1

x0 x0 − α∇f(x0) x1 x2 x3 x∗ x1 − α∇f(x1) x2 ∂h(x) x − ∇f(x)

≥ π/2 Pc,f(x)−x λ∗−cv∗ = (N1·N2)(λ∗−cv∗) 0 λ∗ N2(λ∗−cv∗) v∗ ∂h(x) x −∇f(x)

Gradient Step Proximal Step dual proximal solution Optimal primal

x∗ = Pc,f (x∗) Nc,f(x)− x∗ Nc,f(x) X∗ x− x∗ < π/2 (N1 · N2)(yk) N2(yk)

xk−1 xk+1 yk yk+1 xk+2 ∇f(xk+1) yk − α∇f(yk) X

yk = xk − γk∇f(xk) yk = xk + βk(xk − xk−1)

x0 = x−1 x1 = y1 y2 x2 = x∗ xk+2 ∇f(xk+1)

y2 = x1 − α1∇f(x1) x2 = y2 + β2(xk − xk−1)

Gradient Projection Step Extrapolation Step
Optimal F ⋆

k (λ) y f⋆(λ) λ Slope = −1/α Slope = 1/c p(u) p(u)+ c
2∥u∥2

uk+1 u

f(y) ℓ(y; x) +
L

2
∥y − x∥2

Slope = 1/c Slope = −1/c Slope =
xk − xk+1

ck
f(xk+1)

f(xk+1) + (x − xk+1)′gk+1 xk+3

βd(x)α d(xk+1) d(xk) Slope =
d(xk) − d(xk+1)

ck
f(x) δk+1

Augmented Lagrangian Method Proximal Algorithm Dual Proximal
Algorithm

z = Pc,f (z) Nc,f(z) ∂f(x) 0 slope −c v vk xk xk+1 = Pc(xk) = xk−vk xk+2 = Pc(xk+1)

Pc,M (z) M(x) ∂f(x) 0 slope − c v xk xk+1 xk+2 xk+1 = xk − cvk

1

x0 x0 − α∇f(x0) x1 x2 x3 x∗ x1 − α∇f(x1) x2 ∂h(x) x − ∇f(x)

≥ π/2 Pc,f(x)−x λ∗−cv∗ = (N1·N2)(λ∗−cv∗) 0 λ∗ N2(λ∗−cv∗) v∗ ∂h(x) x −∇f(x)

Gradient Step Proximal Step dual proximal solution Optimal primal

x∗ = Pc,f (x∗) Nc,f(x)− x∗ Nc,f(x) X∗ x− x∗ < π/2 (N1 · N2)(yk) N2(yk)

xk−1 xk+1 yk yk+1 xk+2 ∇f(xk+1) yk − α∇f(yk) X

yk = xk − γk∇f(xk) yk = xk + βk(xk − xk−1)

x0 = x−1 x1 = y1 y2 x2 = x∗ xk+2 ∇f(xk+1)

y2 = x1 − α1∇f(x1) x2 = y2 + β2(xk − xk−1)

Gradient Projection Step Extrapolation Step
Optimal F ⋆

k (λ) y f⋆(λ) λ Slope = −1/α Slope = 1/c p(u) p(u)+ c
2∥u∥2

uk+1 u

f(y) ℓ(y; x) +
L

2
∥y − x∥2

Slope = 1/c Slope = −1/c Slope =
xk − xk+1

ck
f(xk+1)

f(xk+1) + (x − xk+1)′gk+1 xk+3

βd(x)α d(xk+1) d(xk) Slope =
d(xk) − d(xk+1)

ck
f(x) δk+1

Augmented Lagrangian Method Proximal Algorithm Dual Proximal
Algorithm

z = Pc,f (z) Nc,f(z) ∂f(x) 0 slope −c v vk xk xk+1 = Pc(xk) = xk−vk xk+2 = Pc(xk+1)

Pc,M (z) M(x) ∂f(x) 0 slope − c v xk xk+1 xk+2 xk+1 = xk − cvk

1

xc = ΠP (c)(xc) Bias (→ 0 as c → ∞) E(c)(x) = T (x) P (c)(xc)

−H(x) z = x − αH(x) x = P (α)(z) x − T (x) = 1
c (x − x)

x − T (x) = 1
c (x − x)

Q(λ) = (Ψ′ΞΦ)−1Ψ′ΞA(λ)Φ d(λ) = (Ψ′ΞΦ)−1Ψ′Ξb(λ) S = {Φr | r ∈ ℜs} x∗ Πx∗ x̃

xλ = ΠT (xλ) Πx∗ Bias (→ 0 as λ → 1) T (xλ) x Projection Πx
Solution Approximate solution

T (λ)(x) = T (x) x = P (c)(x)

x − T (x) y − T (y) ∇f(x) x − P (c)(x) xk xk+1 xk+2 Slope = −1

c

T (λ)(x) = T (x) x = P (c)(x)

Extrapolation by a Factor of 2 T (λ) = P (c) · T = T · P (c)

Extrapolation Formula T (λ) = P (c) · T = T · P (c)

