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~RTIALLY ASYNCHRONOUS, PARALLEL ALGORITHMS
if FOR NETWORK FLOW AND OTHER PROBLEMS.

P. TSENGt, D. P. BERTSEKASt, AND J. N. TSITSIKLISt

Abstract. The problem of computing a fixed point ofa nonexpansive functionfis considered. Sufficient
conditions ar provided unde. which a parallel, partially asynchronous implementation of the iteration
x:= f(x) conv rges. These results are then applied to (i) quadratic programming subject to box constraints,
(ii) strictly co vex cost network flow optimization, (iii) an agreement and a Markov chain problem, (iv)
neural networ optimization, and (v) finding the least element of a polyhedral set determined by a weakly
diagonally do inant, Leontief system. Finally, simulation results illustrating the attainable speedup and the
effects of asy chronism are presented.
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1. Intr uction. In this paper we consider the computation of a fixed point of a
nonexpans. e function f using parallel, partially asynchronous iterative algorithms of
the form x: f(x). We give sufficient conditions under which such algorithms converge,
we show t at some known methods satisfy these conditions, and we propose some
new algori ms. The convergence behavior of our methods is qualitatively different
from the co vergence behavior of most asynchronous algorithms that have been studied
in the past y many authors [1]-[3], [5], [8], [27]-[30].

We co sider a fixed point problem in the n-dintensional Euclidean space !}i". We
are given f nctions /;;!}i" -.!}i, i = 1, ..., n, and we wish to find a point x* E!}i" such
that I

x* = f(x*),

wheref:ffl -+ffl" is defined byf(x)=(ft(x),... ,fn(x)).
We co sider a network of processors endowed with local memories, which com-

municate b message passing, and which do not have access to a global clock. We
assume tha there are exactly n processors, each of which maintains its own estimate
of a fixed oint, and that the ith processor is responsible for updating Xi, the ith
component of x. (If the number of processors is smaller than n, we may let each
processor pdate several components; the mathematical description of the algorithm
does not c nge and our results apply to this case as well.) We assume that processor
i updates i component by occasionally applying /; to its current estimate, say X, and
then trans itting (possibly with some delay) the computed value /;(x) to all other
processors, which use this value to update the ith component of their own estimates
(see Fig. 1. ).

We us a nonnegative integer variable t to index the events of interest (e.g.,
processor pdates). We will refer to t as time, although t need not correspond to the
time of a g obal clock. We use the following notations:
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EVASION GAME ON A FINITE TREE 677

individual case. t would not. per set show the general influence of graph structure on
the value. For in tance. when the graph is not a tree. the components of the value may
not all be equal. In illustrating some of these points we shall restrict our attention to
games where th evader must move.

For the gra h in Fig. 1 it is easy to show that the value v is given by VI = V2 = !.
V3 =~. and Vi = ~ otherwise. Now consider the graph in Fig. 2 where it is considerably
more difficult t establish that the value V = (vA. vB) is given by v~ = v'i = !. v: =
(5 -..f7)/6. v~ = otherwise. and v~ = v~ for all i. It appears from these two examples
that a comprehe sive structure theory relating the value of a graph to the value of its
"constituent pa s.. in unlikely.
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~ (b) FIG. 1.1. (a) ocessor i computes new estimate of the ith component of a fixed point. (b) Processor i

transmits new estim e to other processors.

Xj(t) = ith c mponent of the solution estimate stored by processor i at time t.
ffj = an i finite set of times at which processor i updates Xi.

'Tij(t) = a ti e at which the jth component of the solution ~stimate stored by
proc ssor i at time t was stored in the local memory of processor j
(j= ,.", n; tE ffj). (Naturally, 'Tij(t)~ t.)

In accordance w th the above definitions, we postulate that the variables Xj(t) evolve
according to:

The initial c nditions Xj(O) are given, and for notational convenience we assume
that Xj(t)=Xj(O) or t~O, so that the asynchronous iteration (1.1) is well defined for
TU(t)~O. We ma view the difference t-TU(t) as a "communication delay" between
the current time t and the time TU(t) at which the value ofthejth coordinate, used by
processor i at ti t, was generated at processor j.

Asynchronou computation models may be divided into totally asynchronous and
partiallyasynchro ous. In the totally asynchronous model [1]-[3], [8], [30], the "delays"
t -TU(t) can beco e unbounded as t increases. This is the main difference with the
partially asynchro ous model, where the amounts t -TU( t) are assumed bounded; in
particular, the fol wing assumption holds.

Assumption. (Partial Asynchronism). There exists a positive integer B such
that, for each i an each t E :J'j, there holds:

(a) O~t-Tu t)~B-l,foralljE{I,...,n}.
(b) There exi ts tt E f!j'j for which 1 ~ tt ~ t ~ B.

(c) Tjj(t)=t.
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Parts ( ) and (b) of Assumption A state that both the communication delays and
the process r idle periods are bounded and can be expected to hold in most practical
cases; for e ample, (b) holds if each processor uses a local clock, if the ratio of the
speeds of di erent local clocks is bounded, and if each processor computes periodically
according t its own local clock (see [7], p. 484). Part (c) of Assumption A states that
a processor. always uses the most recent value of its own component Xi' This assumption
typically h Ids in practice, but it is interesting to note that, while it is necessary for
our results ( ee the proof of Lemma 2.3(a», it is not needed in the convergence analysis
of totally a ynchronous algorithms.

Partial asynchronous iterations have already been studied in the context of
gradient op imization algorithms, for which it was shown that convergence.is obtained
provided th t the bound B of Assumption A is sufficiently small [27]-[29]. Our results
concern a f ndamentally different class of partially asynchronous methods which are
convergent or every value of the bound B. At least two interesting examples of such
methods ar known: the agreement algorithm of [29] and the Markov chain algorithm
of [20]. Ho ever, it appears that these methods have not been recognized earlier as
a class. Th ir convergence behavior is somewhat surprising because their totally
asynchrono s versions do not converge in general; for a counterexample, see [7, p. 484].

In this aper we focus on the convergence issues of partially asynchronous methods
with arbitra ly large values of the asynchronism bound B. Our main result (Proposition
2.1) is the fi st general convergence result for these methods. In §§ 3- 7, we show that
Proposition .1 applies to a variety of methods for several important problems, including
the agreem t and Markov chain algorithms mentioned earlier. Some of our conver-
gence resul are new, even when they are specialized to the case of synchronous
algorithms; for example, the convergence of Jacobi relaxation methods for strictly
convex cost network flow problems in § 4.

2. A ~ neral convergence theorem. Throughout this paper, we let X* =
{xEmnlf(x =x} be 1:he set of fixed points off and, for each XEmn, we let Ilxll =
maXi=I n I il denote the maximum norm of x. For any x E mn, we denote by p(x) the
distance of from X*, defined by

p(x)=infYEX*lIx-yll.

Finally, giVf any x E mn and x* E X*, we let I(x; x*) be the set of indices of coordinates of x that ar farthest away from x*, that is,

I

I(x; x*) ={illxj -xtl = IIx-x*II},

and we alsol denote

V(X; X*) = {y E ffln IYi = Xi for all i E I(x; x*),

I r andIYi-xfj<llx-x*ll for all ieI(x;x*)}.

$c." Loosely sp aking, U(x;x*) is the set of a" vectors y with lIy-x*II=lIx-x*1I that
agree with in the components that are farthest away from x* (see Fig. 2.1).

Our m in assumption on the structure of f is the following.
Assum lion B.
(a) f i continuous.
(b) Th set of fixed points X* is convex and non empty.



681P~RTIALL Y ASYNCHRONOUS. PARALLEL ALGORITHMS

FIG. 2.1. IIlustra~on of the sets I ( .; x*) and U( .; x*). Let n = 2 and suppose that x* = (0, 0) E X*. For
the indicated points x, ,and w, we have I(x; x*) = {I, 2}, I(v; x*) = {I}, I(w; x*) = {2}. The set U(v; x*) is
the set of all vectors 0 the form (-I, c), where c satisfies -1 < c < I, which is the segment joining the points
(-1,-1) and (-1,1), the endpoints excluded. Similarly, U(w;x*)={(c,I)I-I<c<I}. Finally, we have
U(x;x*)={x}. I

(c) IIf(x)-x 1I~lIx-x*lI,forallxE!Jtn,forallx*EX*.
(d) For eve x E!Jtn and x* E X* such that IIx -x*1I = p(x) > 0, there exists some

i E I(x; x*) such t at j;(y) ~ Yi for all Y E U(x; x*).
Part (C) of sumption B states that f does not increase the distance from a fixed

point and will b referred to as the pseudo-nonexpansive property. This is slightly
weaker than requ ring that f be nonexpansive (that is, IIf(x) -f(y) II ~ IIx- yll for all
x and y in !Jtn) a d in certain cases is easier to verify (see § 4). We interpret part (d)
as follows: Consi er some x e X*. Then f(x) ~ x, and there exists some i such that
j;(x) ~ Xi. Assum tion B(d) imposes the additional requirement that such an i can be
found among the et of worst indices, that is, i belongs to the set I(x; x*) of indices
corresponding to omponents farthest away from a closest element of X*. Furthermore,
if we change som of the other components of x to obtain another vector YE U(x; x*),
we still retain the property j;(y) ~ Yi, for this particular i. This part of Assumption B
is usually the mo difficult to verify in specific applications.

Unfortunatel , the following simple example shows that Assumptions A and B
alone are not su cient for convergence of even the synchronous version of iteration
(1.1): Suppose th t f(xl, X2:) = (x2, Xl) (which can be verified to satisfy Assumption B
with X* = {(A, A) A e !Jt}). Then the sequence {x(t)} generated by the synchronous
iteration x( t + 1) f(x( t» (which is a special case of (1.1», with x(O) = (1, 0), oscillates
between (1,0) an (0,1).

