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Abstract

We consider convex optimization problems with structures that are suitable for stochastic sampling.
In particular, we focus on problems where the objective function is an expected value or is a sum of
a large number of component functions, and the constraint set is the intersection of a large number
of simpler sets. We propose an algorithmic framework for projection-proximal methods using random
subgradient/function updates and random constraint updates, which contain as special cases several
known algorithms as well as new algorithms. To analyze the convergence of these algorithms in a
unified manner, we prove a general coupled convergence theorem. It states that the convergence is
obtained from an interplay between two coupled processes: progress towards feasibility and progress
towards optimality. Moreover, we consider a number of typical sampling/randomization schemes for the
subgradients/component functions and the constraints, and analyze their performance using our unified
convergence framework.
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1 Introduction

Consider the convex optimization problem
min
x∈X

f(x) (1)

where f : <n 7→ < is a convex function (not necessarily differentiable), and X is a nonempty, closed and
convex set in <n. We are interested in problems of this form where the constraint set X is the intersection
of a finite number of sets, i.e.,

X = ∩mi=1Xi, (2)

with each Xi being a closed and convex subset of <n. Moreover, we allow the cost function f to be the sum
of a large number of component functions, or more generally to be expressed as the expected value

f(x) = E
[
fv(x)

]
, (3)

where fv : <n 7→ < is a function of x involving a random variable v.
Two classical methods for solution of problem (1) are the subgradient projection method (or projection

method for short) and the proximal method. The projection method has the form

xk+1 = Π
[
xk − αk∇̃f(xk)

]
,
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where Π denotes the Euclidean orthogonal projection onto X, {αk} is a sequence of constant or diminishing
positive scalars, and ∇̃f(xk) is a subgradient of f at xk [a vector g is a subgradient of f at x if g′(y − x) ≤
f(y)− f(x) for any y ∈ <n]. The proximal method has the form

xk+1 = argminx∈X

[
f(x) +

1

2αk
‖x− xk‖2

]
,

and can be equivalently written as

xk+1 = Π
[
xk − αk∇̃f(xk+1)

]
,

for some subgradient ∇̃f(xk+1) of f at xk+1 (see [Ber11], Prop. 1). In this way, the proximal method has
a form similar to that of the projection method. This enables us to analyze these two methods and their
mixed versions with a unified analysis.

In practice, these classical methods are often inefficient and difficult to use, especially when the constraint
set X is complicated [cf. Eq. (2)]. At every iteration, the projection method requires the computation of the
Euclidean projection, and the proximal method requires solving a constrained minimization, both of which
can be time-consuming. In the case where X is the intersection of a large number of simpler sets Xi, it is
possible to improve the efficiency of these methods, by operating with a single set Xi at each iteration, as
is done in random and cyclic projection methods that are widely used to solve the feasibility problem of
finding some point in X.

Another difficulty arises when f is either the sum of a large number of component functions or is an
expected value, i.e., f(x) = E

[
fv(x)

]
[cf. Eq. (3)]. Then the exact computation of a subgradient ∇̃f(xk)

can be either very expensive or impossible due to noise. To address this additional difficulty, we may use in
place of ∇̃f(xk) in the projection method a stochastic sample subgradient g(xk, vk). Similarly, we may use
in place of f(x) in the proximal method a sample component function fvk(x).

We propose to modify and combine the projection and proximal methods, in order to process the con-
straints Xi and the component functions fv(·) sequentially. In particular, we will combine the incremental
constraint projection algorithm

xk+1 = Πwk

[
xk − αkg(xk, vk)

]
, (4)

and the incremental constraint proximal algorithm

xk+1 = argminx∈Xwk

[
fvk(x) +

1

2αk
‖x− xk‖2

]
= Πwk

[
xk − αkg(xk+1, vk)

]
, (5)

where Πwk
denotes the Euclidean projection onto a set Xwk

, {wk} is a sequence of random variables taking
values in {1, . . . ,m}, and {vk} is a sequence of random variables generated by some probabilistic process. An
interesting special case is when X is a polyhedral set, i.e., the intersection of a finite number of halfspaces.
Then these algorithms involve successive projections onto or minimizations over halfspaces, which are easy
to implement and computationally inexpensive. Another interesting special case is when f is an expected
value and its value or subgradient can only be obtained through sampling. The proposed algorithms are well
suited for problems of such type, and have an “online” focus that uses small storage and rapid updates.

The purpose of this paper is to present a unified analytical framework for the convergence of algorithms
(4), (5), and various combinations and extensions. In particular, we focus on the class of incremental
algorithms that involve random optimality updates and random feasibility updates, of the form

zk = xk − αkg(x̄k, vk), xk+1 = zk − βk (zk −Πwk
zk) , (6)

where x̄k is a random variable “close” to xk such as

x̄k = xk, or x̄k = xk+1, (7)

and {βk} is a sequence of positive scalars. We refer to Eqs. (6)-(7) as the incremental constraint projection-
proximal method. In the case where x̄k = xk, the kth iteration of algorithm (6) is a subgradient projection
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step and takes the form of Eq. (4). In the other case where x̄k = xk+1, the corresponding iteration is a
proximal step and takes the form of Eq. (5). Thus our algorithm (6)-(7) is a mixed version of the incremental
projection algorithm (4) and the incremental proximal algorithm (5). An interesting case is when f has the
form

f =

N∑
i=1

hi +

N∑
i=1

ĥi,

where hi are functions whose subgradients are easy to compute, ĥi are functions that are suitable for the
proximal iteration, and a sample component function fv may belong to either {hi} or {ĥi}. In this case, our
algorithm (6)-(7) can adaptively choose between a projection step and a proximal step, based on the current
sample component function.

Our algorithm (6)-(7) can be viewed as alternating between two types of iterations with different objec-
tives: to approach the feasible set and to approach the set of optimal solutions. This is an important insight
that helps to understand the convergence mechanism. We will propose a unified analytical framework, which
involves an intricate interplay between the progress of feasibility updates and the progress of optimality
updates, and their associated stepsizes βk and αk. In particular, we will provide a coupled convergence
theorem which requires that the algorithm operates on two different time scales: the convergence to the
feasible set, which is controlled by βk, should have a smaller modulus of contraction than the convergence
to the optimal solution, which is controlled by αk. This coupled improvement mechanism is the key to the
almost sure convergence, as we will demonstrate with both analytical and experimental results.

Another important aspect of our analysis relates to the source of the samples vk and wk. For example,
a common situation arises from applications involving large data sets. Then each component f(·, v) and
constraint Xw may relate to a piece of data, so that accessing all of them requires passing through the entire
data set. This forces the algorithm to process the components/constraints sequentially, according to either
a fixed order or by random sampling. There are also situations in which the component functions or the
constraints can be selected adaptively based on the iterates’ history. In this work, we will consider several
typical cases for generating the random variables wk and vk, which we list below and define more precisely
later:

• Sampling schemes for constraints Xwk
:

– the samples are nearly independent and all the constraint indexes are visited sufficiently often.

– the samples are “cyclic,” e.g., are generated according to either a deterministic cyclic order or a
random permutation of the indexes within a cycle.

– the samples are selected to be the most distant constraint supersets to the current iterates.

– the samples are generated according to an irreducible Markov chain with an appropriate invariant
distribution.

• Sampling schemes for subgradients g(x̄k, vk) or component functions fvk :

– the samples are conditionally unbiased.

– the samples are “cyclically obtained”, by either a fixed order or random shuffling.

We will consider all combinations of the preceding sampling schemes, and show that our unified convergence
analysis applies to all of them. While it is beyond our scope to identify all possible sampling schemes that
may be interesting, one of the goals of the current paper is to propose a unified framework, both algorithmic
and analytic, that can be easily adapted to new sampling schemes and algorithms.

The proposed algorithmic framework (6) contains as special cases a number of known methods from
convex optimization, feasibility, and stochastic approximation. In view of these connections, our analysis
uses several ideas from the literature on feasibility, incremental/stochastic gradient, stochastic approximation,
and projection-proximal methods, which we will now summarize.
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The feasibility update of algorithm (6) is strongly related to known methods for feasibility problems. In
particular, when f(x) = 0, g(x̄k, vk) = 0 and βk = 1 for all k, we obtain a successive projection algorithm for
finding some x ∈ X = ∩mi=1Xi. For the case where m is a large number and each Xi is a closed convex set
with a simple form, incremental methods that make successive projections on the component sets Xi have
a long history, starting with von Neumann [vN50], and followed by many other authors: Halperin [Hal62],
Gubin et al. [GPR67], Tseng [Tse90], Bauschke et al. [BBL97], Deutsch and Hundal [DH06a], [DH06b],
[DH08], Cegielski and Suchocka [CS08], Lewis and Malick [LM08], Leventhal and Lewis [LL10], and Nedić
[Ned10]. A survey of the work in this area up to 1996 is given by Bauschke [Bau96].

The use of stochastic subgradients in algorithm (6), especially when f is given as an expected value [cf.
Eq. (3)], is closely related to stochastic approximation methods. In the case where X = Xwk

for all k and
f is given as an expected value, our method becomes a stochastic approximation method for optimization
problems, which has been well known in the literature. In particular, we make the typical assumptions∑∞
k=0 αk = ∞ and

∑∞
k=0 α

2
k < ∞ on {αk} in order to establish convergence (see e.g., the textbooks by

Bertsekas and Tsitsiklis [BT89], by Kushner and Yin [KY03], and by Borkar [Bor08]). Moreover, similar
to several sources on convergence analysis of stochastic algorithms, we use a supermartingale convergence
theorem.

Algorithms using random constraint updates for optimization problems of the form (1) were first consid-
ered by Nedić [Ned11]. This work proposed a projection method that updates using exact subgradients and
a form of randomized selection of constraint sets, which can be viewed as a special case of algorithm (6) with
x̄k = xk. It also discusses interesting special cases, where for example the sets Xi are specified by convex
inequality constraints. The work of [Ned11] is less general than the current work in that it does not consider
the proximal method, it does not use random samples of subgradients, and it considers only a special case
of constraint randomization.

Another closely related work is Bertsekas [Ber11] (also discussed in the context of a survey of incremental
optimization methods in [Ber12]). It proposed an algorithmic framework that alternates incrementally
between subgradient and proximal iterations for minimizing a cost function f =

∑m
i=1 fi, the sum of a large

but finite number of convex components fi, over a constraint set X. This can be viewed as a special case
of algorithm (6) with Xwk

= X. The choice between random and cyclic selection of the components fi for
iteration is a major point of analysis of these methods, similar to earlier works on incremental subgradient
methods by Nedić and Bertsekas [NB00], [NB01], [BNO03]. This work also points out that a special case
of incremental constraint projections on sets Xi can be implemented via the proximal iterations. It is less
general than the current work in that it does not fully consider the randomization of constraints, and it
requires the objective function to be Lipchitz continuous.

