TD(A) and the Proximal Algorithm

Dimitri P. Bertsekas

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology

Optimization Methods Workshop
NIPS 2017

Bertsekas (M.L.T.) TD(X) and the Proximal Algorithm

A Bridge Between Convex Analysis and Approximate Dynamic

eparating hyperplane

Programming

:"\:- Google DeepMind
Challenge Match

.. ®

f ‘...'l.....:.

Convex Analysis

Deterministic Problems
Geometric Ideas
lterative Descent
Proximal Algorithms

Bertsekas (M.L.T.)

|
|
|
|
|
I
|
I
|
| Approximate DP

! Stochastic Problems
Simulation Ideas

Value and Policy Iteration
Temporal Differences

TD(X) and the Proximal Algorithm

Fixed Point Problem Formulation

Problem: Solve x = T(x)
We assume that T : " — R” has a unique fixed point and is nonexpansive,

HT(X1) = T(Xg)“ < ’)/||X1 = Xg”, Y X1, X € §Rn,

where 0 <~ < 1and | - || is some norm

Special focus for this talk: The linear case

X=Ax+b

where | — A'is invertible and A has spectral radius < 1

Bertsekas (M.L.T.) TD(X) and the Proximal Algorithm

Proximal Algorithm - Convex Analysis (Martinet, 1970)

The proximal mapping P(©) : " — R" for x — T(x) = 0, where ¢ > 0

P©(x) = Unique solution of y — T(y) = %(X —y)

The proximal algorithm is
X1 = P(C)(Xk)

Y
y g | Tht2 Thyl T Y

Bertsekas (M.L.T.) TD(X) and the Proximal Algorithm

Policy lteration in DP - Bellman’s Equation

Solve x = T(x) = min, T,(x) where p: a policy, T,,(x) = A.x + b,
Policy iteration alternates between policy evaluation and policy improvement

Xk = T, (Xx), (linear), uk+1 € argmin T, (xx), (componentwise)
12

Alternative policy evaluation based on the TD (Temporal Differences) mapping

For A € (0,1) solve x = TfN(X) where Tfﬁ) is the multistep linear mapping
TV =(1=X)> AT
£=0

that has the same fixed point as T,

Iterative policy evaluation: Iterate one or more times with 7, or T,Sf)

@ X1 = Ty, (Xk) (value iteration) or Xy 1 = T,(li)(xk) (A-policy evaluation)
@ Xkr1 = Xk + Yk (sample Tﬁi)(xk) — Xk) with v« . 0 (TD(X) algorithm)

Bertsekas (M.L.T.) TD(X) and the Proximal Algorithm

Policy Evaluation with Subspace Projection for Very Large Problems

Use intermediate projection onto a subspace of basis functions
For a fixed policy, solve the projected equation x = 1T (x) (Galerkin approximation) }

/ 70 (ay) TO)(a)
it A i
i el

. . — T (2
Tpy1 = TN (z1) ki Ey)

Low-Dimensional Subspace

Xep1 = NTN(x), Projected A-policy evaluation

Xkt1 = Xk + kM (sample T (x) — Xk), Projected TD()\)

Simulation-based implementations (key characteristic of RL)

@ For large dimension (e.g., n > 10'°) there is no alternative to simulation (because
of high-dimensional inner products)

@ How simulation is implemented makes a big difference; e.g., sample collection,
correlations, bias, choice of A, etc. (We will not deal with that in this lecture.)

@ A lot of know-how has been accumulated over the last 30 years
6/30

Bertsekas (M.L.T.) TD(X) and the Proximal Algorithm

KEY POINT OF THIS TALK

/

PO@) =z +ATW(2) —2) TO(z) =2+ =<LL(PO)(z) - =)

Extrapolation Formula T3 =T . P(c) = p(e) . T

T 1S FASTER
TD(A) IS A STOCHASTIC PROXIMAL ALGORITHM FOR LINEAR FIXED POINTS

Bertsekas (M.L.T.) TD(X) and the Proximal Algorithm

Visualization

A y—T(y)

N

T-T(T)= %(CL’ —T)
T e
A foe 4 x v
TN (z)=T(z) =P (x)
The extrapolated iterate T(Xx) is closer to x* than the proximal iterate X
A FREE LUNCH J

Bertsekas (M.L.T.) TD(X) and the Proximal Algorithm

Potential Implications of the TD-Proximal Relation

Benefit to the TD context
@ Clarify the nature of TD(A) and other TD methods
@ Bring proximal methodology and insights to bear on exact and approximate DP

v

Benefit to the proximal context
@ Bring large scale DP/RL methodology to bear on the proximal mainstream
@ Develop new convex analysis algorithms based on DP/RL ideas