The difficulty in this example is that, at each iteration, while the worst coordinate
i E I (x; x*) is cha ged from 1 to 0, the other coordinate is increased from 0 to 1, and
the distance p(x) from X* is not changed. The following assumption is designed to
prevent such beh vior.

Assumption. For any i, XE!Jtn, and X*EX*, ifj;(x)~xi, then 1j;(x)-x11<
Ilx-x*lI.
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An mportant fact, shown below, is that any mapping satisfying Assumption B
can be odified by introducing a relaxation parameter, so that it satisfies Assumption
C as wel .

LE MA2.I. Let h:!)tn -'J. !)tn beafunction satisfying Assumption B. Then the mapping
f:!)tn-'J. n whose ith component is

j;(x) = (1- 'Yj)Xj + 'Yihj(x),

where 'YI .'., 'Yn are scalars in (0,1), has the same set of fixed points as h and satisfies
both Ass mptions Band C.

Proo. It is easily seen that f is continuous and has the same set of fixed points
as h, so i satisfies parts (a) and (b) of Assumption B. Since j;(x),= Xi if and only if
hi(x),= Xj we see that f satisfies part (d) of Assumption B. Since h is pseudo-
nonexpan ive, for all i, X E !)tn, and x* E X*, both Xj and hj(x) belong to the interval

[xt-llx-x*II, xt+ IIx-x*II].

Therefore j;(x), which is a convex combination of Xj and hj(x), must also belong to
this interv I, proving that f is pseudo-nonexpansive, (cf. part (c) of Assumption B).
Furtherm re, if hj(x),= Xi, then the convex combinationj;(x) must belong to the interior
of this int rval, showing that f satisfies Assumption C. 0

We n w prove our main convergence result, showing that Assumptions A, B, and
Care suffi ient for the sequence {x(t)} generated by the asynchronous iteration (1.1)
to converg to an element of X*. To motivate our proof, consider the synchronous
iteration x t+ 1) = f(x(t». Under Assumptions Band C, either (i) p(x(t+ 1» < p(x(t»
or (ii) p(x t+I»=p(x(t» and x(t+I) has a smaller number of components at a
distance p (t» from X* than x(t). Thus, case (ii) can occur for at most n successive
iterations fore case (i) occurs. This argument can be extended for the asynchronous
iteration (1 1), but because of communication and computation delays (each bounded
by B, due t Assumption A), the number of time steps until the distance to X* decreases
is upper b nded by roughly 2nB (see part (c) of Lemma 2.3).

PROPO ITION 2.1. Suppose thatf:!)tn-'J.!)tn satisfies Assumptions Band C, and
suppose th t Assumption A (partial asynchronism) holds. Then the sequence {x(t)}
generated b the asynchronous iteration (1.1) converges to some element of X*.

Proof. or each integer t:S;; 0 denote

z(t)=(x(t-B+I),'. .,x(t»,

d(z(t»= min {max{IIx(t-B+I)-x*II,.'., IIx(t)-x*II}}.x.eX.
Notice that he minimum in the definition of d(z(t» is attained because the set X*
is closed (as a consequence of the continuity of /). For each t ~ 0, we fix an element
x*( t) of X*' attaining the minimum

I

(2.1) *(t)=argmin{max{lIx(t-B+l)-x*II,'.., IIx(t)-x*II}}.
x.eX.

As part I f the proof of Proposition 2.1, we prove some preliminary facts in the

following tw lemmas, which show that the distance d(z(t» cannot increase at any
iteration whi e it decreases strictly "every few" iterations.

LEMMA .2. d(z(t+l»~d(z(t»,forallz(t)Effl"B,forallt~O.
Proof. e will prove by induction that

IIx(r) -x*(t)1I ~ d(z(t», Vr~ t-B+ 1,
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which implies thelresult. From (2.1) and the definition of d(z(t», this inequality holds
for rE{t-B+I, .., I}. Suppose that it holds for all rE{t~B+I,..., r'}, where r'
is some integer g eater than or equal to t. We will show that it holds for r' + 1. By
(1.1), for each i, ether xj(r' + 1) = xj(r') or x;(r') = /;(x\( T;\(r'», ..., xn( T;n(r'»). In the
former case, we have Ix;(r'+I)-xr(t)I=lxj(r')-xr(t)!~d(z(t» by the induction
hypothesis. In th latter case, we have by Assumption A(a), r'-B+ 1 ~ Tij(r') ~ r', so
by the induction ypothesis, Ixj( Tij(r'» -xj(t)1 ~ d(z(t» for all j Using the pseudo-
nonexpansive pro erty of Assumption B(c), we obtain

I (r' + 1) -xr(t)! ~max Ixj( Tij(r'» -xj(t)! ~ d(z(t».
J

Thus, in either c se we have Ixj(r'+I)-xf(t)l~d(z(t». and this is true for every
index i. Therefore IIx(r'+I)-x*(t)lI~d(z(t», completing the induction. 0

LEMMA 2.3. ix some t~Ofor which d(z(t»>O and denote

J(r)={illxj(r)-xf(t)l=d(z(t»}. Vr~t.

(a) lfxj(r I) ¥xj(r) for some r~t, then ieJ(r+I).

(2.3) (b) J(r+1 ~J(r),forallr~t.

(c) d(z(t 2nB+B-I»<d(z(t».

Proof. For co venience, we will use the notation

f3 = d(z(t», x*=x*(t).

(a) If xj(r+ 1 ¥ xj(r), we have rE fij. Furthermore,

j;(x (Tjl(r», ..., xn( Tjn(r») = xj(r+ I) ¥ xj(r) = xj( Tjj(r».

where the last equ lity follows from Assumption A(c). Using Assumption C, we obtain

Ixj(r+ I) -xtl < m!lx Ixj( Tij(r» -xl! ~ f3.
J

where the last ine uality follows from r -B + 1 ~ 'Tij( r) ~ r (cf. Assumption A(a» and
Lemma 2.2 (cf., ( 2». Thus, ieJ(r+1).

(b) If iEJ(r 1), then part (a) shows that x;(r)=x;(r+1), which implies that
i E J(r).

(c) We first s ow by contradiction that, for all r~ t,

(2.4) d(z(r+2B» =/3~J(r+2B) ~ J(r).

Suppose that, for orne r~t, we have d(z(r+2B»=/3 and J(r)=J(r+2B). By part
(b), J(r)=J{r+1 =... =J(r+2B). Denote J=J(r). Then, by part (a),

(2.5) Xj(r) = xj(r+ 1) =. ..= xj(r+2B),

and by the definit~on of J,

(2.6) 1Xj(r)-XrI<fJ , Ixj(r+2B)-xtl<fJ. Viejo

Now. from the de nition of J. x* and fJ we have that Ixj(r) -xfl~ fJ for all i E J; hence

(2.6) implies

(2.7) J = l(x(r); x*).IIx(r) -x*1I = fJ,
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Also bY1 sumption A(b), for each ie J, there exists rj e {r+ B,. .., r+2B -I} such

that rj e and the iteration (1.1) yields

(2.8) ! xj(r; + I) = /;(x\( 7;\(r;», ..., xn( 7;n(r;»), Vi e J.

Let us deqote

x; = (x\( T;l(r;)), ...,Xn( Tin(ri))), Vi e J.

By Assum tion A( c), T;i(r;) = r; for aU i E J, which together with (2.5) implies that

x;(rj+l)=xi(Ti;(r;)), VieJ.

Therefore, (2.8) can be written as

(2.9) x: = };(Xi), Vi e J.

Furthe e, by Assumption A(a), r~Tij(ri)~r+2B for all ieJ and all j, which
togethe th (2.5)-(2.6) implies that

xJ=xj(r), VieJ, VjeJ,

IxJ-xjl<{J, VieJ, VjtJ.

There~ rom (2.7) we also have

(2.10) xieU(x(r);x*), Viejo

It now s that

~ fJ = Ilx(r) -x*11 > p(x(r»,

since if IIx r)-x*II=p(x(r», then in view of the fact I(x(r);x*)=J (cf. (2.7» and
(2.9)-(2.1 , Assumption B(d) would be violated.

Thus, e conclude that there exist y* E X* and (J E [0, fJ) such that Ilx(r) -y*II = (J.

l E = max {Ixj(m) -xfll i e J, m = r+ B, ..., r + 2B -1},

M =max {Ixj(m)- yfllie J, m = r+B,.. ., r+2B-1}

(see Fig. 2.' ). Since X* is convex, we have that, for any tJJ E (0, 1), z* = (1- tJJ )x* + tJJY*

FIG". 2.2
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is in X* and to m=r+B... r+2B- I, " ,
I
: Ix;(m)-ztl=lx;(r)-ztl

~ (1-(lJ)lx;(r)-xtl+(lJlx;(r)- ytl
= (1-(lJ)P+(IJ(J, ViEJ,

Ix.(m) --zfl ~ (1- (IJ )Ix;(m) -xtl + (lJlxi(m) -yfl

~(I-(lJ)e+(lJM, VieJ.
Since e < P and (J < p, we have that, for (IJ sufficiently small,

/lx(m)-z*/I<P, Vm=r+B,...,r+2B-I.
This implies tha d (z( r + 2B -I» < p, a contradiction.