Another related methodology is the sample average approximation method (SAA); see Shapiro et al.
[SDR09], Kleywegt et al. [KSHdM02], Nemirovski et al. [NJLS09]. It solves a sequence of approximate
optimization problems that are obtained based on samples of f , and generates approximate solutions that
converge to an optimal solution at a rate determined by the central limit theorem. Let us also mention the
robust stochastic approximation method proposed by [NJLS09]. It is a modified stochastic approximation
method that can use a fixed stepsize instead of a diminishing one. Both these methods focus on optimization
problems in which f involves expected values. However, they do not consider constraint sampling as we
focus on in this paper. In contrast, our incremental projection method requires a diminishing stepsize due
to the uncertainty in processing constraints.

Recently, the idea of an incremental method with constraint randomization has been extended to solution
of strongly monotone variational inequalities, by Wang and Bertsekas in [WB12]. This work is by far the most
related to the current work, but focuses on a different problem: finding x∗ such that F (x∗)′(x− x∗) ≥ 0 for
all x ∈ ∩mi=1Xi where F : <n 7→ <n is a strongly monotone mapping [i.e., (F (x)−F (y))′(x− y) ≥ σ‖x− y‖2
for some σ > 0 and all x, y ∈ <n]. The work of [WB12] modifies the projection method to use incremental
constraint projection, analyzes the two time-scale convergence process, compares the convergence rates of
various sampling schemes, and establishes a substantial advantage for random order over cyclic order of
constraint selection. This work is related to the present paper in that it addresses a problem that contains
the minimization of a differentiable strongly convex function as a special case (whose optimality condition
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is a strongly monotone variational inequality), and shares some analytical ideas. However, the current work
proposes a more general framework that applies to convex (possibly nondifferentiable) optimization, and is
based on the new coupled convergence theorem, which enhances our understanding of the two time-scale
process and provides a modular architecture for analyzing new algorithms.

The rest of the paper is organized as follows. Section 2 summarizes our basic assumptions and a few
preliminary results. Section 3 proves the coupled convergence theorem, which assuming a feasibility im-
provement condition and an optimality improvement condition, establishes the almost sure convergence of
the randomized algorithm (6). Section 4 considers sampling schemes for the constraint sets such that the
feasibility improvement condition is satisfied. Section 5 considers sampling schemes for the subgradients or
component functions such that the optimality improvement condition is satisfied. Section 6 collects various
sets of conditions under which the almost sure convergence of the random incremental algorithms can be
achieved. Section 7 discusses the rate of convergence of these algorithms and presents a computational
example.

Our notation is summarized as follows. All vectors in the n-dimensional Euclidean space <n will be
viewed as column vectors. For x ∈ <n, we denote by x′ its transpose, and by ‖x‖ its Euclidean norm (i.e.,
‖x‖ =

√
x′x). For two sequences of nonnegative scalars {yk} and {zk}, we write yk = O(zk) if there exists

a constant c > 0 such that yk ≤ czk for each k, and write yk = Θ(zk) if there exist constants c1 > c2 > 0
such that c2zk ≤ yk ≤ c1zk for each k. We denote by ∂f(x) the subdifferential (the set of all subgradients)
of f at x, denote by X∗ the set of optimal solutions for problem (1), and denote by f∗ = infx∈X f(x) the

optimal value. The abbreviation “
a.s.−→” means “converges almost surely to,” while the abbreviation “i.i.d.”

means “independent identically distributed.”

2 Assumptions and Preliminaries

To motivate our analysis, we first briefly review the convergence mechanism of the deterministic subgradient
projection method

xk+1 = Π
[
xk − αk∇̃f(xk)

]
, (8)

where Π denotes the Euclidean orthogonal projection on X. We assume for simplicity that ‖∇̃f(x)‖ ≤ L for
all x, and that there exists at least one optimal solution x∗ of problem (1). Then we have

‖xk+1 − x∗‖2 =
∥∥Π
[
xk − αk∇̃f(xk)

]
− x∗

∥∥2
≤
∥∥(xk − αk∇̃f(xk)

)
− x∗

∥∥2
= ‖xk − x∗‖2 − 2αk∇̃f(xk)′(xk − x∗) + α2

k

∥∥∇̃f(xk)
∥∥2

≤ ‖xk − x∗‖2 − 2αk
(
f(xk)− f∗

)
+ α2

kL
2,

(9)

where the first inequality uses the fact x∗ ∈ X and the nonexpansiveness of the projection, i.e.,

‖Πx−Πy‖ ≤ ‖x− y‖, ∀ x, y ∈ <n,

and the second inequality uses the definition of the subgradient ∇̃f(x), i.e.,

∇̃f(x)′(y − x) ≤ f(y)− f(x), ∀ x, y ∈ <n.

A key fact is that since xk ∈ X, the value
(
f(xk)−f∗

)
must be nonnegative. From Eq. (9) by taking k →∞,

we have

lim sup
k→∞

‖xk+1 − x∗‖2 ≤ ‖x0 − x∗‖2 − 2

∞∑
k=0

αk
(
f(xk)− f∗

)
+

∞∑
k=0

α2
kL

2.
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Assuming that
∑∞
k=0 αk =∞ and

∑∞
k=0 α

2
k <∞, we can use a standard argument to show that ‖xk − x∗‖

is convergent for all x∗ ∈ X∗ and
∞∑
k=0

αk
(
f(xk)− f∗

)
<∞,

which implies that lim inf
k→∞

f(xk) = f∗. Finally, by using the continuity of f , we can show that the iterates

xk must converge to some optimal solution of problem (1).
Our proposed incremental constraint projection-proximal algorithm, restated for convenience here,

zk = xk − αkg(x̄k, vk), xk+1 = zk − βk (zk −Πwk
zk) , with x̄k = xk or x̄k = xk+1, (10)

differs from the classical method (8) in a fundamental way: the iterates {xk} generated by the algorithm (10)
are not guaranteed to stay in X. Moreover, the projection Πwk

onto a random set Xwk
need not decrease

the distance between xk and X at every iteration. As a result the analog of the fundamental bound (9)
now includes the distance of xk from X, which need not decrease at each iteration. We will show that the
incremental projection algorithm guarantees that {xk} approaches the feasible set X in a stochastic sense
as k →∞. This idea is also implicit in the analyses of [Ned11] and [WB12].

To analyze the stochastic algorithm (10), we denote by Fk the collection of random variables

Fk = {v0, . . . , vk−1, w0, . . . , wk−1, z0, . . . , zk−1, x̄0, . . . , x̄k−1, x0, . . . , xk}.

Moreover, we denote by
d(x) = ‖x−Πx‖,

the Euclidean distance of any x ∈ <n from X.
Let us outline the convergence proof for the algorithm (10) with i.i.d. random projection and x̄k = xk.

Similar to the classical projection method (8), our line of analysis starts with a bound of the iteration error
that has the form

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − 2αk∇̃f(xk)′(xk − x∗) + e(xk, αk, βk, wk, vk), (11)

where e(xk, αk, βk, wk, vk) is a random variable. Under suitable assumptions, we will bound each term on
the right side of Eq. (11) and then take conditional expectation on both sides. From this we will obtain that
the iteration error is “stochastically decreasing” in the following sense

E
[
‖xk+1 − x∗‖2 | Fk

]
≤ (1 + εk)‖xk − x∗‖2 − 2αk

(
f(Πxk)− f(x∗)

)
+O(βk) d2(xk) + εk, w.p.1,

where εk are positive errors such that
∑∞
k=0 εk < ∞. On the other hand, by using properties of random

projection, we will obtain that the feasibility error d2(xk) is “stochastically decreasing” at a faster rate,
according to

E
[

d2(xk+1) | Fk
]
≤
(
1−O(βk)

)
d2(xk) + εk

(
‖xk − x∗‖2 + 1

)
, w.p.1.

Finally, based on the preceding two inequalities and through a series of intermediate results, we will end up
using the following supermartingale convergence theorem due to Robbins and Siegmund [RS71] to prove an
extension, a two-coupled-sequence supermartingale convergence lemma, and then complete the convergence
proof of our algorithm.
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Theorem 1 Let {ξk}, {uk}, {ηk}, and {µk} be sequences of nonnegative random variables such that

E [ξk+1 | Gk] ≤ (1 + ηk)ξk − uk + µk, for all k ≥ 0 w.p.1,

where Gk denotes the collection ξ0, . . . , ξk, u0, . . . , uk, η0, . . . , ηk, µ0, . . . , µk, and

∞∑
k=0

ηk <∞,
∞∑
k=0

µk <∞, w.p.1.

Then the sequence of random variables {ξk} converges almost surely to a nonnegative random variable,
and we have

∞∑
k=0

uk <∞, w.p.1.

This line of analysis is shared with incremental subgradient and proximal methods (see [NB00], [NB01],
[Ber11]). However, here the technical details are more intricate because there are two types of iterations,
which involve the two different stepsizes αk and βk. We will now introduce our assumptions and give a few
preliminary results that will be used in the subsequent analysis.

Our first assumption requires that the norm of any subgradient of f be bounded from above by a linear
function, which implies that f is bounded by a quadratic function. It also requires that the random samples
g(x, vk) satisfy bounds that involve a multiple of ‖x‖.

Assumption 1 The set of optimal solutions X∗ of problem (1) is nonempty. Moreover, there exists
a constant L > 0 such that:

(a) For any ∇̃f(x) ∈ ∂f(x), ∥∥∇̃f(x)
∥∥2 ≤ L2

(
‖x‖2 + 1

)
, ∀ x ∈ <n.

(b)
‖g(x, vk)− g(y, vk)‖ ≤ L

(
‖x− y‖+ 1

)
, ∀ x, y ∈ <n, k = 0, 1, 2, . . . , w.p.1.

(c)

E
[∥∥g(x, vk)

∥∥2 ∣∣ Fk] ≤ L2
(
‖x‖2 + 1

)
, ∀ x ∈ <n, w.p.1. (12)

Assumption 1 contains as special cases a number of conditions that have been frequently assumed in the
literature. More specifically, it allows f to be Lipchitz continuous or to have Lipchitz continuous gradient.
It also allows f to be nonsmooth and have bounded subgradients. Moreover, it allows f to be a nonsmooth
approximation of a smooth function with Lipchitz continuous gradient, e.g., a piecewise linear approximation
of a quadratic-like function.

The next assumption includes a standard stepsize condition on αk, widely used in the literature of
stochastic approximation. Moreover, it imposes a certain relationship between the sequences {αk} and {βk},
which is the key to the coupled convergence process of the proposed algorithm.