Multistep Extrapolation T (λ) = P (c) · T = T · P (c)

1

x � T (x) y � T (y) rf(x) P (c)(x) xk xk+1 xk+2

1

xc = ΠP (c)(xc) Bias (→ 0 as c → ∞) E(c)(x) = T (x) P (c)(xc)

−H(x) z = x − αH(x) x = P (α)(z) Forward Step

x − T (x) = 1
c (x − x) x − T (x) = 1

c (x − x)

Q(λ) = (Ψ′ΞΦ)−1Ψ′ΞA(λ)Φ d(λ) = (Ψ′ΞΦ)−1Ψ′Ξb(λ) S = {Φr | r ∈ ℜs} x∗ Πx∗ x̃

xλ = ΠT (xλ) Πx∗ Bias (→ 0 as λ → 1) T (xλ) x Projection Πx
Solution Approximate solution

T (λ)(x) = T (x) x = P (c)(x)

x − T (x) y − T (y) ∇f(x) x − P (c)(x) xk xk+1 xk+2 Slope = −1

c

T (λ)(x) = T (x) x = P (c)(x)

Extrapolation by a Factor of 2 T (λ) = P (c) · T = T · P (c)

Extrapolation Formula T (λ) = P (c) · T = T · P (c)

Multistep Extrapolation T (λ) = P (c) · T = T · P (c)

1

xc = ΠP (c)(xc) Bias (→ 0 as c → ∞) E(c)(x) = T (x) P (c)(xc)

−H(x) z = x − αH(x) x = P (α)(z) Forward Step

x − T (x) = 1
c (x − x) x − T (x) = 1

c (x − x)

Q(λ) = (Ψ′ΞΦ)−1Ψ′ΞA(λ)Φ d(λ) = (Ψ′ΞΦ)−1Ψ′Ξb(λ) S = {Φr | r ∈ ℜs} x∗ Πx∗ x̃

xλ = ΠT (xλ) Πx∗ Bias (→ 0 as λ → 1) T (xλ) x Projection Πx
Solution Approximate solution

T (λ)(x) = T (x) x = P (c)(x)

x − T (x) y − T (y) ∇f(x) x − P (c)(x) xk xk+1 xk+2 Slope = −1

c

T (λ)(x) = T (x) x = P (c)(x)

Extrapolation by a Factor of 2 T (λ) = P (c) · T = T · P (c)

Extrapolation Formula T (λ) = P (c) · T = T · P (c)

Multistep Extrapolation T (λ) = P (c) · T = T · P (c)

1

xc = ΠP (c)(xc) Bias (→ 0 as c → ∞) E(c)(x) = T (x) P (c)(xc)

−H(x) z = x − αH(x) x = P (α)(z) Forward Step

x − T (x) = 1
c (x − x) x − T (x) = 1

c (x − x)

Q(λ) = (Ψ′ΞΦ)−1Ψ′ΞA(λ)Φ d(λ) = (Ψ′ΞΦ)−1Ψ′Ξb(λ) S = {Φr | r ∈ ℜs} x∗ Πx∗ x̃

xλ = ΠT (xλ) Πx∗ Bias (→ 0 as λ → 1) T (xλ) x Projection Πx
Solution Approximate solution

T (λ)(x) = T (x) x = P (c)(x)

x − T (x) y − T (y) ∇f(x) x − P (c)(x) xk xk+1 xk+2 Slope = −1

c

T (λ)(x) = T (x) x = P (c)(x)

Extrapolation by a Factor of 2 T (λ) = P (c) · T = T · P (c)

Extrapolation Formula T (λ) = P (c) · T = T · P (c)

Multistep Extrapolation T (λ) = P (c) · T = T · P (c)

1

xc = ΠP (c)(xc) Bias (→ 0 as c → ∞) E(c)(x) = T (x) P (c)(xc)

−H(x) z = x − αH(x) x = P (α)(z) Forward Step

x − T (x) + H(x) = 1
α (z − x) + H(x) x − T (x) = 1

c (x − x)

Q(λ) = (Ψ′ΞΦ)−1Ψ′ΞA(λ)Φ d(λ) = (Ψ′ΞΦ)−1Ψ′Ξb(λ) S = {Φr | r ∈ ℜs} x∗ Πx∗ x̃

xλ = ΠT (xλ) Πx∗ Bias (→ 0 as λ → 1) T (xλ) x Projection Πx
Solution Approximate solution

T (λ)(x) = T (x) x = P (c)(x)

x − T (x) y − T (y) ∇f(x) x − P (c)(x) xk xk+1 xk+2 Slope = −1

c

T (λ)(x) = T (x) x = P (c)(x)

Extrapolation by a Factor of 2 T (λ) = P (c) · T = T · P (c)

Extrapolation Formula T (λ) = P (c) · T = T · P (c)

Multistep Extrapolation T (λ) = P (c) · T = T · P (c)

1

x � T (x) y � T (y) rf(x) P (c)(x) xk xk+1 xk+2

1

Properties (Lions and Mercier, 1979, Gabay, 1983, Tseng, 1991):
If T is nonexpansive, and H is single-valued and strongly monotone, the F-B
algorithm converges to x∗ if α is sufficiently small