Since by L mma 2.2, d(z(r» is nonincreasing, either d(z(t+2nB-I»<P, in
which case the suIt is proved, or d(z(t+2nB-I»=p. In the latter case, by (2.3)
and (2.4), J(t+ nB)=.. .=J(t+2nB+B-I)=(2j, and

d(z(t+2nB+ -I» = max {lIx(t+2nB) -x*II,. ." /lx(t+2nB+ B-1) -x*lI} <po

0
We now co plete the proof of Proposition 2.1.
By (2.2), t e sequence {Z(I)} is bounded and, by Lemma (2.3)(c)~ d(z(I»

monotonically d creases to some limit .8. If.8 = 0, then Lemma 2.2 and (2.2) imply
that {xC r)} has a nique limit point, which is in X*, and our proof is complete. Suppose,
to obtain a cont diction, that .8 > 0. Let

I t11=2nB+B-1.

Since, by (2.2), Z(I)} is bounded, there exist some Z*EfflnB, z**EfflnB and a sub-
sequence T of { I,..'} such that
(2.11) I

I {Z(t)}'ET-+ z*, {z(I+t1t)}'ET-+ z**.
Note that since d(z(t»-+.8 and d is a continuous function, (2.11) implies that
d(z*) = d(z**) = .

From (1.1), ssumption A and the definition of z(t), we see that we can express
Z(I+t1I) as a co tinuous function of Z(I). In particular, we can write

(2.12) z(t+t1t) =g(z(I); f(t»,
where f(l) = (f 1( ),' .., f n(t» and f j(l) denotes the set

(2.13) fj(t) {(r-t,Tjl(r)-t,...,Tjn(r)-I)lrEffjn{I,"',I+t1I}},
and g(.; f( t» : nB -+ ffl nB is some continuous function that depends on f and f( t)

only. (Note that (.; f(I» is the composition of the };'S in an order determined by
f(t) and is conti uous becausefis continuous.) Since (cf. (2.13) and Assumption A)
f( t) takes values rom a finite set, by further passing into a subsequence, if necessary,
we can assume th t f(t) is the same set for all IE 7: Let f= (f 1,. .., f n) denote this
set. Then from (212) we obtain that

z(I+t1t)=g(z(I);f), VIE 7:

Since g(.; f) is c ntinuous, this, together with (2.11), implies that z** = g(z*; f) or,
equivalently, z(t1 ) = z** if z(O) = z* and

{r,Tjl(r),...,Tjn(r»lrEffjn{O,...,t1I}}=fj, Vi.
Since d(z*)=.8 0, this, together with Lemma 2.3(c), implies that d(z**)<d(z*),
contradicting the ypothesis d(z**) =.8. 0
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The co vexity of X* is sometimes hard to verify. For this reason we will consider
another ass mption that is stronger than Assumption B but is easier to verify.

Assum tion B'.
(a) J i continuous.
(b) Th set of fixed points X* is nonempty.
(c) IIfx)-x*II~lIx-x*lI, for all xEffi", for all X*EX*.
(d) Fo everyx~ X* and X*E X*, there exists some iE I(x; x*) suchthat/;(y) ~Yi

for all y E (x; x*) such that y ~ X*.
Compa ed to Assumption B, part (d) of the new assumption is stronger but part

(b) is weak r because convexity is not assumed. We have the following result.
LEMM 2.4. Assumption B' implies Assumption B.
Proof t can be seen that Assumption B'(d) implies Assumption B(d), so we only

need to sho that X* is convex. Suppose the contrary. Since X* is closed, then there
exist x* E * and y* E X* such that (x* + y*)/2 ~ X*. Let x = (x* + y*)/2. It can be

seen that II -x*II=lIx-y*II>O,x~X*, and I(x;x*)=I(x;y*) (see Fig. 2.3). By
Assumptio B'(d), there exists i E I(x; x*) such that /;(x) ~ Xi' Suppose that Xi> yr.
Then if /;x»Xj, we obtain IIJ(x)-y*II~/;(x)..:.yt>Xi-yt=lIx-y*1I and if
/;(x) < Xi, e similarly obtain IIJ(x) -x*1I > IIx -x*lI. In either case Assumption B'(c)
is contradi ed. The case where Xj <yt is treated analogously. 0

Assum tion B will be used in § 4, while Assumption B' will be used in §§ 3, 6,
and 7.

3. Non xpansive mappings on a box. Let g: ffi" ~ ffi" be a continuously differenti-
able functi n satisfying the following assumption:

Assum tion D.
(a) Fo each i, L;=llagi(x)/axjl~l, for all xEffi".
(b) Fo each i andj, either agj(x)/axj =0, for all XE ffi", or agj(x)/axj ~O, for all

XEffi". I

"' * :

.x :",."",'.

xx

~...* *
II x -y IIII xx-. Y"II

= I(x;y*) = {2}. I(x;x*)

FIG. 2.3. Two configurations of x* and y*.

= I(X;Y*) = {1,2}.I(x;x*

(c) Th graphwithnodeset{l,..., n}andarcset{(i,j)lagi(x)/axj;60}isstronglyconnected. .

Let C e a box (possibly unbounded) in m", i.e.,

c={xEm"II;~xi~c;, Vi},
for some sc lars ,; and c; satisfying Ii ~ cj (we allow I; = -00 or c; = +00). Let also [x]+

',:., ..., 'X
' ; ...

:', *:
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denote the orth gonal projection of x onto C, i.e.,

[ ]+=(max{11,min{c1,x1}},'" ,max{ln,min{cn,xn}}),
We use the not tion x T to denote the transpose of a column vector x. The following

is the main res It of this section.
,

PROPoSITI N 3.1. Let g:!:}in ~!:}in satisfy Assumption D. If either g has a fixed point
or'if C is bound, d, then the function h:!:}in ~!:}in defined by

(3.1) h(x);::[g(x)]+

satisfies Assum ion B'.
Proof. Sinc both g and [.]+ are continuous functions, so is their composition,

and part (a) of ssumption B' holds.
By the Me n Value Theorem, for any x E !:}in, y E !:}in, and index i, there exists

~ E!:}in such that

(3.2) gj(Y)- gj(x) = (Vgj(f,))T(y_X).

This implies tha

Ig;(y)-g;(x)I~L lag;(~)/axjlly;-x;1
j

~ (t lag;(~)/axjl)lIx- yll

~lIx-yll,
where the last i equality follows from Assumption D(a). Since the choice of i was
arbitrary, g is n nexpansive with respect to the maximum norm. Since projection
onto a box can b easily seen as nonexpansive with respect to the maximum norm, it
follows from (3. ) that IIh(x)-h(y)II~lIg(x)-g(y)lI. Thus, h is non expansive with
respect to the m ximum norm, and part (c) of Assumption B' is satisfied.

We now sho that h has a fixed point. Suppose first that g has a fixed point y*.
Choose /3 suffici tly large so that the set Y = {x E m" Ilix -y*1I ~ /3} n Cis nonempty.
Then for every x Y we have, for all i,

y1- f3 ~ g;(x) ~y1+ /3,

and

either li~gi(X)~Ci or gi(x)<li~yr+f3 or yr-f3~Ci<gi(X).

Since hi(x)=ma~{li.min{Ci.gi(X)}}, this implies that h(x)e Y (see Fig. 3.1 below).

,"""""""
,
,

: g (x)
,
,
,
,: x ,, *,
~-T'" y ~

, ,
, ,
, ,
, ,
, ,
, ,
, ,
, ,
.,
, ,
' '

FIG. 3.1

y
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Since h is so continuous and Y is convex and compact, a theorem of Brouwer ([11],
p. 17) sho s that h has a fixed point. Now suppose C is bounded. Since h(X)E C for
all x E Cad C is convex and compact, the same theorem of Brouwer shows that h
has a fixed point. Thus, part (b) of Assumption B' is satisfied.

We fi ally show that Assumption B'(d) holds. Suppose the contrary. Then
there exist some x j~ X* and some x* E X*, such that for every i E I(x; x*) there
is an Xi E (x; x*) with Xi e X* and hi(Xi) = x:. Let I = I(x; x*), .s = IIx -x*1I and fix
some i E I. Y th~ ~ean Value Theorem, there exists some f; E ffln such that gi(Xi)-
gi(X*) = (V i(t=» (x' -x*). Let aj = iJgi(t=)/iJXj' Then

.s = Ix: -xfl = Ihi(Xi) -hi(x*)1

:;;E Igi(Xi) -gi(x*)1

= 17 aj(x;-x!) I

~ ( I lajl).s+ ( I lajllx;-x!l )jeJ j~J

~.s+ I !aj!(lx;-x!I-.s),
j~J

where the cst inequality follows from the fact that the projection onto [Ii' Ci] is
nonexpansve and the last inequality follows from the fact (cf. Assumption D(a» that
Ij jail ~ 1. ince Ix; -.x!1 <.s for all j e I, the above inequality implies that aj = 0 for
all j e I. Si ce the choice of i E I was arbitrary, we obtain from Assumption D(b) that
iJgi(t=)/iJXj 0 for all t=Effln, iEI, jeI. By Assumption D(c), we must have that
I = {I, ...n}. In that case, U(x; x*) is a singleton and all the vectors Xi, are equal.
It then foil ws from the equalities hi(xi) = x:, for all i, that each Xi is a fixed point of
h, a contra iction of the hypothesis Xi e X*. 0

Since sumption B' is satisfied, the partially asynchronous iteration

x:= (1- y)x+ y[g(x)]+

(with 0< y< 1) converges (cf. Lemmas 2.1, 2.4, and Proposition 2.1).
An im ortant special case is obtained if C = ffln, g(x) = A.x+ b, where A is an

n x n matri and b is a given vector in ffl n. Thus, the problem is to solve the linear system

I x = A.x + b, .

and Assu ption D amounts to the requirement that A = [au] is irreducible (see [22]
fora definiion of irreducibility) andIj laul~ 1, for all i. Then, provided that the system
x = A.x + b as a solution (not necessarily unique), the partially asynchronous iteration

x:= (1- y)x+ y(Ax+ b)

(with 0 < < 1) will converge to such a solution.
As a s ecial case of our results, we obtain convergence of the synchronous iteration

I x(t+l)=(I-y)x(t)+y(Ax(t)+b).
This seem to be a new result under our assumptions. Previous convergence results
[17], [22] ave made the stronger assumption that either: (a) A is irreducible and
Ij lau!:;;E 1, for all i, ,~ith strict inequality for at least one i, or (b) Ij laul < 1, for all i.
Two other importan1: special cases are studied below.