Assumption 2 The stepsize sequences {αk} and {βk} are deterministic and nonincreasing, and
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satisfy αk ∈ (0, 1), βk ∈ (0, 2) for all k, lim
k→∞

βk/βk+1 = 1, and

∞∑
k=0

αk =∞,
∞∑
k=0

α2
k <∞,

∞∑
k=0

βk =∞,
∞∑
k=0

α2
k

βk
<∞.

The condition
∑∞
k=0

α2
k

βk
< ∞ essentially restricts βk to be either a constant in (0, 2) for all k, or to

decrease to 0 at a certain rate. Given that
∑∞
k=0 αk =∞, this condition implies that lim infk→∞

αk

βk
= 0. We

will show that as a consequence, the convergence to the feasible set has a better modulus of contraction than
the convergence to the optimal solution. This is necessary for the almost sure convergence of the coupled
process.

Let us now prove a few preliminary technical lemmas. The first one gives several basic facts regarding
projection, and has been proved in [WB12] (Lemma 1), but we repeat it here for completeness.

Lemma 1 Let S be a closed convex subset of <n, and let ΠS denote orthogonal projection onto S.

(a) For all x ∈ <n, y ∈ S, and β > 0,∥∥x− β(x−ΠSx)− y
∥∥2 ≤ ‖x− y‖2 − β(2− β)‖x−ΠSx‖2.

(b) For all x, y ∈ <n,
‖y −ΠSy‖2 ≤ 2‖x−ΠSx‖2 + 8‖x− y‖2.

Proof. (a) We have

‖x− β(x−ΠSx)− y‖2 = ‖x− y‖2 + β2‖x−ΠSx‖2 − 2β(x− y)′(x−ΠSx)

≤ ‖x− y‖2 + β2‖x−ΠSx‖2 − 2β(x−ΠSx)′(x−ΠSx)

= ‖x− y‖2 − β(2− β)‖x−ΠSx‖2,

where the inequality follows from (y −ΠSx)′(x−ΠSx) ≤ 0, the characteristic property of projection.

(b) We have
y −ΠSy = (x−ΠSx) + (y − x)− (ΠSy −ΠSx).

By using the triangle inequality and the nonexpansiveness of ΠS we obtain

‖y −ΠSy‖ ≤ ‖x−ΠSx‖+ ‖y − x‖+ ‖ΠSy −ΠSx‖ ≤ ‖x−ΠSx‖+ 2‖x− y‖.

Finally we complete the proof by using the inequality (a+ b)2 ≤ 2a2 + 2b2 for a, b ∈ <. �

The second lemma gives a decomposition of the iteration error [cf. Eq. (11)], which will serve as the
starting point of our analysis.

Lemma 2 For any ε > 0 and y ∈ X, the sequence {xk} generated by iteration (10) is such that

‖xk+1 − y‖2 ≤ ‖xk − y‖2 − 2αkg(x̄k, vk)′(xk − y) + α2
k‖g(x̄k, vk)‖2 − βk(2− βk)‖Πwk

zk − zk‖2

≤ (1 + ε)‖xk − y‖2 + (1 + 1/ε)α2
k‖g(x̄k, vk)‖2 − βk(2− βk)‖Πwk

zk − zk‖2.
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Proof. From Lemma 1(a) and the relations xk+1 = zk−βk(zk−Πwk
zk), zk = xk−αkg(x̄k, vk) [cf. Eq. (10)],

we obtain

‖xk+1 − y‖2 ≤ ‖zk − y‖2 − βk(2− βk)‖Πwk
zk − zk‖2

= ‖xk − y − αkg(x̄k, vk)‖2 − βk(2− βk)‖Πwk
zk − zk‖2

= ‖xk − y‖2 − 2αkg(x̄k, vk)′(xk − y) + α2
k‖g(x̄k, vk)‖2 − βk(2− βk)‖Πwk

zk − zk‖2

≤ (1 + ε)‖xk − y‖2 + (1 + 1/ε)α2
k‖g(x̄k, vk)‖2 − βk(2− βk)‖Πwk

zk − zk‖2,

where the last inequality uses the fact 2a′b ≤ ε‖a‖2 + (1/ε)‖b‖2 for any a, b ∈ <n. �

The third lemma gives several basic upper bounds on quantities relating to xk+1, conditioned on the
iterates’ history up to the kth sample.

Lemma 3 Let Assumptions 1 and 2 hold, let x∗ be a given optimal solution of problem (1), and let
{xk} be generated by iteration (10). Then for all k ≥ 0, with probability 1,

(a) E
[
‖xk+1 − x∗‖2 | Fk

]
≤ O

(
‖xk − x∗‖2 + α2

k

)
.

(b) E
[

d2(xk+1) | Fk
]
≤ O

(
d2(xk) + α2

k‖xk − x∗‖2 + α2
k

)
.

(c) E
[
‖g(x̄k, vk)‖2 | Fk

]
≤ O

(
‖xk − x∗‖2 + 1

)
.

(d) E
[∥∥x̄k − xk∥∥2 | Fk] ≤ E

[∥∥xk+1 − xk
∥∥2 | Fk] ≤ O(α2

k)
(
‖xk − x∗‖2 + 1

)
+O(β2

k) d2(xk).

Proof. We will prove parts (c) and (d) first, and prove parts (a) and (b) later.
(c,d) By using the basic inequality ‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2 for a, b ∈ <n and then applying Assumption 1,
we have

E
[
‖g(x̄k, vk)‖2 | Fk

]
≤ 2E

[
‖g(xk, vk)‖2 | Fk

]
+ 2E

[
‖g(x̄k, vk)− g(xk, vk)‖2 | Fk

]
≤ O

(
‖xk − x∗‖2 + 1

)
+O

(
E
[
‖x̄k − xk‖2 | Fk

])
.

(13)

Since x̄k ∈ {xk, xk+1} and X ⊂ Xwk
, we use the definition (10) of the algorithm and obtain

‖x̄k − xk‖ ≤ ‖xk+1 − xk
∥∥ ≤ αk‖g(x̄k, vk)‖+ βk‖zk −Πwk

zk‖ ≤ αk‖g(x̄k, vk)‖+ βk d(zk),

so that
‖x̄k − xk‖2 ≤ ‖xk+1 − xk

∥∥2 ≤ 2α2
k‖g(x̄k, vk)‖2 + 2β2

k d2(zk).

Note that from Lemma 1(b) we have

d2(zk) ≤ 2 d2(xk) + 8‖xk − zk‖2 = 2 d2(xk) + 8α2
k‖g(x̄k, vk)‖2.

Then it follows from the preceding two relations that

‖x̄k − xk‖2 ≤ ‖xk+1 − xk
∥∥2 ≤ O(α2

k)‖g(x̄k, vk)‖2 +O(β2
k) d2(xk). (14)

By taking expectation on both sides of Eq. (14) and applying Eq. (13), we obtain

E
[
‖x̄k − xk‖2 | Fk

]
≤ E

[
‖xk+1 − xk‖2 | Fk

]
≤ O(α2

k)(‖xk − x∗‖2 + 1) +O(α2
k)E

[
‖x̄k − xk‖2 | Fk

]
+O(β2

k) d2(xk),
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and by rearranging terms in the preceding inequality, we obtain part (d). Finally, we apply part (d) to Eq.
(13) and obtain

E
[
‖g(x̄k, vk)‖2 | Fk

]
≤ O(‖xk − x∗‖2 + 1) +O(α2

k)
(
‖xk − x∗‖2 + 1

)
+O(β2

k) d2(xk) ≤ O(‖xk − x∗‖2 + 1),

where the second inequality uses the fact βk ≤ 2 and d(xk) ≤ ‖xk − x∗‖. Thus we have proved part (c).

(a,b) Let y be an arbitrary vector in X, and let ε be a positive scalar. By using Lemma 2 and part (c), we
have

E
[
‖xk+1 − y‖2 | Fk

]
≤ (1 + ε)‖xk − y‖2 + (1 + 1/ε)α2

kE
[
‖g(x̄k, vk)‖2 | Fk

]
≤ (1 + ε)‖xk − y‖2 + (1 + 1/ε)α2

kO
(
‖xk − x∗‖2 + 1

)
.

By letting y = x∗, we obtain (a). By letting y = Πxk and using d(xk+1) ≤ ‖xk+1 −Πxk‖, we obtain (b). �

The next lemma is an extension of Lemma 3. It gives the basic upper bounds on quantities relating to
xk+N , conditioned on the iterates’ history up to the kth samples, with N being a fixed integer.

Lemma 4 Let Assumptions 1 and 2 hold, let x∗ be a given optimal solution of problem (1), let
{xk} be generated by iteration (10), and let N be a given positive integer. Then for all k ≥ 0, with
probability 1:

(a) E
[
‖xk+N − x∗‖2 | Fk

]
≤ O

(
‖xk − x∗‖2 + α2

k

)
.

(b) E
[

d2(xk+N ) | Fk
]
≤ O

(
d2(xk) + α2

k‖xk − x∗‖2 + α2
k

)
.

(c) E
[
‖g(x̄k+N , vk+N )‖2 | Fk

]
≤ O

(
‖xk − x∗‖2 + 1

)
.

(d) E
[
‖xk+N − xk‖2 | Fk

]
≤ O(N2α2

k)
(
‖xk − x∗‖2 + 1

)
+O(N2β2

k) d2(xk).

Proof. (a) The case where N = 1 has been given in Lemma 3(a). In the case where N = 2, we have

E
[
‖xk+2 − x∗‖2 | Fk

]
= E

[
E
[
‖xk+2 − x∗‖2 | Fk+1

] ∣∣∣ Fk] = E
[
O
(
‖xk+1 − x∗‖2 + α2

k+1

)
| Fk

]
= O

(
‖xk − x∗‖2 + α2

k

)
,

where the first equality uses iterated expectation, and the second and third inequalities use Lemma 3(a)
and the fact αk+1 ≤ αk. In the case where N > 2, the result follows by applying the preceding argument
inductively.

(b) The case where N = 1 has been given in Lemma 3(b). In the case where N = 2, we have

E
[

d2(xk+2) | Fk
]

= E
[
E
[

d2(xk+2) | Fk+1

] ∣∣∣ Fk]
≤ E

[
O
(

d2(xk+1) + α2
k+1‖xk+1 − x∗‖2 + α2

k+1

) ∣∣∣ Fk]
≤ O

(
d2(xk) + α2

k‖xk − x∗‖2 + α2
k

)
,

where the first equality uses iterated expectation, the second inequality uses Lemma 3(b), and third inequality
use Lemma 3(a),(b) and the fact αk+1 ≤ αk. In the case where N > 2, the result follows by applying the
preceding argument inductively.
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(c) Follows by applying Lemma 3(c) and part (a):

E
[∥∥g(x̄k+N , vk+N )

∥∥2 | Fk] = E
[
E
[
‖g(x̄k+N , vk+N )‖2 | Fk+N

] ∣∣∣ Fk]
≤ E

[
O
(
‖xk+N − x∗‖2 + 1

)
| Fk

]
≤ O

(
‖xk − x∗‖2 + 1

)
.