Bertsekas (M.L.T.) TD(X) and the Proximal Algorithm

References for this Talk

@ D. P. Bertsekas, “Proximal Algorithms and Temporal Differences for Large Linear
Systems: Extrapolation, Approximation, and Simulation," Report LIDS-P-3205,
MIT, Oct. 2016 (rev. Nov. 2017)

Related book references:
@ D. P. Bertsekas, Abstract Dynamic Programming, 2nd Edition, in press
@ D. P. Bertsekas, Convex Optimization Algorithms, 2015
@ D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming, 1996

Related works on Monte Carlo solution methods for linear systems:

@ D. P. Bertsekas and H. Yu, “Projected Equation Methods for Approximate Solution
of Large Linear Systems," J. of Comp. and Applied Mathematics, Vol. 227, 2009

@ M. Wang and D. P. Bertsekas, “Convergence of lterative Simulation-Based
Methods for Singular Linear Systems", Stoch. Systems, Vol. 3, 2013

@ M. Wang and D. P. Bertsekas, “Stabilization of Stochastic Iterative Methods for
Singular and Nearly Singular Linear Systems", Math. of Op. Res., Vol. 39, 2013

Bertsekas (M.LT.) TD(X) and the Proximal Algorithm

0 Acceleration of the Proximal Algorithm for Linear Systems
e Acceleration of the Proximal Algorithm for Nonlinear Systems
e Acceleration of Forward-Backward and Proximal Gradient Algorithms

0 Linearized Proximal Algorithms for Nonlinear Systems

Bertsekas (M.L.T.) TD(X) and the Proximal Algorithm

The Extrapolation Formula

Let ¢ > 0 and A = -%.. Consider the proximal mapping

(C)(x) = Unique solution of y — T(y) = 1E(X —y)

Then:
TN =T17.pO=pl.T

and x, P((x), and T™)(x) are colinear:

(x) = PO + L (PO - x)

TO(2) = (POT)(x) = (TPO)(x)

/

PO(z) =2+ AT (z) —z) TO(x) =2+ LL(PE)(z) —z)

Extrapolation Formula T =T .- P(¢) = P(e) . T

Bertsekas (M.L.T.) TD(X) and the Proximal Algorithm

Proof outline

Main idea: Express the proximal mapping in terms of a power series

PO(x) = <°+1 /—A>_1 <b+1Ex>

and by a series expansion

c+1 A - =N
(5 I—A) _(X/—A> =\I/—)A)")\;/\A)

We have

Recall that - -
TVX) =1 =)D XA+ > XA

Using these relations and the fact 1 = 152, it follows that

TN _ 7.p _ ple) . T

Bertsekas (M.L.T.) TD(X) and the Proximal Algorithm

Acceleration

The eigenvalues of TV and P(©) are simply related:

0;i = ¢ -0

where 3
0; = ith Eig(T®W), 6, = ith Eig(P'?), ¢ = ith Eig(A)

Moreover, T and P(©) have the same eigenvectors

Spectral radius of T < Spectral radius of P(°)]

Bertsekas (M.L.T.) TD(X) and the Proximal Algorithm

e Acceleration of the Proximal Algorithm for Nonlinear Systems

Bertsekas (M.L.T.) TD(X) and the Proximal Algorithm

Nonlinear System x = T(x) - Proximal Extrapolation

@ Assume that the system has a unique solution x*, and T is nonexpansive:
| T(x1) = TO)|| < vllxt — xell, V X1, X2 € R
where || - || is some Euclidean norm and ~ is a scalar with 0 < v < 1
@ Consider the proximal mapping P(©:

P(x) = Unique solution of y — T(y) = 1E(x —Yy)
@ Define the extrapolated proximal mapping

c+1

EO(x) = x + (PP(x) — x)

@ Important difference: P{°)(x) and E(°)(x) cannot be easily computed by simulation

v

Similar to the linear case, we have

EOMX) = T(POx)), [|EMx) —x*|| <~||P9x) - x*

Bertsekas (M.L.T.) TD(X) and the Proximal Algorithm

Geometric Interpretation and Proof

YRR z v
EC@(x)=T(T) 7=

From the definition of P(¥), we have
T(P(x)) = PO(x) + = (P9 (x) — x)

so that
c+1

T(PO(x)) = x+ =~ (P9(x) - x) & E@(x)
Hence, using the assumption,

<allP200 —¢'|

IECQ) - x*|| = | T(POx) - x*

- HT(P(C)(X)) ~T(x")

Bertsekas (M.L.T.) TD(X) and the Proximal Algorithm 19/30

e Acceleration of Forward-Backward and Proximal Gradient Algorithms

Bertsekas (M.L.T.) TD(X) and the Proximal Algorithm

Forward-Backward Splitting Algorithm for Fixed Point Problem
x = T(x) — H(x)

T-T@) +HT) =1(:-7)+HT)

! Forward Step
1 z=x—aH(x)