3 uadratic (:osts subject to box constraints. Consider the following problem.
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Minimize xT~/2+pTX
(3.3)

Subject to x E C,
I

where Q = [qij] i a symm~:tric, irreducible, nonnegative definite matrix of dimension
n x n satisfying t e weak dliagonal dominance condition

(3.4) I Iqijl~q;;, q;;>O, Vi,
j..;

p is an element If !Jtn, and C is, as before, a box in !Jtn.
Let V denot the diagonal matrix whose ith diagonal entry is q;;. Let A = 1- V-IQ

and b = -V-I p. e have the following result.
PROPOSITIO 3.2. 11Ij~ function g:!Jtn..".!Jtn defined by g(x) = Ax+ b satisfies

Assumption D. I
Proof g is clearly continuously differentiable and (cf. (3.4» Ij laijl =

Ij..; Iqijl/q;; ~ 1 ~ all i. Sinceag;(x)/aXj = aij for all XE!Jtn and A is irreducible, g satis-
fies Assumption 0

It can be se (by using the Kuhn-Tucker optimality conditions [23]) that each
optimal solution of (3.3) is a fixed point of [Ax+b]+ and vice versa, where [.]+
denotes the orth gonal projection onto C. Hence, if (3.3) has an optimal solution,
then (cf. Lemma 2.1, 2.4, and Propositions 2.1, 3.1, 3.2) the partially asynchronous
iteration I

(3.5) x:= (1- y)x+ y[Ax+ b]+

(with O<y<l) nverges to such a solution. Note that for y=l, the iteration (3.5)
takes the fonn x: [x -D-1( Qx+ P )]+ which is a diagonally scaled gradient projection
iteration. Howeve , this iteration need not be convergent in the absence of additional
assumptions.

3.2. Separa quadratil~ costs with sparse 0, + 1, -1 matrix. Consider the following
problem.

Minimize wTDw/2 +.8 TW
(3.6)

Subject to Ew s; d,

where D is an m m positive definite diagonal matrix, .8 is an element of mm, d is
an element of ffl", nd E = [eik] is an n x m matrix having at most two nonzero entries
per column, and ach nonzero entry is either -lor 1. Furthermore, we assume that
the undirected gr h CO with node set {I,. .., n} and arc set {(i, j) I eik,c 0 and ejk,c 0
for some k} is co nected.

Consider the ollowing Lagrangian dual [23] of (3.6).
iI Minimize xTQx/2+pTX

Subject to x s; 0,

where Q = ED-t , p = -d -ED-1.8. We show below that this is a special case of the
problem consider in the previous subsection.

PROPOSITION 3.3. Q is symmetric, irreducible, nonnegative definite and weakly
diagonally domina t (cf. (3.4».

Proof. Since is symmetric and positive definite, Q is symmetric and nonnegative
definite. To see tha Q satisfies (3.4), let ak denote the kth diagonal entry of D (ak > 0),
let O( i) denote th set of indices k such that eik ,c 0, and let qi; denote the (i, j)th entry
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of Q. Th~n

Iqijl = It eik(ak)-lejk I

~ L (ak)-l,
kEO(i)nO(j)

with equ lity holding if i = j. Hence, for each i,

L Iqijl~ L L (ak)-l
j..i j..i kEO(i)nO(j)

~ L (ak)-l
kEO(i)

= qii,

wher second inequality follows from the fact that if k E O( i) n aU) for some j,
then (i) n aU') for all j' not equal to i or j. Finally, Q is irreducible because cg
is conne ed and qij'= 0 for i,= j if and only if there exists some k such that eik'= 0
and ejk'=. 0

An e ample of constraints Ew ~ d satisfying our conditions on E is

L Wk ~ 1 and L Wk ~ 0 for r = 1,2, ..., R,
k kEK,

where K , K2,. .., KR are some mutually disjoint subsets of {1, 2,. .., m}. Such
constrain s often arise in resource ~lIocation problems.

4. S rictly convex cost network flow problems. Consider a connected, directed graph
(network with the set of nodes X={1,..., n} and the set of arcs d£XxX. We
assume t at i,= j for every arc (i, j) and that at most one arc connects any ordered
pair of n des, so that the arc (i, j) has unambiguous meaning. (These restrictions can
be easily emoved.) For each node i E X, denote by <fiJ (i) the set of downstream neighbors
of i (that.s, <fiJ(i) = VI (~j) Ed}) and by O/L(i) the set of upstream neighbors of i (that
is, U(i) {jIU, i) Ed}). Consider the following problem:

(4.1) Minimize L aij(h)
(i,j)Ed

(4.2) Subject to L fij- L }ji = Si, ViE X,
jE!1J(i) jE'tL(i)

where ea h aij: VI ""* ( -00, +00] is a strictly convex, lower semi continuous function and
each Si is a real number. We interpret h as the flow on the arc (i, j), Si as the supply
(or dema d if Si < 0) at node i, and aij(fij) as the cost of sending a flow of fij on arc
(i, j). Th goal is then to find a set of arc flows that minimizes the total cost while
satisfying the flow conservation constraints (4.2) (see Fig. 4.1). Note that capacity
constrain s of the form

bij~fij~cij,

O/[(i) ~(i)

FIG. 4.1
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where bij, Cij are iven scalars, can be incorporated into the cost function aij by letting
aij(fij) = +00 for ijE.[bij,cij]'

The above etwork flow problem is an important optimization problem, with
applications to d ta networks, traffic assignment, matrix balancing, etc. The interested
reader is referre to [7, Chap. 5] for a detailed discussion of this problem. (Also see

[5], [6], [9], [12) [21], [24], [31]-[33].)
Denote by Ii:!rt ..". ( -00, +00] the conjugate function ([23, § 12]; [24, p. 330]) of

aij, i.e.,

(4.3) gij(1J) = sup {(1J-aij«()}'
.e~JI

Each gij is conve and, by assigning a Lagrange multiplier Pi (also called a price) to
the ith constraint of (4.2), we can formulate the dual problem ([24, § 80]) of (4.1) as
the following co ex minimization problem.

I Minimize q(p)= L gij(Pi-pj)- L PiSi

(i,j)e.ol ie.N"

(4.4)
Subject to P E !}l".

We make the foIl wing assumption.
Assumption
(a) Each co ugate function gij is real valued.
(b) The set * of optimal solutions of the dual problem (4.4) is nonempty.

Assumption E im lies (cf. [24, § lID]) that the original problem (4.1) has an optimal
solution, and the ptimal objective value for (4.1) and (4.4) sum to zero. Furthermore,
the strict convexit of the aij's implies that (4.1) has a unique optimal solution, which
we denote by f* = ...,ft, ...)(i.j)E..t' and that every gij is continuously differentiable
([23, pp. 218, 2531 ). Hence q given by (4.4) is also continuously differentiable. Its
partial derivative q(p)/api' to be denoted by di(p), is given by

I

aq(p)
(4.5) dj( )=-= L Vgij(Pi-pj)- L Vgji(Pj-Pi)-Sj.

apj jE~(i) jE'tl(i)

Given a price vector P E !}l", we consider an iteration whereby the dual objective
function q is mini ized with respect to the ith coordinate Pi, while the remaining
coordinates are he d fixed. In view of the convexity and the differentiability of q, this
is equivalent to sol ing the equation di(PI, ...,Pi-I, 8, Pi+I' ...,p") = 0 with respect
to the scalar 8. This equation can have several solutions and we will consider a mapping
which chooses the solution that is nearest to the original price Pi. Accordingly, we
define a function: m" -+ !}l" whose ith coordinate is given by

(4.6) hi(p) argmin{18-pilldi(PI,...,pi-I,8,pi+I'...'p")=O}.

We will show later in Lemma 4.1 that the set in (4.6) is nonempty and the minimum
in (4.6) is attaine , so that h is well defined. Notice that h(p) = P if and only if
aq(p)/api = dj(p) 0 for every i. It follows that P* is the set of fixed points of h.

Since q is con ex, the set p* is convex (P* is also nonempty by assumption).
Also from Proposit on 2.3 in [6] we have that, for any P E!}l" and any p* E P*,

I!1 n {Pj- pj}~ hi(p)- pr~max {Pj-pj}, ViE J{,
JE JE.K

and hence h has thf pseudo-nonexpansive property

1'" Ilh(p)-p*II~llp-p*11
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Furthermo e, by using Proposition 1 in [5] and an argument analogous to the proof
of Proposi on 2.5 in Chapter 7.2 of [7], we can show that the mapping h is continuous.
Therefore, h satisfies parts (a)-(c) of Assumption B. We show below that h is well
defined an also satisfies part (d) of Assumption B.

LEMM 4.1. The mapping h is well defined and satisfies Assumption B(d).
Proof. We start by mentioning certain facts that will be freely used in the course

of the pro f.
(a) F r any (i, j) ed, the function V gij is non decreasing. (This is because gij is

convex.)
(b) di m" -+ m is a nondecreasing function of the ith coordinate of its argument

when the ther coordinates are held fixed. (This is because the dual functional q is
convex an di =aqjapi')

(c) A vector p* e m" belongs to P* if and only if, for every arc (i, j), we have
V gij(pf -p ) = It. (This is a direct consequence of the Network Equilibrium Theorem
in [24, p. 3 9].)