(d) For any ` ≥ k, we have

E
[∥∥x`+1 − x`

∥∥2 | Fk] = E
[
E
[∥∥x`+1 − x`

∥∥2 ∣∣ F`] ∣∣ Fk]
≤ E

[
O(α2

` )(‖x` − x∗‖2 + 1) +O(β2
` ) d2(x`) | Fk

]
≤ O(α2

k)
(
‖xk − x∗‖2 + 1

)
+O(β2

k) d2(xk),

where the first inequality applies Lemma 3(d), and the second equality uses the fact αk+1 ≤ αk, as well as
parts (a),(b) of the current lemma. Then we have

E
[∥∥xk+N − xk∥∥2 | Fk] ≤ N k+N−1∑

`=k

E
[∥∥x`+1 − x`

∥∥2 | Fk] ≤ O(N2α2
k)
(
‖xk − x∗‖2 + 1

)
+O(N2β2

k) d2(xk),

for all k ≥ 0, with probability 1. �

Lemma 5 Let Assumptions 1 and 2 hold, let x∗ be a given optimal solution of problem (1), let
{xk} be generated by iteration (10), and let N be a given positive integer. Then for all k ≥ 0, with
probability 1:

(a) E [f(xk)− f(xk+N ) | Fk] ≤ O(αk)
(
‖xk − x∗‖2 + 1

)
+O

(
β2
k

αk

)
d2(xk).

(b) f(Πxk)− f(xk) ≤ O
(
αk
βk

)(
‖xk − x∗‖2 + 1

)
+O

(
βk
αk

)
d2(xk).

(c) f(Πxk)−E [f(xk+N ) | Fk] ≤ O
(
αk
βk

)(
‖xk − x∗‖2 + 1

)
+O

(
βk
αk

)
d2(xk).

Proof. (a) By using the definition of subgradients, we have

f(xk)− f(xk+N ) ≤ −∇̃f(xk)′(xk+N − xk) ≤
∥∥∇̃f(xk)

∥∥‖xk+N − xk‖ ≤ αk
2
‖∇̃f(xk)‖2 +

2

αk
‖xk+N − xk‖2.

Taking expectation on both sides, using Assumption 1 and using Lemma 4(d), we obtain

E [f(xk)− f(xk+N ) | Fk] ≤ αk
2
‖∇̃f(xk)‖2 +

2

αk
E
[
‖xk+N − xk‖2 | Fk

]
≤ O(αk)

(
‖xk − x∗‖2 + 1

)
+O

(
β2
k

αk

)
d2(xk).

(b) Similar to part (a), we use the definition of subgradients to obtain

f(Πxk)− f(xk) ≤ −∇̃f(Πxk)(xk −Πxk) ≤ αk
2βk

∥∥∥∇̃f(Πxk)
∥∥∥2 +

2βk
αk
‖xk −Πxk‖2.

Also from Assumption 1, we have

‖∇̃f(Πxk)‖2 ≤ L(‖Πxk‖2 + 1) ≤ O(‖Πxk − x∗‖2 + 1) ≤ O
(
‖xk − x∗‖2 + 1

)
,
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while
‖xk −Πxk‖ = d(xk).

We combine the preceding three relations and obtain (b).

(c) We sum the relations of (a) and (b), and obtain (c). �

3 The Coupled Convergence Theorem

In this section, we focus on the generic algorithm that alternates between an iteration of random optimality
update and an iteration of random feasibility update, i.e.,

zk = xk − αkg(x̄k, vk), xk+1 = zk − βk (zk −Πwk
zk) , with x̄k = xk, or x̄k = xk+1 (15)

[cf. Eqs (6), (10)], without specifying details regarding how the random variables wk and vk are generated.
We will show that, as long as both iterations make sufficient improvement “on average,” the generic algorithm
consisting of their combination is convergent to an optimal solution. This is a key result of the paper and is
stated as follows.

Proposition 1 (Coupled Convergence Theorem) Let Assumptions 1 and 2 hold, let x∗ be a
given optimal solution of problem (1), and let {xk} be a sequence of random variables generated by
algorithm (15). Assume that there exist positive integers M,N such that:

(i) With probability 1, for all k = 0, N, 2N, . . .,

E
[
‖xk+N − x∗‖2 | Fk

]
≤ ‖xk−x∗‖2−2

(
k+N−1∑
`=k

α`

)(
f(xk)−f∗

)
+O(α2

k)
(
‖xk−x∗‖2+1

)
+O(β2

k) d2(xk).

(ii) With probability 1, for all k ≥ 0,

E
[

d2(xk+M ) | Fk
]
≤
(
1−Θ(βk)

)
d2(xk) +O

(
α2
k

βk

)(
‖xk − x∗‖2 + 1

)
.

Then the sequence {xk} converges almost surely to a random point in the set of optimal solutions of
the convex optimization problem (1).

Before proving the proposition we provide some discussion. Let us first note that in the preceding
proposition, x∗ is an arbitrary but fixed optimal solution, and that the O(·) and Θ(·) terms in the conditions
(i) and (ii) may depend on x∗, as well as M and N . We refer to condition (i) as the optimality improvement
condition, and refer to condition (ii) as the feasibility improvement condition. According to the statement
of Prop. 1, the recursions for optimality improvement and feasibility improvement are allowed to be coupled
with each other, in the sense that either recursion involves iterates of the other one. This coupling is
unavoidable due to the design of algorithm (15), which by itself is a combination of two types of iterations.
Despite being closely coupled, the two recursions are not necessarily coordinated with each other, in the
sense that their cycles’ lengths M and N may not be equal. This makes the proof more challenging.

In what follows, we will prove a preliminary result that is important for our purpose: the coupled super-
martingale convergence lemma. It states that by combining the two improvement processes appropriately, a
supermartingale convergence argument applies and both processes can be shown to be convergent. Moreover
for the case where M = 1 and N = 1, the lemma yields “easily” the convergence proof of Prop. 1.
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Lemma 6 (Coupled Supermartingale Convergence Lemma) Let {ξt}, {ζt}, {ut}, {ūt}, {ηt},
{θt}, {εt}, {µt}, and {νt} be sequences of nonnegative random variables such that

E [ξt+1 | Gk] ≤ (1 + ηt)ξt − ut + cθtζt + µt,

E [ζt+1 | Gk] ≤ (1− θt)ζt − ūt + εtξt + νt,

where Gk denotes the collection ξ0, . . . , ξt, ζ0, . . . , ζt, u0, . . . , ut, ū0, . . . , ūt, η0, . . . , ηt, θ0, . . . , θt, ε0, . . . , εt,
µ0, . . . , µt, ν0, . . . , νt, and c is a positive scalar. Also, assume that

∞∑
t=0

ηt <∞,
∞∑
t=0

εt <∞,
∞∑
t=0

µt <∞,
∞∑
t=0

νt <∞, w.p.1.

Then ξt and ζt converge almost surely to nonnegative random variables, and we have

∞∑
t=0

ut <∞,
∞∑
t=0

ūt <∞,
∞∑
t=0

θtζt <∞, w.p.1.

Moreover, if ηt, εt, µt, and νt are deterministic scalars, the sequences
{
E [ξt]

}
and

{
E [ζt]

}
are

bounded, and
∑∞
t=0 E [θtζt] <∞.

Proof. We define Jt to be the random variable

Jt = ξt + cζt.

By combining the given inequalities, we obtain

E [Jt+1 | Gk] = E [ξt+1 | Gk] + c ·E [ζt+1 | Gk]

≤ (1 + ηt + cεt)ξt + cζt − (ut + cūt) + (µt + cνt)

≤ (1 + ηt + cεt)(ξt + cζt)− (ut + cūt) + (µt + cνt).

It follows from the definition of Jt that

E [Jt+1 | Gk] ≤ (1 + ηt + cεt)Jt − (ut + cūt) + (µt + cνt) ≤ (1 + ηt + cεt)Jt + (µt + cνt). (16)

Since
∑∞
t=0 ηt <∞,

∑∞
t=0 εt <∞,

∑∞
t=0 µt <∞, and

∑∞
t=0 νt <∞ with probability 1, the Supermartingale

Convergence Theorem (Theorem 1) applies to Eq. (16). Therefore Jt converges almost surely to a nonnegative
random variable, and

∞∑
t=0

ut <∞,
∞∑
t=0

ūt <∞, w.p.1.

Since Jt converges almost surely, the sequence {Jt} must be bounded with probability 1. Moreover, from
the definition of Jt we have ξt ≤ Jt and ζt ≤ 1

cJt. Thus the sequences {ξt} and {ζt} are also bounded with
probability 1.

By using the relation
∑∞
t=0 εt <∞ and the almost sure boundedness of {ξt}, we obtain

∞∑
t=0

εtξt ≤

( ∞∑
t=0

εt

)(
sup
t≥0

ξt

)
<∞, w.p.1. (17)

From Eq. (17), we see that the Supermartingale Convergence Theorem 1 also applies to the given inequality

E [ζt+1 | Gk] ≤ (1− θt)ζt − ūt + εtξt + νt ≤ (1− θt)ζt + εtξt + νt. (18)
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Therefore ζt converges almost surely to a random variable, and

∞∑
t=0

θtζt <∞, w.p.1.

Since both Jt = ξt + cζt and ζt are almost surely convergent, the random variable ξt must also converge
almost surely to a random variable.

Finally, let us assume that ηt, εt, µt, and νt are deterministic scalars. We take expectation on both sides
of Eq. (16) and obtain

E [Jt+1] ≤ (1 + ηt + cεt)E [Jt] + (µt + cνt). (19)

Since the scalars ηt, εt, µt, and νt are summable, we obtain that the sequence {E [Jt]} is bounded (the
supermartingale convergence theorem applies and shows that E [Jt] converges). This further implies that
the sequences {E [ξt]} and {E [ζt]} are bounded.

By taking expectation on both sides of Eq. (18), we obtain

E [ζt+1] ≤ E [ζt]−E [θtζt] + (εtE [ξt] + νt) .

By applying the preceding relation inductively and by taking the limit as k →∞, we have

0 ≤ lim
k→∞

E [ζt+1] ≤ E [ζ0]−
∞∑
t=0

E [θtζt] +

∞∑
t=0

(εtE [ξt] + νt) .