Proximal Step
T = P)(z)

/
—H(@) Slope = —1/a

Properties (Lions and Mercier, 1979, Gabay, 1983, Tseng, 1991):

@ If T is nonexpansive, and H is single-valued and strongly monotone, the F-B
algorithm converges to x™* if « is sufficiently small

@ For a minimization problem where H is the gradient of a strongly convex function,
FB = the proximal gradient algorithm

Bertsekas (M.L.T.) TD(X) and the Proximal Algorithm

Extrapolation and Acceleration

Extrapolated forward-backward algorithm
zk = Xk —aH(xk), Xk = P“)(z) (Forward-Backward lteration)

Xi+1 = Xk + j;(?k — zx) — H(Xk) (Extrapolation)

y—T(y)
N

Ty, —([(Tk) + H(Tk) = % (2 — k) + H(T0)

Forward Step
2 = xp — oH (x)

Extrapolated
Forward-Backward Step
w1 = T(Tx) — H(Tk)

Forward-Backward Step /
Ty, = P@)(21) ~H) Siope = —1/a

We have
Xk+1 = T(Yk) = H(Yk)

so there is acceleration if T — H is contractive

Bertsekas (M.L.T.) TD(X) and the Proximal Algorithm

Connect with TD: Apply Policy lteration Ideas to the Proximal Context

Problem: Solve “concave"” fixed point problem x = T(x) = min, T,(x) J

ith component of T,.(x) = a(i, u(i))'x + b(i, u(i)), p(i) € M(i) (Linear)

Linearized Mapping

: Y- Tuk (v)
/i/Slopc =—=
z | 4 Tp Yy
= - ple).
Newton iterate !]‘, = Py (1)
T (a0) = T (70)
The policy iteration algorithm
X = Tue(Xur), ki1 € arg m“in T (X)), (“Newton" method)
v
The A-policy iteration algorithm
Xicrll = T (Xk)s ks € arg mJn T (X)), (“prox-linear" method)
25/30

Bertsekas (M.L.T.) TD(X) and the Proximal Algorithm

A Fundamental Difficulty

@ The algorithm chases a moving target

@ The TD(\) mapping T\, “targets" the fixed point of T,,,, but as jx changes so
does the target ...

@ This is why some policy iteration algorithms may not converge (particularly with
cost function approximation) ...

Bertsekas (M.L.T.) TD(X) and the Proximal Algorithm

Convergence Under Monotonicity Assumptions

Assume the following:
@ For all u, the matrix A, has nonnegative components

@ The mappings T, are all contractions with respect to a common sup-norm (this
can be relaxed ...)

Then:
@ T is a contraction and its fixed point is x* = min,, X,

@ A sequence {xx} generated from an initial condition xo such that xo > T(xo) is
monotonically nonincreasing and converges to x* (this can be improved ...)

Proof idea:
@ Based on DP/policy iteration arguments
@ Monotonicity is critical
@ Once projection is introduced in policy iteration, monotonicity may be lost

Bertsekas (M.L.T.) TD(X) and the Proximal Algorithm

Convergence of Randomized Version Without Monotonicity

Assume the following:

@ The set M is finite
@ The mappings T, and T are all contractions with respect to a common norm
@ We use a randomized form of the linearized iteration:

Xir1 = Tpp (Xk), with probability p,

Xer1 = TS (x), with probability 1 — p,
followed by p+1 € argmin, T, (xk)

Then:

For any starting point xo, @ sequence {xx} generated by the algorithm converges to the
fixed point of T with probability one

v

Randomization resolves the “moving target" problem J

Bertsekas (M.L.T.) TD(X) and the Proximal Algorithm 28/30

Concluding Remarks

@ Proximal and multistep/TD iterations for fixed point problems are closely
connected

@ x, P9(x), and T™(x) are colinear and simply related (no line search needed)
@ TD()A) mapping is “faster" than proximal

@ A free lunch: Acceleration of the proximal algorithm. It can be substantial,
particularly for small ¢

@ Extrapolation formula provides new insight and justification for TD-type methods

TD(\) is stochastic version of the proximal algorithm
TD(X) with subspace approximation is stochastic version of the projected proximal

@ The ideas extend to the forward-backward algorithm and potentially other
algorithmic contexts that involve fixed points and proximal operators

@ The relation between proximal and TD methods extends to classes of nonlinear
fixed point problems using linearization/policy iteration ideas

Bertsekas (M.L.T.) TD(X) and the Proximal Algorithm

Thank you!

Bertsekas Proximal Algorithm

	Acceleration of the Proximal Algorithm for Linear Systems
	Acceleration of the Proximal Algorithm for Nonlinear Systems
	Acceleration of Forward-Backward and Proximal Gradient Algorithms
	Linearized Proximal Algorithms for Nonlinear Systems