We fir t show that h is well defined. Fix any p e m" and any i. We claim that there
exists 8\ s ch that di(p + 8\ ei) ~ 0, where ei denotes the ith coordinate vector in m".
To see this, letp* be any element of P* and let 8\ be any scalar sufficiently large so that

Pi -Pj+ 8\ ~pf- pj, Vje fj1J(i),

pj-Pi-8\~pj-pf, Vje OU(i).
Since V gkl S nondecreasing for all (k, I) e d, this implies that

Vgij(Pi-pj+8\)~Vgij(pf-pj)=lt, Vjefj1J(i),
V ~;i(Pj -Pi -8\) ~ V gji(pj -pr) = Ijt, Vj e OU(i).

Upon sum ing the above inequalities, we obtain that

di(p+8\ei)= L Vgij(Pi-pj+8\)- L Vgji(Pj-Pi-8t)-Si
je~(i) jE'i/(i)

~ ~ I ! -~ I ! -s-
-L.. I} i... }I I

je~(i) je'i/(i)

=0 ,
where the ast equality follows because the flows It and fit must satisfy the flow
conservati n equation (4.2). Similarly, we can show that there exists 82 such that
di(p+ 82ei ~O. Since di(p+ 8ei) is a continuous function of 8, this implies that there
exists som 8 between 8\ and 82 such that di(p + 8ei) = o. Therefore the set in (4.6) is
nonempty. Since this set is also convex (due to the convexity of q) and closed (due
to the cont nuity of di), the minimum in (4.6) is attained. Hence h is well defined.

Now e show that h satisfies Assumption B(d). We will argue by contradiction.
Suppose th t h does not satisfy Assumption B(d). Then for some pe p* and p*e P*
such that II -p*1I = p(p) > 0 there exists, for every i e I(p; p*), a vector pi e U(p; p*)
such that (pi)=p:. (p(p) denotes the maximum norm distance ofp from P*.) Let
fJ=p(p), =I(p;p*), e=f3-max{lp~-pfllieJ,keJ}, and

J-={ilpi-pf=-fJ},

J+={ilpi-pf=fJ}.
Then e>O J=J-UJ+ and, for all iEJ,

(4.7) pj-fJ+e~pJ~pj+fJ-e, VjeJ,

(4.8a) pJ=pj-fJ, VjeJ-,

(4.8b) pJ=pj+fJ, VjeJ+.
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Fix any i e J-. e relations (4.7), (4.8a) imply that

p:-p;~(pr-{3)-(p!-{3)=pr-p!, Vje '!l1(i),
P;- P:~ (p! -{3) -(pr -{3) = pj- pr, Vje 6il(i),

and, since V gkl i non decreasing for all (k, /) e d,

(4.9a) Vgij(p:-p;)~Vgij(pr-p!)=f:, Vje'!l1(i),

(4.9b) Vgji(p;-p:)~Vgji(p!-pr)=fjt, Vje6il(i).

Since i e J-, weh ve h;(pi) = P: or, equivalently, di(pi) = O. Then (4.5) and (4.9a)-(4.9b)
imply that

0 = di(pi)

= L Vgij(p:-pJ)- L Vgji(pJ-P:)-Sj
je~(j) je~(i)

S ~ f ~- ~ f ~-s.-i.. l} i.. )1 1

je~(j) je~(i)

=0 ,

where the last e uality follows because the flows f: and fit G.w~t satisfy the flow
conservation equ tion (4.2). It follows that the inequalities in (4.9a)-(4.9b) are actually
equalities and

(4.10a) Vgij(p:-pj)=f:, 'v'jE~(i),
(4.10b) Vgji(pj-P:) = fit, 'v'jE q[(i).

Since the choice f iEJ- was arbitrary, (4.10a)-(4.10b) hold for all iEJ-. By an
analogous argum t (using (4.8b) in place of (4.8a» we can show that (4.10a)-(4.10b)
hold for all i E J+ [as well.

Let 1T E ~n b~ the vector whose .ith component is

p1 + E: if i E J+,
P -E: if i E J-,

I

.p~ if i e J.
(4.11) 1Tj =

We claim that

(4.12) Vgij(1Tj-1Tj)=Jt, V(i,j)ed.

To see this, we fi note from the definition of 1T (cf. (4.11) that

1Tj-1Tj=Pj -pf, if itJ,jtJ or if ieJ+,jeJ+ or if ieJ-,jeJ-,

Also, from (4.7), ( .8a)-(4.8b), (4.11) and the fact e~fJ we have that

P:- p; = (tr+ fJ) -(pf -fJ) ~ 1Tj -1Tj ~pr -pj, if i eJ+, je J-,

P: -p~ = ({r -fJ) -(pj+ fJ) ~ 1Tj -1Tj ~pr -pj, if ieJ-, j e J+,

p;- pj~(,r+ fJ)-(pj+fJ -e)= 1Tj -1Tj ~pr- pj, if ie J+, jt J,

P:- p;~(~r-fJ)-(pj-fJ + e) = 1Tj -1Tj~pr- pj, if ieJ-, jt J,

p~- p~~ (1r+.B -e) -(pj+ fJ) = 1Tj -1Tj ~pr- pj, if it J, je J+,

p; -pj ~ (M -.B + e) -(pj -fJ) = 1Tj -1Tj ~ pr -pf, if it J, j e J-.
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Consider ny (i, j) E d. The preceding inequalities show that 'ITi -'ITj is always between
P: -pJ an pr -pi. The monotonicity of V gij and the equalities V gij(pr -pj) = It =
V gij(P: -i) (cf. (4.10a)-(4.10b» imply that V gij( 'ITj -'ITj) = It. This completes the proof
of (4.12).

Equa ion (4.12) implies that 'IT E P*. Since (cf. (4.11) and the definitions of J-
and J+) II -'IT II < lip -p*ll, this contradicts the hypothesis that p(p) = lip -p*lI. 0

Since h has been shown to satisfy Assumption B, we conclude from Lemma 2.1
and Prop sition 2.1 that the partially asynchronous iteration

p:= (1- y)p +yh(p)

(with 0< < 1) converges to an optimal price vector p*. The optimal flows are obtained
as a bypro uct, using the relation V gij(pr -pj) = It. Notice that the iteration for each
coordinat Pi consists of minimization along the ith coordinate direction (to obtain
hj( p» fol owed by the use of the relaxation parameter y to obtain the new value
(l-y)pj+yhi(p). As a special case, we have that the synchronous Jacobi algorithm

p(t+ 1) = (1- y)p(t) + yh(p(t»

is also co vergent, which is a new result.
A reI ted result can be found in [5] where totally asynchronous convergence is

establishe even if y = 1, provided that a particular coordinate of p is never iterated
upon and that when this coordinate is fixed, the optimal price vector is unique. An
experime al comparison of the two methods will be presented in § 8. We remark that
the result in this section also extend to the case where each arc has a gain of either
+1 or -1 i.e., each h term in (4.2) is multiplied by either +1 or -1).

I

5. Ag eement and Markov chain algorithms. In this section we consider two prob-
lems: a pr blem of agreement and the computation of the invariant distribution of a
Markov cain. These problems are the only ones for which partially asynchronous
algorithm that converge for every value of the asynchronism bound B of Assumption
A are avai able [20], [27], [29] (in fact, these algorithms have been shown to converge
at a geom tric rate). We show that these results can also be obtained by applying our
general c vergence theorem (Proposition 2.1).

5.1. he agreement algorithm. We consider here a set of n processors, numbered
from 1 to n, that try to reach agreement on a common value by exchanging tentative
values an forming convex combinations of their own values with the values received
from othe processors. This algorithm has been used in [28]-[29] in the context of
asynchro us stochastic gradient methods with the purpose of averaging noisy measure-
ments of e same variable by different processors.

We n w formally describe the agreement algorithm. Each processor i has a set
of nonne ative coefficients {ajl, ..., ain} satisfying ajj > 0, Lj aij = 1, and at time t it
possesses n estimate Xi(t) which is updated according to (cf. (1.1»

n

L aijXj(Tij(t» if tE :J"j,
j=1

Xj(t) otherwise.
xi(t+l)=(S.la)

(5.lb) x;(I-B)=.. .=x;(O) = X;,

where .0/"; and T;j(t) are as in § 1 and X; is the initial value of processor i. Let A be
the n x n matrix whose (i, j)th entry is aij and let 'Y E (0, I) be such that 0 < 'Y ~

min {all' .., ann}. By using the results from §§ 1 to 3 we obtain the following.



695~ARTIALL Y ASYNCHRONOUS. PARALLEL ALGORITHMS

PROPOSITIOt 5.1. If A is irreducible and Assumption A holds, then {Xi(t)}-+ y for
all i, where y is s me scalar between mini {Xi} and maxi {Xi}'

Proof. It ca be seen that (5.1a) is a special case of (1.1) withf(x) = Ax. Let

D= (A- 11)/(1- 1).

Then
(5.2) A = 'YI + (1- 'Y )D,

and D = [dij] can be seen to satisfy Lj Idijl ~ 1. Moreover, since A is irreducible, so is
D. Hence the fun ion h : fin ~ fin defined by h(x) = Dx satisfies Assumption D in § 3.
Since h has a fi ed point (the zero vector), this, together with Proposition 3.1 and
Lemma 2.4, im lies that h satisfies Assumption B. Since (cf. (5.2» f(x) =
yx + (1- 'Y)h(x), his, together with Lemma 2.1, shows that f satisfies Assumption C.
Then by Proposit on 2.1, the sequence {x(t)} gener~ted by (5.1a)-(5.1b) converges to
some point x'" sa isfying Ax'" = x"'. Since A is irreducible and stochastic, x'" must be
of the form (Yo...,y) for some YEfi. It can be seen from (5.1b) that, for rE
{1 -B, ..., O},

'l(5.3) , xj(r)~max {Xj},

S,uppose that (5~3 holds for all r E {l-~, ..., I}, for some t ~ O. Then by (5.la) and
the property of th aij's,

Vi.