Therefore

∞∑
t=0

E [θtζt] ≤ E [ζ0] +

∞∑
t=0

(εtE [ξt] + νt) ≤ E [ζ0] +

( ∞∑
t=0

εt

)
sup
t≥0

(E [ξt]) +

( ∞∑
t=0

νt

)
<∞,

where the last relation uses the boundedness of
{
E [ξt]

}
. �

We are tempted to directly apply the coupled supermartingale convergence Lemma 6 to prove the results
of Prop. 1. However, two issues remain to be addressed. First, the two improvement conditions of Prop. 1
are not fully coordinated with each other. In particular, their cycle lengths, M and N , may be different.
Second, even if we let M = 1 and N = 1, we still cannot apply Lemma 6. The reason is that the optimality
improvement condition (i) involves the subtraction of the term (f(xk)−f∗), which can be either nonnegative
or negative. The following proof addresses these issues.

Our proof consists of four steps, and its main idea is to construct a meta-cycle of M×N iterations, where
the t-th cycle of iterations maps from xtMN to x(t+1)MN . The purpose is to ensure that both feasibility
iterations and optimality iterations make reasonable progress within each meta-cycle, which will be shown
in the first and second steps of the proof. The third step is to apply the preceding coupled supermartingale
convergence lemma and show that the end points of the meta-cycles, {XtMN}, form a subsequence that
converges almost surely to an optimal solution. Finally, the fourth step is to argue that the maximum
deviation of the iterates within a cycle decreases to 0 almost surely. From this we will show that the entire
sequence {xk} converges almost surely to a random point in the set of optimal solutions.

Proof of the Coupled Convergence Theorem (Prop. 1).

Step 1 (Derive the optimality improvement from xtMN to x(t+1)MN ) We apply condition (i) repeatedly to
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obtain for any t > 0 that

E
[
‖x(t+1)MN − x∗‖2 | FtMN

]
≤ ‖xtMN − x∗‖2 − 2

(t+1)M−1∑
`=tM

(`+1)N−1∑
k=`N

αk

(E [f(x`N ) | FtMN ]− f∗
)

+

(t+1)M−1∑
`=tM

O(α2
`N )
(
E
[
‖x`N − x∗‖2 | FtMN

]
+ 1
)

+

(t+1)M−1∑
`=tM

O(β2
`N )E

[
d2(x`N ) | FtMN

]
, w.p.1.

(20)

From Lemma 4(a) and the nonincreasing property of {αk} we obtain the bound

(t+1)M−1∑
`=tM

O(α2
`N )
(
E
[
‖x`N − x∗‖2 | FtMN

]
+ 1
)
≤ O(α2

tMN )
(
‖xtMN − x∗‖2 + 1

)
.

From Lemma 4(b) and the nonincreasing property of {βk} we obtain the bound

(t+1)M−1∑
`=tM

O(β2
`N )E

[
d2(x`N ) | FtMN

]
≤ O(β2

tMN ) d2(xtMN ) +O(α2
tMN )

(
‖xtMN − x∗‖2 + 1

)
.

By using Lemma 5(c) we further obtain

−
(
E [f(x`N ) | FtMN ]− f∗

)
≤ −

(
f(ΠxtMN )− f∗

)
+
(
E [f(ΠxtMN )− f(x`N ) | FtMN ]

)
≤ −

(
f(ΠxtMN )− f∗

)
+O

(
αtMN

βtMN

)(
‖xtMN − x∗‖2 + 1

)
+O

(
βtMN

αtMN

)
d2(xtMN ).

We apply the preceding bounds to Eq. (20), and remove redundant scalars in the big O(·) terms, yielding

E
[
‖x(t+1)MN − x∗‖2 | FtMN

]
≤ ‖xtMN − x∗‖2 − 2

(t+1)MN−1∑
k=tMN

αk

 (f(ΠxtMN )− f∗)

+O

(
α2
tMN

βtMN

)(
‖xtMN − x∗‖2 + 1

)
+O (βtMN ) d2(xtMN ),

(21)

for all t ≥ 0, with probability 1. Note that the term f(Πxk)− f∗ is nonnegative. This will allow us to treat
Eq. (21) as one of the conditions of Lemma 6.

Step 2 (Derive the feasibility improvement from xtMN to x(t+1)MN ) We apply condition (ii) repeatedly to
obtain for any t ≥ 0 that

E
[

d2(x(t+1)MN ) | FtMN

]
≤

(t+1)N−1∏
`=tN

(
1−Θ(β`M )

) d2(xtMN ) +

(t+1)N−1∑
`=tN

O

(
α2
`M

β`M

)(
E
[
‖x`M − x∗‖2 | FtMN

]
+ 1
)

with probability 1. Then by using Lemma 4(a) to bound the terms E
[
‖x`M − x∗‖2 | FtMN

]
, we obtain

E
[

d2(x(t+1)MN ) | FtMN

]
≤
(
1−Θ(βtMN )

)
d2(xtMN ) +O

(t+1)MN−1∑
k=tMN

α2
k

βk

(‖xtMN − x∗‖2 + 1
)
, (22)
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with probability 1.

Step 3 (Apply the Coupled Supermartingale Convergence Lemma) Let εt = O
(∑(t+1)MN−1

k=tMN
α2

k

βk

)
, so we

have
∞∑
t=0

εt =

∞∑
k=0

O

(
α2
k

βk

)
<∞.

Therefore the coupleds supermartingale convergence lemma (cf. Lemma 6) applies to inequalities (21) and
(22). It follows that ‖xtMN − x∗‖2 and d2(xtMN ) converge almost surely,

∞∑
t=0

Θ(βtMN ) d2(xtMN ) <∞, w.p.1, (23)

and
∞∑
t=0

(t+1)MN−1∑
k=tMN

αk

(f(ΠxtMN )− f∗
)
<∞, w.p.1. (24)

Moreover, from the last part of Lemma 6, it follows that the sequence {E
[
‖xtMN − x∗‖2

]
} is bounded, and

we have
∞∑
t=0

Θ(β2
tMN )E

[
d2(xtMN )

]
<∞. (25)

Since βk is nonincreasing, we have

∞∑
t=0

Θ(βtMN ) ≥
∞∑
t=0

1

MN

(t+1)MN−1∑
k=tMN

Θ(βk)

 =
1

MN

∞∑
k=0

βk =∞.

This together with the almost sure convergence of d2(xtMN ) and relation (23) implies that

d2(xtMN )
a.s.−→ 0, as t→∞,

[if d2(xtMN ) converges to a positive scalar, then Θ(βtMN ) d2(xtMN ) would no longer be summable]. Following
a similar analysis, the relation (24) together with the assumption

∑∞
k=0 αk =∞ implies that

lim inf
t→∞

f(ΠxtMN ) = f∗, w.p.1.

Now let us consider an arbitrary sample trajectory of the stochastic process {(wk, vk)}, such that the asso-
ciated sequence {‖xtMN−x∗‖} is convergent and is thus bounded, d2(xtMN )→ 0, and lim inft→∞ f(ΠxtMN ) =
f∗. These relations together with the continuity of f further imply that the sequence {xtMN} must have a
limit point x̄ ∈ X∗. Also, since ‖xtMN −x∗‖2 is convergent for arbitrary x∗ ∈ X∗, the sequence ‖xtMN − x̄‖2
is convergent and has a limit point 0. If follows that ‖xtMN − x̄‖2 → 0, so that xtMN → x̄. Note that the
set of all such sample trajectories has a probability measure equal to 1. Therefore the sequence of random
variables {xtMN} is convergent almost surely to a random point in X∗ as t→∞.

Step 4 (Prove that the entire sequence {xk} converges) Let ε > 0 be arbitrary. By using the Markov
inequality, Lemma 4(c), and the boundedness of

{
E
[
‖xtMN − x∗‖2

] }
(as shown in Step 3), we obtain

∞∑
k=0

P
(
αk‖g(x̄k, vk)‖ ≥ ε

)
≤
∞∑
k=0

α2
kE
[
‖g(x̄k, vk)‖2

]
ε2

<

∞∑
t=0

α2
tMNE

[
O(‖xtMN − x∗‖2 + 1)

]
ε2

<∞.

Similarly, by using the Markov inequality, Lemma 4(b), and Eq. (25), we obtain

∞∑
k=0

P
(
βk d(xk) ≥ ε

)
≤
∞∑
k=0

β2
kE
[

d2(xk)
]

ε2
≤
∞∑
t=0

β2
tMNE

[
O
(

d2(xtMN ) + α2
tMN (‖xtMN − x∗‖2 + 1)

)]
ε2

<∞.
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Applying the Borel-Cantelli lemma to the preceding two inequalities and taking ε arbitrarily small, we obtain

αk‖g(x̄k, vk)‖ a.s.−→ 0, βk d(xk)
a.s.−→ 0, as k →∞.

For any integer t ≥ 0 we have

max
tMN≤k≤(t+1)MN−1

‖xk − xtMN‖ ≤
(t+1)MN−1∑
`=tMN

‖x` − x`+1‖ (from the triangle inequality)

≤
(t+1)MN−1∑
`=tMN

O
(
α`‖g(x̄`, v`)‖+ β` d(x`)

)
(from Eq. (14))

a.s.−→ 0.

Therefore the maximum deviation within a cycle of length MN decreases to 0 almost surely. To conclude,
we have shown that xk converges almost surely to a random point in X∗ as k →∞. �

4 Sampling Schemes for Constraints

In this section, we focus on sampling schemes for the constraints Xwk
that satisfy the feasibility improvement

condition required by the coupled convergence theorem, i.e.,

E
[

d2(xk+M ) | Fk
]
≤
(
1−Θ(βk)

)
d2(xk) +O

(
α2
k

βk

)(
‖xk − x∗‖2 + 1

)
, ∀ k ≥ 0, w.p.1,

where M is a positive integer. To satisfy the preceding condition, it is necessary that the distance between xk
and X asymptotically decreases as a contraction in a stochastic sense. We will consider several assumptions
regarding the incremental projection process {Πwk

}, including nearly independent sampling, most distant
sampling, cyclic order sampling, Markov Chain sampling, etc.

Throughout our analysis in this section, we will require that the collection {Xi}mi=1 possesses a linear
regularity property . This property has been originally introduced by Bauschke [Bau96] in a more general
Hilbert space setting; see also Bauschke and Borwein [BB96] (Definition 5.6, p. 40).

Assumption 3 (Linear Regularity) There exists a positive scalar η such that for any x ∈ <n

‖x−Πx‖2 ≤ η max
i=1,...,m

‖x−ΠXix‖2.

Recently, the linear regularity property has been studied by Deutsch and Hundal [DH08] in order to
establish linear convergence of a cyclic projection method for finding a common point of finitely many
convex sets. This property is automatically satisfied when X is a polyhedral set. The discussions in [Bau96]
and [DH08] identify several other situations where the linear regularity condition holds, and indicates that
this condition is a mild restriction in practice.