For a minimization problem where H is the gradient of a strongly convex function,
FB = the proximal gradient algorithm

Bertsekas (M.I.T.) TD(λ) and the Proximal Algorithm 22 / 30

Extrapolation and Acceleration

Extrapolated forward-backward algorithm

zk = xk − αH(xk), xk = P(α)(zk) (Forward-Backward Iteration)

xk+1 = xk +
1
α

(xk − zk)− H(xk) (Extrapolation)

λ Slope = −1/α

3 x∗

) y − T (y)

) Forward Step

) y −xk

zk = xk − αH(xk)

xk − T (xk) + H(xk) = 1
α (zk − xk) + H(xk)

) Forward-Backward Step

) Forward-Backward Step

) xk = P (α)(zk)

Extrapolated Forward-Backward Step

Extrapolated Forward-Backward Step xk+1 = T (xk) − H(xk)

−H(y)

We have
xk+1 = T (xk)− H(xk)

so there is acceleration if T − H is contractive
Bertsekas (M.I.T.) TD(λ) and the Proximal Algorithm 23 / 30

Connect with TD: Apply Policy Iteration Ideas to the Proximal Context

Problem: Solve “concave" fixed point problem x = T (x) = minµ Tµ(x)

i th component of Tµ(x) = a
(
i, µ(i)

)′x + b
(
i, µ(i)

)
, µ(i) ∈M(i) (Linear)

) y − T (y)

) y −

+2 Slope = −1

c

xk

Linearized Mapping

Newton iterate
xµk

y − Tµk
(y)

) x̄k = P
(c)
µk (xk)

) T
(λ)
µk (xk) = Tµk

(x̄k)

} x∗

The policy iteration algorithm

xµk = Tµk (xµk), µk+1 ∈ arg min
µ

Tµ(xµk), (“Newton" method)

The λ-policy iteration algorithm

xk+1 = T (λ)
µk (xk), µk+1 ∈ arg min

µ
Tµ(xk+1), (“prox-linear" method)

Bertsekas (M.I.T.) TD(λ) and the Proximal Algorithm 25 / 30

A Fundamental Difficulty

The algorithm chases a moving target

The TD(λ) mapping T (λ)
µk “targets" the fixed point of Tµk , but as µk changes so

does the target ...

This is why some policy iteration algorithms may not converge (particularly with
cost function approximation) ...

Bertsekas (M.I.T.) TD(λ) and the Proximal Algorithm 26 / 30

Convergence Under Monotonicity Assumptions

Assume the following:
For all µ, the matrix Aµ has nonnegative components

The mappings Tµ are all contractions with respect to a common sup-norm (this
can be relaxed ...)

Then:
T is a contraction and its fixed point is x∗ = minµ xµ
A sequence {xk} generated from an initial condition x0 such that x0 ≥ T (x0) is
monotonically nonincreasing and converges to x∗ (this can be improved ...)

Proof idea:
Based on DP/policy iteration arguments

Monotonicity is critical

Once projection is introduced in policy iteration, monotonicity may be lost

Bertsekas (M.I.T.) TD(λ) and the Proximal Algorithm 27 / 30

Convergence of Randomized Version Without Monotonicity

Assume the following:
The setM is finite

The mappings Tµ and T are all contractions with respect to a common norm

We use a randomized form of the linearized iteration:

xk+1 = Tµk (xk), with probability p,

xk+1 = T (λ)
µk (xk), with probability 1− p,

followed by µk+1 ∈ arg minµ Tµ(xk)

Then:
For any starting point x0, a sequence {xk} generated by the algorithm converges to the
fixed point of T with probability one

Randomization resolves the “moving target" problem

Bertsekas (M.I.T.) TD(λ) and the Proximal Algorithm 28 / 30

Concluding Remarks

Proximal and multistep/TD iterations for fixed point problems are closely
connected

x , P(c)(x), and T (λ)(x) are colinear and simply related (no line search needed)

TD(λ) mapping is “faster" than proximal

A free lunch: Acceleration of the proximal algorithm. It can be substantial,
particularly for small c

Extrapolation formula provides new insight and justification for TD-type methods
I TD(λ) is stochastic version of the proximal algorithm
I TD(λ) with subspace approximation is stochastic version of the projected proximal

The ideas extend to the forward-backward algorithm and potentially other
algorithmic contexts that involve fixed points and proximal operators

The relation between proximal and TD methods extends to classes of nonlinear
fixed point problems using linearization/policy iteration ideas

Bertsekas (M.I.T.) TD(λ) and the Proximal Algorithm 29 / 30

Thank you!

Bertsekas (M.I.T.) TD(λ) and the Proximal Algorithm 30 / 30

	Acceleration of the Proximal Algorithm for Linear Systems
	Acceleration of the Proximal Algorithm for Nonlinear Systems
	Acceleration of Forward-Backward and Proximal Gradient Algorithms
	Linearized Proximal Algorithms for Nonlinear Systems