Xj(t+ 1) = L ajjxj( Tij(t))
j

~L aij m.ax {xi}
.JJ

= max {Xi},
J

for all i such tha tE !!ii, and x;(t+l)=xi(t)~ri1axj {Xj} for all other i. Hence, by
induction, (5.3) ho' ds for all r E {1- B, 2 -B, ...}. Since Xi(r) ~ y for each i, this implies
that y ~ maxj {Xj}. A symmetrical argument shows y ~ minj {Xj}. 0

It can be sho n [7], [29] that Proposition 5.1 remains valid if aii is positive for
at least one (but tall) i and, furthermore, convergence takes place at the rate of a
geometric progres ion. The proof, however, is more complex. Similar results can be
found in [29] for more general versions of the agreement algorithm.

5.2. Invariant Idistribution of Markov chains. Let P be an irreducible stochastic
matrix of dimensi n n x n. We denote by Pij the (i, j)th entry of P and we assume that
Pii > 0 for all i. wish to compute a row vector 1T* = ( 1TT, ..., 1T~.) of invariant
probabilities for t e corresponding Markov chain, i.e., 1Tf ~ 0, Li 1Tf = 1, 1T* = 1T* P.
(We actually have 1Tf>o, for all i, due to the irreducibility of P [14].) As in § 5.1,
suppose that we h ve a network of n processors and that the ith processor generates
a sequence of esti ates {1Ti(t)} using the following partially asynchronous version of
the classical serial ~lgorithm 7T:= 1TP (cf. (5.1a)-(5.1b»:

1Ti(t+l)~

n

L Pji1Tj(T;j(t» if tE fJ"j,
'=1

1Tj(t) otherwise.

J 1Tj(l- B) =. ..= 1Tj(O),

where fJ"j and Tij(t are as in § 1 and 1Tj(O) is any positive scalar. This asynchronous
algorithm was intr duced in [20], where geometric convergence was established. We
show below that c nvergence also follows from our general results.
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PRO SITION 5.:~. If Assumption A holds, then there exists a positive number c such
that 1T(t) C1T*.

Proof. We will show that (5.4) is a special case of (5.la). Let

(5.5) Xi(t)=1Ti(t)/1T1, aij=1Tjpji/1T1.

Then the atrix A = [aij] is nonnegative and irreducible, has positive diagonal entries,
and

~ a.. =~ 1T:lcP -- / 1T:Ic
i.. '1 i.. 1 l' I

j j

= 1Tf / 1Tf

=1,

where the!econd equality follows from 1T* = 1T* P. Furthermore, it can be seen from
(5.4) and 5.5) that Xj(t) evolves according to the iteration (5.la). Therefore, by
Propositio 5.1 and the initial positivity conditions, {Xj(t)}-+ C for all i, where c is
some posit ve scalar. It follows from (5.5) that 1Tj(t)-+ C1Tt for all i. 0

Upon btaining C1T*, the desired solution 1T* can be recovered by normalizing C1T*.

6. Ne~ ral networks. Consider a connected, directed network with node set .!I" =
{I,. ..,n} and arc :,et d ~ J{x J{. Let us, for each i E J{, denote by OU(i) the .set
{j I (j, i) E } of upstl~eam neighbors of i. Let UI, ..., Un be a set of given scalars and
let {Aij}(i,j) d be a set of nonzero scalars satisfying LjE'fl(i) IAijl ~ 1 for all i. We wish to
find scalar Xl'...' Xn such that

(6.1) Xi=<Pi ( >:: AijXj+Ui )' Vi,
jE'tl(i)

where <Pi ~ ffl is a continuous nondecreasing function satisfying

(6.2) lim <Pi(~)=-I, lim <Pi(~)=I,
~--CX> t-+cx>

(see Fig. 61). Notice that the function </>; maps the box [-1, l]n into itself and, by
Brouwer's xed point theorem ([II, p. 17]), the system (6.1) is guaranteed to have a
solution.

If we hink of each node i as a neuron, (6.1) and (6.2) imply that this neuron is
turned on i.e., X; ~ 1) if the majority of its inputs are also turned on. Thus, Xi gives
the state (" n" or "off") of the ith neuron for a given set of connections (specified by
.91) and a iven external excitation (specified by u;) (see Fig. 6.2.). Indeed, (6.1) and
(6.2) desc be a class of neural networks that have been applied to solving a number
of proble s in combinatorial optimization, pattern recognition, and artificial intel-
ligence [15 -[16], [19], [25].

FIG. 6.1. The function <1>"
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Let f: ffln]ffln be the function whose ith component is

(6.3) ./;(X)=<I>i ( L AijXj+Ui )' 'v'i.
je'tl(i)

Then solving ( .1) is equivalent to finding a fixed point of f In what follows, we
consider a speqal form for <l>i and show that it gives rise, in a natural way, to a
nonexpansive f~nction f that satisfies Assumptions B' and C of § 2. To the best of our
knowledge, asynchronous convergence of neural networks has not been explored
before. In some $ense, asynchronous neural networks are quite natural since biological
neural connecti1ns may experience long propagation delay [25).

Let <l>i den te the right derivative of <l>i, i.e.,

<l>i(~) = lim «I>i(~ + E) -<l>i(~»/ e, 'v' ~ E ffl.
e!O

The following rtUlt shows that, if </Ji is sufficiently small for all i, then f given by
(6.3) satisfies As umption B'.

-PROPOSITIO 6.1. IfCU is strongly connected and each </Ji is continuous, satisfies (6.2)
ana i(6.4) O~cf>i(~)~l, V~Effl,

then f given by ( .3) satisfies Assumption B'.
Proof. We h ve seen earlier that f has a fixed point. Since each cf>i is continuous,

f is also continu~us. Now we will show that f is non expansive. Fix any i E J{. Since
(cf. (6.4» the slope of cf>i is bounded inside the interval [0, 1], we have

I lcf>i(b)-cf>i(a)I~lb-al, VaEffl, bEffl.

Hence, for any x Effl" and Y E ffl",

~ L IAijIIYj-xjl.
jE~(i)

Since LjE~(i) IAi 1, (6.5) implies that

I/;(y) -/;(x)1 ~ IIx -yli.

Since the choice f i was arbitrary, this in turn implies that

IIf(x)-f(y)II~lIx-ylI, Vxe!R",yegt",

Therefore f is no expansive.
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It rem ins to show that f satisfies Assumption B'(d). Suppose the contrary. Then
for some i!: X* and some x* E X*, where X* is the set of fixed points of f, there
exists, for very i E I(x; x*), an Xi E U(x; x*) such that

xii!:X* and h(xi)=x:.

Let J = I( ; x*) (J ~ J{ since Xi i!: X* for all i E J) and /3 = Ilx -x*ll. Fix any i E J. By
(6.5) and t e fact x* = f(x*), we obtain that

Ix:-xtl=IJ.(xi)-J.(x*)I~ L IAijllxJ-xjl.
je'!l(i)

Hence
fJ ~ L IAijrlxJ -xii

je'tl(i)

= L IAijlfJ + L
je'tl(i) je'tl(i).j~Jl . , ~fJ+ L IAijl(lxj-:xil-fJ).

je'tl(i),j~J

Since IxJ -il < 13 and Aij ~ 0 for all j E OIl (i), j t J, this implies that OIl (i) ~ J. Since the
choice of it J was arbitrary, it follows that OIl(i) ~ J for all i E J. Hence CD is not
strongly co nected, a contradiction of our hypothesis. 0

It folIo s from Lemmas 2.1, 2.4 and Propositions 2.1~ 6.1 that the asynchronous
iteration I

IAijl(lxJ -xjl- P)

f Xi:~(I-'Y)Xi+'Ycf>i ( L AijXj+Ui )jE'¥L(i) (with 0 < 'Y 1) converges. Two examples of cf>i that satisfy the hypothesis of Proposition

6.1 are
<f>i(~) = 2(1 + e-2E)-1_1,

1. 4>j(f;)=max{-l,min{l,f;}}. ,

Let us riefty discuss an alternative form for the function 4>j. If we assume that
each 4>j is c ntinuously differentiable and its derivative V 4>j satisfies 0 < V 4>j( f;) < 1 for
all f; E ffl, th n it can be shown that the restriction of the function f on a compact set
is a contra ion. In that case, the asynchronous neural iteration

x. := -1...( ~ \ ..X. + u. )I '1'1 i... "9 ~ 1
jE~(j)

can be sho n to converge even under the total asynchronism assumption

lim 1"ij(t) = +00, Vi, Vj
,-.+00

(cf. [7, Cha*. 6.2, Prop. 2.1]).
7. Least element of weakly diagonally dominant, Leontief systems. Let A = [akj] be

a given m x:n matrix (with m ~ n) and b = (bl,. .., bm) be an element of mm. We

make the following assumption.
Assumprion F.
(a) EaJh row of A has exactly one positive entry and the index set

I(i)={klaki>O}

is nonempty for all i (i.e., every column has at least one positive entry).
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(b) Lj akj~O, for all k.
(c) For a~y (k1,' .., kn) e 1(1) x. ..x l(n), the n x n matrix [ak,j] is irreducible.
Since aki>O for all kel(i), we will, by dividing the kth constraint by aki if

necessary, ass}me that aki = 1 for all k e l(i), in which case parts (a) and (b) of
Assumption F re equivalent to

(7.1) aki=l, -L akj~1 and akj~O, Vj;ei,
j;.oi

for all keI(i)! nd all i.
Let X be he polyhedral set

(7.2) X={xeffi"IAx~b}.