4.1 Nearly Independent Sample Constraints

We start with the easy case where the sample constraints are generated “nearly independently.” In this case,
it is necessary that each constraint is always sampled with sufficient probability, regardless of the sample
history. This is formulated as the following assumption:
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Assumption 4 The random variables wk, k = 0, 1, . . ., are such that

inf
k≥0

P(wk = Xi | Fk) ≥ ρ

m
, i = 1, . . . ,m,

with probability 1, where ρ ∈ (0, 1] is some scalar.

Under Assumptions 3 and 4, we claim that the expression

E
[
‖x−Πwk

x‖2 | Fk
]
,

which may be viewed as the “average progress” of random projection at the kth iteration, is bounded from
below by a multiple of the distance between x and X. Indeed, by Assumption 4, we have for any j = 1, . . . ,m,

E
[
‖x−Πwk

x‖2 | Fk
]

=

m∑
i=1

P (wk = i | Fk) ‖x−Πix‖2 ≥
ρ

m
‖x−Πjx‖2.

By maximizing the right-hand side of this relation over j and by using Assumption 3, we obtain

E
[
‖x−Πwk

x‖2 | Fk
]
≥ ρ

m
max

1≤j≤m
‖x−Πjx‖2 ≥

ρ

mη
‖x−Πx‖2 =

ρ

mη
d2(x), (26)

for all x ∈ <n and k ≥ 0, with probability 1. This indicates that the average feasibility progress of the nearly
independent constraint sampling method is comparable to the feasibility error, i.e., the distance from xk to
X.

Now we are ready to show that the nearly independent constraint sampling scheme satisfies the feasibility
improvement condition of the coupled convergence theorem (Prop. 1).

Proposition 2 Let Assumptions 1, 2, 3 and 4 hold, and let x∗ be a given optimal solution of problem
(1). Then the random projection algorithm (15) generates a sequence {xk} such that

E
[

d2(xk+1) | Fk
]
≤
(

1− ρ

mη
Θ(βk)

)
d2(xk) +O

(
mα2

k

βk

)(
‖xk − x∗‖2 + 1

)
,

for all k ≥ 0 with probability 1.

Proof. Let ε be a positive scalar. By applying Lemma 2 with y = Πxk, we have

d2(xk+1) ≤ ‖xk+1 −Πxk‖2 ≤ (1 + ε)‖xk −Πxk‖2 + (1 + 1/ε)α2
k‖g(x̄k, vk)‖2 − βk(2− βk)‖zk −Πwk

zk‖2.

By using the following bound which is obtained from Lemma 1(b):

‖xk −Πwk
xk‖2 ≤ 2‖zk −Πwk

zk‖2 + 8‖xk − zk‖2 = 2‖zk −Πwk
zk‖2 + 8α2

k‖g(x̄k, vk)‖2,

we further obtain

d2(xk+1) ≤ (1 + ε)‖xk −Πxk‖2 +
(
1 + 1/ε+ 4βk(2− βk)

)
α2
k‖g(x̄k, vk)‖2 − βk(2− βk)

2
‖xk −Πwk

xk‖2

≤ (1 + ε) d2(xk) + (5 + 1/ε)α2
k‖g(x̄k, vk)‖2 −Θ(βk)‖xk −Πwk

xk‖2,

where the second relation uses the facts ‖xk − Πxk‖2 = d2(xk) and Θ(βk) ≤ βk(2 − βk) ≤ 1. Taking
conditional expectation of both sides, and applying Lemma 3(c) and Eq. (26), we obtain

E
[

d2(xk+1) | Fk
]
≤ (1 + ε) d2(xk) +O(1 + 1/ε)α2

k

(
‖xk − x∗‖2 + 1

)
− ρ

mη
Θ(βk) d2(xk)

≤
(

1− ρ

mη
Θ(βk)

)
d2(xk) +O(mα2

k/βk)
(
‖xk − x∗‖2 + 1

)
,
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where the second relation is obtained by letting ε� Θ(βk). �

4.2 Most Distant Sample Constraint

Next we consider the case where we select the constraint superset that is the most distant from the current
iterate. This yields an adaptive algorithm that selects the projection based on the iterates’ history.

Assumption 5 The random variable wk is the index of the most distant constraint superset, i.e.,

wk = argmaxi=1,...,m‖xk −Πixk‖, k = 0, 1, . . . .

By using Assumption 5 together with Assumption 3, we see that

E
[
‖xk −Πwk

xk‖2 | Fk
]

= max
i=1,...,m

‖xk −Πixk‖ ≥
1

η
d2(xk), ∀ k ≥ 0, w.p.1. (27)

Then by using an analysis similar to that of Prop. 2, we obtain the following result.

Proposition 3 Let Assumptions 1, 2, 3 and 5 hold, and let x∗ be a given optimal solution of problem
(1). Then the random projection algorithm (15) generates a sequence {xk} such that

E
[

d2(xk+1) | Fk
]
≤
(

1−Θ

(
βk
η

))
d2(xk) +O

(
α2
k

βk

)(
‖xk − x∗‖2 + 1

)
,

for all k ≥ 0, with probability 1.

Proof. The proof is almost identical to that of Prop. 2, except that we use Eq. (27) in place of Eq. (26). �

4.3 Sample Constraints According to a Cyclic Order

Now let us consider the case where the constraint supersets {Xwk
} are sampled in a cyclic manner, either

by random shuffling or according to a deterministic cyclic order.

Assumption 6 With probability 1, for all t ≥ 0, the sequence of constraint sets of the t-th cycle,
i.e.,

{Xwk
}, where k = tm, tm+ 1, . . . , (t+ 1)m− 1,

is a permutation of {X1, . . . , Xm}.

Under Assumption 6, it is no longer true that the distance from xk to the feasible set is “stochastically
decreased” at every iteration. However, all the constraint sets will be visited at least once within a cycle of
m iterations. This suggests that the distance to the feasible set is improved on average every m iterations.
We first prove a lemma regarding the progress towards feasibility over a number of iterations.

Lemma 7 Let Assumptions 1, 2, and 3 hold, and let {xk} be generated by algorithm (15). Assume
that, for given integers k > 0 and M > 0, any particular index in {1, . . . ,m} will be visited at least
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once by the random variables {wk, . . . , wk+M−1}. Then:

1

2Mη
d2(xk) ≤ 4

k+M−1∑
`=k

‖z` −Πw`
z`‖2 +

k+M−1∑
`=k

α2
`

∥∥g(x̄`, v`)
∥∥2.

Proof. Let k∗ ∈ {k, . . . , k+M−1} be the index that attains the maximum in the linear regularity assumption
for xk (cf. Assumption 3), so that

d2(xk) ≤ η max
i=1,...,m

‖xk −ΠXi
xk‖2 = η‖xk −Πwk∗xk‖2.

Such k∗ always exists, because it is assumed that any particular index will be visited by the sequence
{wk, . . . , wk+M−1}. We have

1
√
η

d(xk) ≤ ‖xk −Πwk∗xk‖

≤ ‖xk −Πwk∗ zk∗‖ (by the definition of Πwk∗xk and the fact Πwk∗ zk∗ ∈ Xwk∗ )

=

∥∥∥∥xk − 1

βk∗
xk∗+1 +

1− βk∗
βk∗

zk∗

∥∥∥∥ (by xk∗+1 = zk∗ − βk∗(zk∗ −Πwk∗ zk∗), cf. Eq.(15))

=

∥∥∥∥∥
k∗−1∑
`=k

β` − 1

β`
(z` − x`+1) +

k∗∑
`=k

1

β`
(z` − x`+1)−

k∗∑
`=k

(z` − x`)

∥∥∥∥∥
≤
k∗−1∑
`=k

∣∣∣∣β` − 1

β`

∣∣∣∣ ‖z` − x`+1‖+

k∗∑
`=k

1

β`
‖z` − x`+1‖+

k∗∑
`=k

‖z` − x`‖

≤
k+M−2∑
`=k

∣∣∣∣β` − 1

β`

∣∣∣∣ ‖z` − x`+1‖+

k+M−1∑
`=k

1

β`
‖z` − x`+1‖+

k+M−1∑
`=k

‖z` − x`‖

≤
k+M−1∑
`=k

2

β`
‖z` − x`+1‖+

k+M−1∑
`=k

‖z` − x`‖ (since β` ∈ (0, 2))

= 2

k+M−1∑
`=k

‖z` −Πw`
z`‖+

k+M−1∑
`=k

α`
∥∥g(x̄`, v`)

∥∥ (by the definition of algorithm (15))

≤
√

2M

(
4

k+M−1∑
`=k

‖z` −Πw`
z`‖2 +

k+M−1∑
`=k

α2
`

∥∥g(x̄`, v`)
∥∥2)1/2

,

where the last step follows from the generic inequality
(∑M

i=1 ai +
∑M
i=1 bi

)2
≤ 2M

(∑M
i=1 a

2
i +

∑M
i=1 b

2
i

)
for real numbers ai, bi. By rewriting the preceding relation we complete the proof. �

Now we are ready to prove that the feasibility improvement condition holds for the cyclic order constraint
sampling scheme.

Proposition 4 Let Assumptions 1, 2, 3 and 6 hold, and let x∗ be a given optimal solution of problem
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(1). Then the random projection algorithm (15) generates a sequence {xk} such that

E
[

d2(xk+2m) | Fk
]
≤
(

1−Θ

(
βk
mη

))
d2(xk) +O

(
m2α2

k

βk

)(
‖xk − x∗‖2 + 1

)
, (28)

for all k ≥ 0, with probability 1.

Proof. Let ε > 0 be a scalar. By applying Lemma 2 with y = Πxk, we have

d2(xk+1) ≤ ‖xk+1 −Πxk‖2 ≤ (1 + ε) d2(xk) + (1 + 1/ε)α2
k

∥∥g(x̄k, vk)
∥∥2 − βk(2− βk)‖zk −Πwk

zk‖2.

By applying the preceding relation inductively, we obtain

d2(xk+2m) ≤ (1 + ε)2m

(
d2(xk) + (1 + 1/ε)

k+2m−1∑
`=k

α2
`

∥∥g(x̄`, v`)
∥∥2)− k+2m−1∑

`=k

β`(2− β`)‖z` −Πw`
z`‖2

≤
(
1 +O(ε)

)
d2(xk) +O(1 + 1/ε)

k+2m−1∑
`=k

α2
`

∥∥g(x̄`, v`)
∥∥2 −Θ(βk)

k+2m−1∑
`=k

‖z` −Πw`
z`‖2,

(29)

where the second inequality uses the facts that βk is nonincreasing and that βk/βk+1 → 1 to obtain

min
`=k,...,k+2m−1

β`(2− β`) ≥ Θ(βk).

We apply Lemma 7 with M = 2m (since according to Assumption 6, starting with any k, any particular
index will be visited in at most 2 cycles of samples), and obtain

d2(xk+2m) ≤ (1 +O(ε)) d2(xk) +O(1 + 1/ε)

k+2m−1∑
`=k

α2
`‖g(x̄`, v`)‖2 −

Θ(βk)

mη
d2(xk).

Let ε� 1
mηO(βk). Taking conditional expectation on both sides and applying Lemma 3(c), we have

E
[

d2(xk+2m) | Fk
]
≤
(

1− Θ(βk)

mη

)
d2(xk) +O

(
m2α2

k

βk

)(
‖xk − x∗‖2 + 1

)
,

for all k ≥ 0 with probability 1. �

4.4 Sample Constraints According to a Markov Chain

Finally, we consider the case where the sample constraints Xwk
are generated through state transitions of a

Markov chain. To ensure that all constraints are sampled adequately, we assume the following:

Assumption 7 The sequence {wk} is generated by an irreducible and aperiodic Markov chain with
states 1, . . . ,m.

By using an analysis analogous to that of Prop. 4, we obtain the following result.
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Proposition 5 Let Assumptions 1, 2, 3 and 7 hold, let x∗ be a given optimal solution of problem (1),
and let the sequence {xk} be generated by the random projection algorithm (15). Then there exists a
positive integer M such that

E
[

d2(xk+M ) | Fk
]
≤
(

1−Θ

(
βk
Mη

))
d2(xk) +O

(
M2α2

k

βk

)(
‖xk − x∗‖2 + 1

)
, (30)

for all k ≥ 0, with probability 1.

Proof. According to Assumption 7, the Markov chain is irreducible and aperiodic. Therefore its invariant
distribution, denoted by ξ ∈ <m, satisfies for some ε > 0

min
i=1,...,m

ξi > ε,

and moreover, there exist scalars ρ ∈ (0, 1) and c > 0 such that∣∣P(wk+` = Xi | Fk)− ξi
∣∣ ≤ c · ρ`, i = 1, . . . ,m, ∀ k ≥ 0, ` ≥ 0, w.p.1.

We let M be a sufficiently large integer, such that

min
i=1,...,m

P(wk+M−1 = Xi | Fk) ≥ min
i=1,...,m

ξi − cρM ≥ Θ(ε) > 0, ∀ k ≥ 0, w.p.1.

This implies that, starting with any wk, there is a positive probability Θ(ε) to reach any particular index in
{1, . . . ,m} in the next M samples.

By using this fact together with Lemma 7, we obtain

P

(
1

2Mη
d2(xk) ≤ 4

k+M−1∑
`=k

‖z` −Πw`
z`‖2 +

k+M−1∑
`=k

α2
`‖g(x̄`, v`)‖2

∣∣∣∣∣ Fk
)
≥ Θ(ε).

It follows that

E

[
4

k+M−1∑
`=k

‖z` −Πw`
z`‖2 +

k+M−1∑
`=k

α2
`‖g(x̄`, v`)‖2

∣∣∣∣∣ Fk
]
≥ Θ(ε) · 1

2Mη
d2(xk) + (1−Θ(ε)) · 0.

By rewriting the preceding relation and applying Lemma 4(a), we obtain

E

[
k+M−1∑
`=k

‖z` −Πw`
z`‖2

∣∣∣∣∣ Fk
]
≥ Θ(ε)

8Mη
d2(xk)−O(α2

k)
(
‖xk − x∗‖2 + 1

)
. (31)

The rest of the proof follows a line of analysis like the one of Prop. 4, with 2m replaced with M . Similar
to Eq. (29), we have

d2(xk+M ) ≤ (1 +O(ε)) d2(xk) +O(1 + 1/ε)

k+M−1∑
`=k

α2
`

∥∥g(x̄`, v`)
∥∥2 −Θ(βk)

k+M−1∑
`=k

‖z` −Πw`
z`‖2.
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Taking expectation on both sides, we obtain

E
[

d2(xk+M ) | Fk
]
≤
(
1 +O(ε)

)
d2(xk) +O(1 + 1/ε)E

[
k+M−1∑
`=k

α2
`

∥∥g(x̄`, v`)
∥∥2 ∣∣∣ Fk]

−Θ(βk)E

[
k+M−1∑
`=k

‖z` −Πw`
z`‖2

∣∣∣ Fk]

≤ (1 +O(ε)) d2(xk) +O(1 + 1/ε)α2
k

(
‖xk − x∗‖2 + 1

)
−Θ

(
βk
Mη

)
d2(xk)

≤
(

1−Θ

(
βk
Mη

))
d2(xk) +O

(
M2α2

k

βk

)
(‖xk − x∗‖2 + 1),

where the second relation uses Eq. (31) and Lemma 4(c), and the third relation holds by letting ε ≤ Θ
(
βk

Mη

)
.

�

5 Sampling Schemes for Subgradients/Component Functions

In this section, we focus on sampling schemes for the subgradients/component functions that satisfy the
optimality improvement condition required by the coupled convergence theorem (Prop. 1), i.e.,

E
[
‖xk+N − x∗‖2 | Fk

]
≤ ‖xk − x∗‖2− 2

(
k+N−1∑
`=k

α`

)(
f(xk)− f∗

)
+O(α2

k)
(
‖xk − x∗‖2 + 1

)
+O(β2

k) d2(xk),

with probability 1, where k = 0, N, 2N, . . ., and N is a positive integer.
In what follows, we consider the case of unbiased samples and the case of cyclic samples. Either one of the

following subgradient/function sampling schemes can be combined with any one of the constraint sampling
schemes in Section 4, to yield a convergent incremental algorithm.

5.1 Unbiased Sample Subgradients/Component Functions

We start with the relatively simple case where the sample component functions chosen by the algorithm are
conditionally unbiased. We assume the following:

Assumption 8 Let each g(x, vk) be the subgradient of a random component function fvk : <n 7→ <
at x:

g(x, vk) ∈ ∂fvk(x), ∀ x ∈ <n,

and let the random variables vk, k = 0, 1, . . ., be such that

E
[
fvk(x) | Fk

]
= f(x), ∀ x ∈ <n, k ≥ 0, w.p.1. (32)

We use a standard line of argument for gradient descent to obtain the optimality improvement inequality.

Proposition 6 Let Assumptions 1, 2, 3 and 8 hold, and let x∗ be a given optimal solution of problem
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(1). Then the random projection algorithm (15) generates a sequence {xk} such that

E
[
‖xk+1 − x∗‖2 | Fk

]
≤ ‖xk − x∗‖2 − 2αk

(
f(xk)− f∗

)
+O(α2

k)
(
‖xk − x∗‖2 + 1

)
+O(β2

k) d2(xk),

for all k ≥ 0, with probability 1.

Proof. By applying Lemma 2 with y = x∗, we obtain

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − 2αkg(x̄k, vk)′(xk − x∗) + α2
k‖g(x̄k, vk)‖2. (33)

Taking conditional expectation on both sides and applying Lemma 3(c) yields

E
[
‖xk+1 − x∗‖2 | Fk

]
≤ ‖xk − x∗‖2 − 2αkE [g(x̄k, vk)′(xk − x∗) | Fk] + α2

kO
(
‖xk − x∗‖2 + 1

)
. (34)

According to Assumption 8, since xk ∈ Fk, we have

E
[
g(x̄k, vk)′(xk − x∗) | Fk

]
= E

[
g(x̄k, vk)′(x̄k − x∗) | Fk

]
+ E

[
g(x̄k, vk)′(xk − x̄k) | Fk

]
≥ E

[
f(x̄k)− f∗ | Fk

]
+ E

[
g(x̄k, vk)′(xk − x̄k) | Fk

]
= f(xk)− f∗ + E

[
f(x̄k)− f(xk) | Fk

]
+ E

[
g(x̄k, vk)′(xk − x̄k) | Fk

]
≥ f(xk)− f∗ + E

[
g(xk, vk)′(x̄k − xk) + g(x̄k, vk)′(xk − x̄k) | Fk

]
≥ f(xk)− f∗ − αk

2
E
[
‖g(xk, vk)‖2 + ‖g(x̄k, vk)‖2 | Fk

]
− 1

αk
E
[
‖x̄k − xk‖2 | Fk

]
≥ f(xk)− f∗ − αkO

(
‖xk − x∗‖2 + 1

)
− 1

αk

(
α2
kO
(
‖xk − x∗‖2 + 1

)
+ β2

k d2(xk)
)

≥ f(xk)− f∗ − αkO
(
‖xk − x∗‖2 + 1

)
− β2

k

αk
d2(xk),

where the first and second inequalities use the definition of subgradients, the third inequality uses 2ab ≤
a2 + b2 for any a, b ∈ <, and the fourth inequality uses Assumption 1 and Lemma 3(c),(d). Finally, we apply
the preceding relation to Eq. (34) and obtain

E
[
‖xk+1 − x∗‖2 | Fk

]
≤ ‖xk − x∗‖2 − 2αk(f(xk)− f∗) +O(α2

k)
(
‖xk − x∗‖2 + 1

)
+O(β2

k) d2(xk),

for all k ≥ 0 with probability 1. �

5.2 Cyclic Sample Subgradients/Component Functions

Now we consider the analytically more challenging case, where the subgradients are sampled in a cyclic
manner. More specifically, we assume that the subgradient samples are associated with a “cyclic” sequence
of component functions.

Assumption 9 Each g(x, vk) is the subgradient of function fvk : <n 7→ < at x, i.e.,

g(x, vk) ∈ ∂fvk(x), ∀ x ∈ <n,
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the random variables vk, k = 0, 1, . . ., are such that for some integer N > 0,

1

N

(t+1)N−1∑
`=tN

E
[
fv`(x) | FtN

]
= f(x), ∀ x ∈ <n, t ≥ 0, w.p.1, (35)

and the stepsizes {ak} are constant within each cycle, i.e,

αtN = αtN+1 = · · · = α(t+1)N−1, ∀ t ≥ 0.

In the next proposition, we show that the optimality improvement condition is satisfied when we select the
component functions and their subgradients according to a cyclic order, either randomly or deterministically.
The proof idea is to consider the total optimality improvement with a cycle of N iterations.

Proposition 7 Let Assumptions 1, 2, 3 and 9 hold, and let x∗ be a given optimal solution of problem
(1). Then the random projection algorithm (15) generates a sequence {xk} such that

E
[
‖xk+N−x∗‖2 | Fk

]
≤ ‖xk−x∗‖2−2

(
k+N−1∑
`=k

α`

)(
f(xk)−f∗

)
+O(α2

k)
(
‖xk−x∗‖2+1

)
+O(β2

k) d2(xk),

for all k = 0, N, 2N, . . ., with probability 1.