We wish to fin an element 7J of X satisfying

X~7J, VxeX

(such an eleine t is called the least element of X in [10J and [13]). Notice that if a
least element ists, then it is unique. Let h: ffi"~ ffi" be the function whose ith
component is

(7.3) hi(x)= max { bk- L akjXj}.
kel(i) j..i

It is shown in 10] that X has a least element for all b such that X is nonempty if
and only if A T is Leontief (a matrix B is Leontief if each column of B has at most

one positive ent and there exists y ~ 0 such that By > 0 componentwise). The following
lemma sharpen this result by giving a necessary and sufficient condition .for X to
have a least ele ent that is simpler to verify. It also relates the least element of X to
the fixed points of h.

LEMMA J.1t Suppose that X # (2) and that Assumption F holds. Then,
(a) X has 0 least element if and only if

(7.4) Lakj=O, Vk.
" j

(b) If 11 is a least element of X, then it is a fixed point of h.
Proof. We ~rst prove (a). Suppose that (7.4) holds and let e E ffln be the vector

with all coordin~tes equal to 1. Equation (7.4) says that Ae = o. Thus, if x is an element
I

of X, then x -A E X, for all positive scalars A. It follows that X cannot have a least
element. Now s pose that (7.4) does not hold. We first show that X is bounded from
below (i.e., ther exists some a E ffln such that x ~ a componentwise for all x E X). If
this were not so, then there would exist some v E ffln and some x E X such that Vi < 0
for some i and x Av E X for all positive scalars A. The latter implies that A(x + Av) ~ b
for all A >0 an hence Av~O. Fix any scalars (k},. .., kn)E 1(1) x. ..x I(n) and
consider an i su h that Vi =minj {vi}' Then (cf. Av~O)

O~~ akuVj = (~ akJ)Vi+ L. akJ(Vj -Vi).
.} } }'"

Since Vi < 0 arid j -Vi ~ 0 for all j # i, this, together with the facts (cf. (7.1» Lj akJ ~ 0
and akJ ~ 0 for a j # i, implies that LjakJ = 0 and Vi = Vj for all j # i such that akJ # O.
By Assumption (c), there exists j # i such that akJ # O. We then repeat the above
argument with j n place of i. In this way, we eventually obtain that V} = = Vn and
Lj akJ = 0 for all i. Since our choice of(k1, ..., kn) E 1(1) x. ..x I(n) was arbitrary,
(7.4) holds-con radicting our hypothesis. Hence X is bounded from below. Using
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(7.1), it is sily verified that if x' and X'I are two elements of X, then the n-vector x
whose ith omponent is min {x;, x7} is also an element of X. Since X is closed and
bounded fr m below, X has a least element.

We ne t prove (b). Since 11 eX, we have (cf. (7.1), (7.2»

L akj11j+11;~bk, VkeI(i), Vi.
j..i

W.-Z'~\"' a k ' ( X'- Y' ), ,-I.., ,,:I J
j,.i

~ L lakjlllx-yil
j,.i

~lIx-yll.
The inequa ty Zi -Wi ~ IIx -y II is obtained similarly. 0

LEMM 7.3. h satisfies Assumption B'( d).
Proof. uppose the contrary. Then for some x t X* and some x* E X*, there exists,

for every i l(x; x*), an Xi E U(x; x*) such that

xitX* and hi(Xi)=X:.

If "7 is fixed point of h, then the set / = {i I hi( "7) < "7i} is nonempty. Then we have

(7.5) Lakj"7j>bk, 'v'kE/(i), ViE/.
j

Consid n-vector ii, defined by ili = "7i -e, if iE/, and ili = "7i' otherwise. For e
positive small enough, the inequalities (7.5) remain valid. On the other hand, for
all ie/ all k E /(i) we have

L akjilj = L akj"7j + L akj( "7j -e) ~ L akj"7j ~ bk,
j j~I jEI j

where we u d the property akj ~ 0 for allj such that k e /(j). Thus, iI E X, contradicting
the hypoth is that "7 is the least element of X. 0

Let X* denote the set of fixed points of h. Suppose that X* is nonempty (Lemma
7.1 gives su cient conditions for X* to be nonempty). We will show that h satisfies
Assumptio B'. Since (cf. (7,3» h is continuous, it suffices to show that parts (c) and
(d) of Assu ption B' hold.

LEMM 7.2. IIh(x)-h(y)1I ~ IIx-yll for any XEmn and any y E mn.
Proof. et z = h(x), W = h(y) and consider any i E {I, ..., n}. We will show that

IZi -wil ~ II -yll, from which our claim follows. Since Zi = hi(x) and Wi = hi(y), it
follows fro (7.3) that, for some kin /(i),

(7.6a) L akjXj + Zi ~ bk,
j..i

(7.6b) L akjYj+ Wi = bk.
j..i

Subtracting (7 .6b) from (7.6a), we obtain

L akj(Xj-Yj)+(Zi-Wi)~O.
j..i

This togeth r with (7.1) implies that
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LetJ= I(x; x*) J- = {il Xi -xt = -J3},J+ = {il Xi -xt =J3}andJ3 = Ilx-x*lI. (We must
have J ~ {I, ...n} because otherwise the set U(x; x*) would be a singleton, implying
that the vectors I,..., x" are all equal, in which case each Xi is a fixed point of h,
a contradiction.

Fix any ie-. By (7.3) and the hypothesis x* = h(x*), there exists some k; E I(i)
such that

L akdxj = bk,.
j

Since x: = hi(Xi)t we then have Lj ak,j x; ~ bk, = Lj ak,j xj, so

L ak,j(X;-Xf)~O.
j

This implies (using (7.1) and the facts kjeI(i), ieJ-) that

o1-f3 L- akIJ+f3 L akIJ+ L lakIJllxj-xfl
jeJ jeJ+ )~J

-,8 L akd-,8 L lakdl+ L lakdllx;-xjl
jeJ- jeJ+ j~J

-,8 ( 1- j~i lakdl) -2,8 j~+ lakLiI + j~J lakLiI<lx; -xjl- .8).

Since Ix; -xli < for all j e J. (7.1) implies that

L akd = -1 and
j..i

ak ;} .= 0

., VjeJ-.

Since the choice ~f i was arbitrary, (7.7) holds for all i E J-. By an analogous argument,
we also obtain tijat, for all i E J+,

VjtJ+ ,L akJ = -1 and ak,j = 0,

j..i

where each k; is ~ scalar in I(i) such that

L akJXJ = bk,.
j

For each ieJ'le ~ k, be any element ofI(i). Since J~{I , n}, (7.7) and (7.8) imply
that the n x n atrix [ak/i]i,j is not irreducible-a contradiction of Assumption
F(c). 0

We may no invoke Lemmas 2.1, 2.4 and Proposition 2.1 to establish that the
partially asynchr nous iteration

x:= (1- y)x+ yh(x)

(with 0<'1<1) ~onverges to a fixed point of h. Unfortunately, such a fixed point is

not necessarily thb least element of X. We have, however, the following characterization

of such fixed po t.ts. LEMMA 7.4. If X has a least element 17, then, for any fixed point x* of h, there exists

a nonnegative sc lar A such that x* = 17 + (A, ..., A).
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Proof. Since x* is a fixed point of h, x* E X. Hence x* ~ 11. We then repeat the
proof of mma 7'.3,with.J-={I,...,n} and Xi=11 for all i. This yields that, for
every i E { ,.. ., n}, there exists some ki E I(i) such that xt -11i ~Lj"i lak;A(xf -11j).
Since x* -11 ~ 0, Assumption F(c) and (7.1) imply that the xt -11i'S are equal. 0

Lem a 7'.4 states that, given a fixed point x* pf h, we can compute the least
element 0 X by a simple line search along the direction (-}, ..., -1) (the stepsize
A is the la gest for which x* -(A, ..., A) is in X). An example of X for which the
correspon ing h has multiple fixed points is

X ={(XI. xJI X1-X2~O. xl-O.5x2~ -1. -XI+X2~O}.

Here h1(x =max{x2,O.5X2-1}, h2(x)=Xl and both (-1,-1) and (-2,-2) are fixed
points of (the least element of X is (-2, -2».

.Let u remark that if the inequalities in Assumption F(b) are strict, then the
mapping is a contractio~ mapping (the same argument as in Lemma 7.2) and
convergen e under total asynchronism is obtained. We also remark that, if in the
statement f Assumption F(c) we replace "For any" by the weaker "For some," then
Lemmas 7. and 7.2 still hold, but Lemmas 7.3 and 7.4 do not. In fact, it can be shown
that X* is ot necessarily convex in this case.

where aij if given positive scalar and .Bij is a given scalar. This special case has many
practical a plications and has been studied extensively [6], [9], [12], [21], [31]. In
what folIo s, we will denote by h:ffl"~ffin the function given by (4.3), (4.5)-(4.6),
and (8.1). I of the :algorithms involved in our study are based on h.

8.1. T problem generation. In our test, each aij is randomly generated from the
interval [1,5] and each /3ij is randomly generated from the set {I, 2, ..., 100}. The
number of rcs is ten times the number of nodes and the average node supply is 1000,
i.e., Isll + ...+ Isn I = 1000n. Half of the nodes are supply nodes and half of the nodes
are deman nodes (we say a node j is a supply (demand) node if Sj >0 (Sj <0». The
problems re generated using the linear cost network generator NETGEN [18],
modified t generate quadratic cost coefficients as well.

8.2. e main partially asynchronous algorithm. The main focus of our study is
the partiall asynchronous algorithm described in § 4. This algorithm, called PASYN,
generates sequence {x(t)} using the partially asynchronous iteration (1.1) under
Assumptio A, where the algorithmic mapping f is given by

(8.2) f(x)=(I-y)x+yh(x)..

8. Si~ulation for network flow problems. In this section we study and compare,
using sim lation, the performance of synchronous and partially asynchronous
algorithms for the network flow problem of § 4. We measure the following: (a) the
effects of e stepsize 'Y (cf. Lemma 2.1), the problem size n, and the asynchrony
measure B on the performance of partially asynchronous algorithms, (b) the efficiency
of differen partially asynchronous algorithms relative to each other and also relative
to the corr sponding synchronous algorithms.

In our study, we consider a special case of the network flow problem (4.1)-(4.2)
where eac c~st function ajj(') is a quadratic on [0, +00], i.e.,
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In our simulati n, the communication delays t -'Tij(t) are independently generated
from a uniform istribution on the set {O, I, ..., B -I} and, for simplicity, we assume
that .0/"; = {I, 2,. .} for all i. (This models a situation where the computation delay
is negligible co pared to the communication delay.) The components of x(l- B),
x(2 -B), ...,x( ) are independently generated from a uniform distribution over the
interval [0,10] ( his is to reflect a lack of coordination among processors) and the
algorithm termin tes at time t ifmaxT,T'E{I-B,...,I} "x('T)-x('T')"~O.OOI.
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It is shown ~n [5] that the algorithm x:= jo(x) converges under the total asynchronism
assumption. Hence it is of interest to compare this algorithm with that described in
§ 8.2 (nam~y PASYN) under the same assumption of partial asynchronism. The
partially as.}inchronous version of the algorithm x:= jo(x), called T ASYN, is identical
to PASYN ~xcept that the function j in (8.2) is replaced by jo. (Note that TASYN
has the advantage that it uses a unity stepsize.)

The termination time of TASYN, for different values of Band n, is shown in Fig.
8.2. A comparison with Figs. 8.1(a)-(c) shows that TASYN is considerably slower than
PASYN. The speed of TASYN is improved if j in (8.2) is replaced by jO only after a
certain amount of time has elapsed, but the improvement is still not sufficient for it
to compete with PASYN.

8.4. Tw~ synchronous algorithms. In this subsection we consider two types of
synchronou$ algorithms based on h: the Jacobi algorithm and the Gauss-Seidel
algorithm.. Ip particular, the Gauss-Seidel algorithm has been shown to be efficient
for practical computation (see [6], [9], [21], [31]). Hence, by comparing the asyn-
chronous algorithms with these algorithms, we can better measure the practical
efficiency of the former.

The tef ination time of PASYN, for different values of 'Y, B, and n, is shown in
Figs.8.1(a) (c). In general, the rate of convergence of PASYN is the fastest for 'Y near
1 and for B small, corroborating our intuition. The termination time grows quite slowly
with the si e of the problem n but quite fast with decreasing 'Y. For 'Y near 1, the
termination time grows roughly linearly with B (but not when 'Y is near 0).

8.3. An alternative partially asynchronous algorithm. Consider the function
10: ffl" -+ ffl" whose ith component is given by
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The Jacobi algorithm, called SYNJB, is a parallel algorithm that generates a
,sequence {x(t)} according to

x(t + 1) = (1- Y )x(t) + yh(x(t)),

where y E (0,1). The initial estimates xi(O),. .., xn(O) are independently generated
from a uniform istribution over the interval [0, 10], and the algorithm terminates at
time t if Ilx(t) -(t-I)1I ~ 0.001. (SYNJB can be seen to be a special case ofPASYNB
where B = 1 an hence {x(t)} converges to a fixed point of h.)

Consider a y positive integer band any function {3 :{I,. .., n}-+{I,. .., b} such
that h;(x) does ot depend on Xj if {3(i) = {3(j). We associate with band {3 a Gauss-
Seidel algorith that generates a sequence {x(t)} according to

( I) _ { h;(X(t)) ift={3(i)-I(modb),x. t+ -, x;(t) otherwise.

In our simulati , the initial estimates xi(O), ..., Xn(O) are independently generated
from a uniform istribution over the interval [0, 10] and the algorithm terminates at
time t if

max IIx(T)-x(T')II~O.OOl.
T.T'e{t-b, t}

(Convergence 0 {x(t)} to a fixed point of h follows from Proposition 2.4 in [6]. Note
that, similar to ASYN, this algorithm has the advantage of using a unity stepsize.)
We consider bo h a serial and a parallel version of this algorithm (this is done by
choosing b and appropriately). SYNGSI is the serial version which chooses b = n
and /3(i) = i for all i. SYNGS2 is the parallel version which uses a coloring heuristic
to find, for each problem, a choice of band /3 for which b is small.

The termin tion time for SYNJB, SYNGSI and SYNGS2, for different values of
n, are shown in igs. 8.3(a)-(b). In Fig. 8.3(a), the choice of b obtained by the coloring
heuristic in SYN S2 is also shown (in parentheses). In general, SYNJB is considerably
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faster than .ther of the two Gauss-Seidel algorithms SYNGSI and SYNG2 (however
in SYNJB a I processors must compute at all times). From Fig. 8.3(b) we see that, as
n increases and the problems become more sparse, SYNGS2 (owing to its high
parallelism) ecomes much faster than the serial algorithm SYNGSI. (Notice that the
time for SY GSI is approximated by the time for SYNGS2 multiplied by n/ b, as
expected.) mparing Fig. 8.3(a) with Fig. 8.1(c), we see that SYNJB is approximately
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FIG. ~.;3(a) Comparing the termination time for the two synchronous, parallel algorithms SYNJB ('Y = 0.9)
and SYNGS2, or different values of n.
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FIG.8.3(b) Comparing the termination time for the serial algorithm SYNGSI and for the synchronous,
parallel algorith SYNGS2, for different values of n.
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3/2 times faste( than PASYN and that PASYN is faster than SYNGS2, unless PASYN
suffers long de~ays.

8.S. Simul tion of synchronous algorithms in the face of communication delays. In
this subsection we consider the execution of the synchronous iterations of § 8.4 in an
asynchronous mputing environment, that is, in an environment where communication
delays are vari ble and unpredictable. The mathematical description of the algorithms
in this subsecti n is identical to that of the algorithms considered in the preceding
subsection; for his reason, the number of iterations until termination is also the same.
On the other h nd, each processor must wait until it receives the updates of the other
processors be~ re it can proceed to the next iteration. For this reason, the actual time
until terminati n is different from the number of iterations. In our simulation, the
delays are ran omly generated but their statistics are the same as in our simulation
of asynchrono s algorithms in §§ 8.2 and 8.3 (uniformly distributed over the set
{O, 1, ..., B-1, where B denotes the maximum delay). This will allow us to determine
whether async ronous methods are preferable in the face of communication delays.

More preci ely, consider any synchronous algorithm and let T denote the number
of iterations at which this algorithm terminates. With each t E {I, ..., T} and each
iE{l,..., n}, e associate a positive integer Uj(t) to represent the "time" at which
the update of he ith component at iteration t is performed in the corresponding
asynchronous e ecution. (Here we distinguish between "iteration" for the synchronous
algorithm and 'time" for the asynchronous execution.) Then {Uj(t)} is recursively
defined by the ollowing formula:

Ui t) = max {uj(t-1)+(communication delay from proc. j

to proc. i at time uj(t-1)},

where the maxi ization is taken over all} such that the jth component influences the
ith component t iteration t. The termination time of the asynchronous algorithm is
then taken to b

max {ui(T)}.
i

The partia ly asynchronous algorithms that simulate SYNJB. SYNGSI and
SYNGS2 are ca led. respectively, PASYNJB, PASYNGSI and PASYNGS2. The termi-
nation times fo these algorithms are shown in Figs. 8.4-8.6 (they are obtained from
the termination imes shown in Figs. 8.3(a)-(b) using the procedure described above).
Comparing the figures with Figs. 8.1(a)-(c). we see that PASYNJB is roughly 3/4
as fast as PAS N (when both use the same stepsize r = 0.9) while the other two
algorithms PAS NGSI and PASYNGS2 are considerably slower than PASYN (even
when PASYN es the most conservative stepsize r= 0.1).

To summa ze. we can conclude that PASYN is the fastest algorithm for partially
asynchronous c mputation and that its synchronous counterpart SYNJB is the fastest
for synchronou parallel computation. We remark that similar behavior was observed
in other networ flow problems that were generated. Furthermore. the asynchronous
algorithm PAS N seems to be preferable to its synchronous counterpart SYNJB in
the face of del s. In practice. the assumption that the delays are independent and
identically dist buted might be violated. For example. queueing delays are usually
dependent; also the distance between a pair of processors who need to communicate
could be variabl .in which case the delays are not identically distributed. On the other
hand, such asp cts cannot be simulated convincingly without having a particular
parallel comput ng system in mind.
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9. ConClusion and extensions. In this paper we have presented a general

framework, based on nonexpansive mappings, for partially asynchronous computation.

The key tO j hiS framework is a new class of functions that are nonexpansive with respect to t e maximum norm. We showed that any algorithm whose algorithmic

mapping be ongs to this class converges under the partial asynchronism assumption

with an ar itrarily large bound on the delays. While some of the asynchronous

algorithms t us obtained are known, others are quite new. Numerical experimentation
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with network ft° f PrOblems suggests that, for partially asynchronous computation, the
new algorithms ay be substantially faster than those obtained from synchronous

algorithms.
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