Proof. Following the line of analysis of Prop. 6 and applying Eq. (33) repeatedly, we obtain

‖xk+N − x∗‖2 ≤ ‖xk − x∗‖2 − 2αk

k+N−1∑
`=k

g(x̄`, v`)
′(x` − x∗) + α2

k

k+N−1∑
`=k

‖g(x̄`, v`)‖2.

By taking conditional expectation on both sides and by applying Lemma 4(c), we further obtain

E
[
‖xk+N − x∗‖2 | Fk

]
≤ ‖xk − x∗‖2 − 2αk

k+N−1∑
`=k

E [g(x̄`, v`)
′(x` − x∗) | Fk] +O(α2

k)
(
‖xk − x∗‖2 + 1

)
,

(36)

for all k = 0, N, 2N, . . ., with probability 1.
For ` = k, . . . , k +N − 1, we have

g(x̄`, v`)
′(x` − x∗) = g(x̄`, v`)

′(x̄` − x∗) + g(x̄`, v`)
′(x` − x̄`).

Since g(x, v`) ∈ ∂fv`(x) for all x, we apply the definition of subgradients and obtain

g(x̄`, v`)
′(x̄` − x∗) ≥ fv`(x̄`)− f∗ ≥ fv`(xk)− f∗ + g(xk, v`)

′(x̄` − xk).

Combining the preceding two relations, we obtain

g(x̄`, v`)
′(x` − x∗) ≥ fv`(xk)− f∗ + g(xk, v`)

′(x̄` − xk) + g(x̄`, v`)
′(x` − x̄`).

By taking expectation on both sides, we further obtain

E [g(x̄`, v`)
′(x` − x∗) | Fk] ≥ E [fv`(xk) | Fk]− f∗ + E [g(x̄`, v`)

′(x` − x̄`) + g(xk, v`)
′(x̄` − xk) | Fk]

≥ E [fv`(xk) | Fk]− f∗

−O(αk)E
[
‖g(x̄`, v`)‖2 + ‖g(xk, v`)‖2 | Fk

]
−O(1/αk)E

[
‖x̄` − xk‖2 | Fk

]
≥ E [fv`(xk) | Fk]− f∗ −O(αk)

(
‖xk − x∗‖2 + 1

)
−O

(
β2
k

αk

)
d2(xk),
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where the second inequality uses the basic fact 2a′b ≤ ‖a‖2 + ‖b‖2 for a, b ∈ <n, and the last inequality uses
Assumption 1 and Lemma 4(a),(d). Then from Assumption 9 we have

k+N−1∑
`=k

E [g(x̄`, v`)
′(x` − x∗) | Fk] ≥

k+N−1∑
`=k

(
E [fv`(xk) | Fk]− f∗

)
−O(αk)

(
‖xk − x∗‖2 + 1

)
−O

(
β2
k

αk

)
d2(xk)

= N
(
f(xk)− f∗

)
−O(αk)

(
‖xk − x∗‖2 + 1

)
−O

(
β2
k

αk

)
d2(xk),

with probability 1. Finally, we apply the preceding relation to Eq. (36) and complete the proof. �

6 Almost Sure Convergence of Incremental Constraint Projection-
Proximal Algorithms

In Sections 4 and 5, we have considered a number of sampling schemes for both the constraints and com-
ponent functions, such that the feasibility and optimality improvement conditions required by the coupled
convergence theorem (Prop. 1) are satisfied. Now we will combine the preceding results and apply the cou-
pled convergence theorem. The following theorem collects various combinations of conditions under which
our algorithm converges almost surely.

Proposition 8 (Almost Sure Convergence) Let Assumptions 1, 2, 3 hold, and consider the in-
cremental constraint projection-proximal algorithm (15). Assume that the constraint sampling scheme
satisfies any one of the following:

(i) The constraints are sampled randomly as in Assumption 4.

(ii) The constraints are sampled adaptively according to the most distant set criterion as in Assump-
tion 5.

(iii) The constraints are sampled cyclically as in Assumption 6.

(iv) The constraints are sampled using a Markov chain as in Assumption 7.

Assume further that the subgradient/component function sampling scheme satisfies any one of the
following:

(i) The component samples are conditionally unbiased as in Assumption 8.

(ii) The component samples are unbiased over a cycle as in Assumption 9.

Then the algorithm (15) generates a sequence of random variables {xk} that converges almost surely
to a random point in the set of optimal solutions of the convex optimization problem (1).

Proof. The proof is obtained by combining Props. 2, 3, 4, 5 and Props. 6, 7, in conjunction with Prop. 1. �

7 Discussion and Computational Results

An important issue related to the proposed incremental algorithms is the rate of convergence. As noted ear-
lier, the convergence of these algorithms involve two improvement processes with two different corresponding
stepsizes. This coupling greatly complicates the convergence rate analysis. Moreover, the convergence rate
also relates to the sampling schemes, properties of the objective function, properties of the constraints, choic-
es of the stepsizes, etc, which complicates the analysis further. In the special case of minimizing a strongly
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convex and differentiable function, the proposed algorithm is a special case of an algorithm for strongly
monotone variational inequalities given in [WB12]. For this algorithm, convergence rates and finite-sample
error bounds have been derived in [WB12]. These results involve the strong convexity constant, and sug-
gest an advantage of random sampling over cyclic sampling. Reference [WB12] and the thesis [Wan13] also
provide computational results.

For minimization of general convex functions, theoretical analysis of convergence rate is not currently
available, except in special cases which involves no constraint sampling, no stochastic subgradients, and/or
more restrictive assumptions (see [NB00], [NB01], [Ber11], [Ned11], [WB12]). By extrapolating known results
from the strongly convex case, we conjecture that the algorithm with random sampling has better worst-case
performance than the one with cyclic sampling. The likely reason is that random sampling may break an
unfavorable order of component functions/constraints that may slow down the convergence. Moreover, we
conjecture that by sampling adaptively, e.g. choosing the most distant constraint, the algorithm achieves
a better convergence rate than by sampling non-adaptively. Our subsequent computational results support
the preceding conjectures.

We tested our algorithms on a regression problem involving `1 regularization, nonnegativity constraints,
and basis function approximation. The problem is

min
x
‖AΦx− b‖2 + λ‖x‖1

s.t. Φx ≥ 0,
(37)

where A is an 1000×1000 matrix, b is a vector in <1000, Φ is an 1000×20 matrix of basis functions/features,
and λ is a positive regularization parameter. This problem has a convex nondifferentiable cost function and
a set intersection constraint. The gradient of the quadratic term ‖AΦx− b‖2 can be written as

Φ′A′AΦx− Φ′A′b =

1000∑
i=1

1000∑
j=1

1000∑
q=1

aqiaqjφiφ
′
j

x−

1000∑
i=1

1000∑
j=1

φiajibj

 ,

where aij and bi are the corresponding entries of A and b, and φ′i is the ith row of Φ. The constraint Φx ≥ 0
can be viewed as an intersection of halfspaces defined by φ′ix ≥ 0. Applying algorithm (15) to this problem,
we obtain

zk = xk − αk
(
aqkikaqkjkφikφ

′
jk
xk − φikajkikbjk + λ s(xk)

)
xk+1 = zk − βk

max{0, φ′wk
zk}

‖φwk
‖2

φwk
,

(38)

where s(x) is a subgradient of ‖x‖1 [i.e., si(x) = 1 if xi > 0, si(x) = −1 if xi ≤ 0], vk = (ik, jk, qk) and wk are
generated by the component function and constraint sampling schemes, respectively. Note that each iteration
of this algorithm is inexpensive and involves only low-order calculation. In the experiments, the columns
of Φ were chosen to be sine functions of different frequencies, and the entries of A, b were independently
generated according to a uniform distribution in [−1, 1]. We tested algorithm (38) with various sampling
schemes for {wk, vk}, and we plot the associated trajectories of {‖xk − x∗‖} and {d(xk)} in Figs. 1 and 2.

Figure 1 compares algorithms that use different constraint sampling schemes. It can be seen that the most
distant projection scheme clearly outperforms the others. However, this comes at a price - choosing the most
distant set incurs a computation overhead on the order of m. We note that the random sampling scheme
performs slightly better than the deterministic cyclic sampling scheme, and that the Markov sampling scheme
may perform the worst depending on the mixing rate of the Markov chain. Figure 2 compares the samplings
schemes for the subgradients/component functions, and suggests that random sampling outperforms cyclic
sampling. According to our analysis, the two improvement processes {‖xk − x∗‖} and { d(xk)} are coupled
together. Although { d(xk)} has a better modulus of contraction, it is not clear from Figs. 1-2 that it
converges faster than {‖xk − x∗‖} does. We have also tested the algorithms using different parameters and
observed similar results. Theoretical analysis supporting these results is an interesting subject for future
research.
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Figure 1: Comparison of constraint sampling schemes. In all cases, we use the exact subgradient of f without
sampling, and we take αk = 1/k, βk = 1, λ = 0.001. In the first case (blue), the constraints are sampled
independently according to a uniform distribution. In the second case (green), the constraints are sampled
according to a deterministic cyclic order. In the third case (red), the constraints are chosen according to the
most distant set criterion. In the last case (yellow), the constraints are chosen according to state transitions
of a Markov chain, in which the indexes/states stay unchanged with probability 0.1 and move to other states
according to a uniform distribution with probability 0.9.
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Figure 2: Comparison of various component function sampling schemes. In all cases, we use an i.i.d. uniform
constraints sampling scheme, and we take αk = 1/k, βk = 1, λ = 0.001. In the first case (blue), the
algorithm uses the exact subgradients of f without sampling. In the second and third cases (red and green),
the algorithm chooses samples independently according to a uniform distribution and cyclically according to
a fixed order, respectively.

28



8 Conclusions

In this paper, we have proposed a class of stochastic algorithms, based on subgradient projection and
proximal methods, which alternate between random optimality updates and random feasibility updates. We
characterized the behavior of these algorithms in terms of two coupled improvement processes: optimality
improvement and feasibility improvement. We have provided a unified convergence framework, based on
the coupled convergence theorem, which serves as a modular architecture for convergence analysis and can
accommodate a broad variety of sampling schemes, such as independent sampling, cyclic sampling, Markov
chain sampling, etc.

An important direction for future research is to develop a convergence rate analysis, incorporate it into the
general framework of coupled convergence, and compare the performances of various sampling/randomization
schemes for the subgradients and the constraints. It is also interesting to consider modifications of our
algorithm involving finite memory and multiple recent samples. Related research on this subject includes
asynchronous algorithms using “delayed” subgradients with applications in parallel computing (see e.g.,
[NBB01]). Another extension is to analyze problems with an infinite number of constraints.
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