Smoothing methods for Second-Order Cone Programs/Complementarity Problems

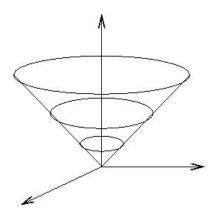
Paul Tseng
University of Washington, Seattle

SIAM Conf. Optim

May, 2005

Talk Outline

- I. Second-Order Cone (SOC) Program and Complementarity Problem
- Unconstrained Diff. Min. Reformulation
- Numerical Experience
- II. SOCP from Dist. Geometry Optim
- Simulation Results



Convex SOCP

$$\begin{array}{ll} \min & g(x) \\ \text{s.t.} & Ax = b \\ x \in K \end{array}$$

$$A \in \Re^{m \times n}$$
, $b \in \Re^m$

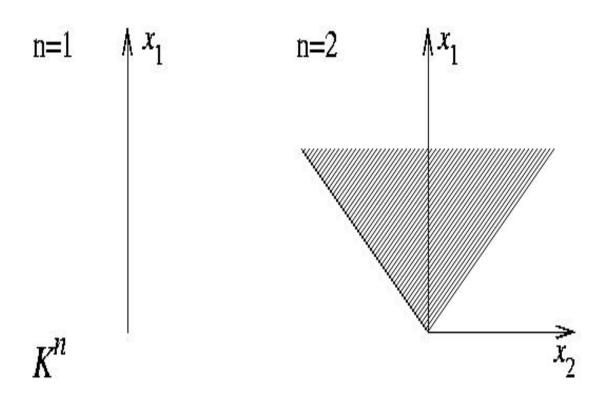
 $g: \Re^n \to \Re$, convex, twice cont. diff.

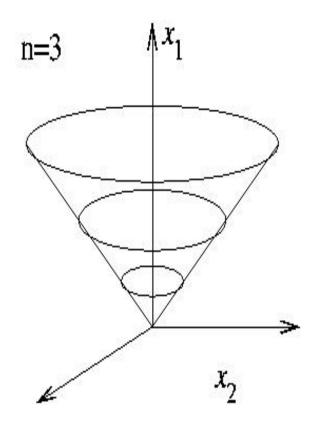
$$K = K^{n_1} \times \cdots \times K^{n_p}$$

$$K^{n_i} \stackrel{\text{def}}{=} \left\{ x_i = \begin{bmatrix} x_{1i} \\ x_{2i} \end{bmatrix} \in \Re \times \Re^{n_i - 1} : \|x_{2i}\|_2 \le x_{1i} \right\}$$

Special cases? LP, SOCP,...

$\mathbf{SOC}\ K^n$





Suff. Optim. Conditions

$$x \in K$$
, $y \in K$, $x^T y = 0$,
 $Ax = b$, $y = \nabla g(x) - A^T \zeta_d$

 \iff

$$x \in K, \quad y \in K, \quad x^T y = 0,$$

 $x = F(\zeta), \quad y = G(\zeta)$

with

$$F(\zeta) = d + (I - A^T (AA^T)^{-1}A)\zeta$$

$$G(\zeta) = \nabla g(F(\zeta)) - A^T (AA^T)^{-1}A\zeta \quad (Ad = b)$$

SOCCP

Find $\zeta \in \Re^n$ satisfying

$$x \in K, \quad y \in K, \quad x^T y = 0,$$

$$x = F(\zeta), \quad y = G(\zeta)$$

 $F,G:\Re^n\to\Re^n$ smooth

 $\nabla F(\zeta), -\nabla G(\zeta)$ column-monotone $\forall \zeta \in \Re^n$, i.e.,

$$\nabla F(\zeta)u - \nabla G(\zeta)v = 0 \quad \Rightarrow \quad u^T v \ge 0$$

Special cases? convex SOCP, monotone NCP,...

How to solve SOCCP?

For LP, simplex methods and interior-point methods.

For SOCP, interior-point methods.

For convex SOCP and column-monotone SOCCP?

Interior-point methods not amenable to warm start. Non-interior methods?

Nonsmooth Eq. Reformulation

$$x_i \cdot y_i \stackrel{\text{def}}{=} \begin{bmatrix} x_{1i} \\ x_{2i} \end{bmatrix} \cdot \begin{bmatrix} y_{1i} \\ y_{2i} \end{bmatrix} = \begin{bmatrix} x_i^T y_i \\ x_{1i} y_{2i} + y_{1i} x_{2i} \end{bmatrix}$$

(Jordan product assoc. with K^{n_i})

$$\phi_{\text{FB}}(x,y) \stackrel{\text{def}}{=} \left[(x_i^2 + y_i^2)^{1/2} - x_i - y_i \right]_{i=1}^p$$

Fact (Fukushima, Luo, T'02):

$$\phi_{\text{\tiny FR}}(x,y) = 0 \iff x \in K, \ y \in K, \ x^T y = 0$$

Thus, SOCCP is equivalent to

$$\phi_{\mathrm{FB}}(F(\zeta), G(\zeta)) = 0$$

 $\phi_{\scriptscriptstyle \mathrm{FB}}$ is strongly semismooth (Sun,Sun '03)

Unconstr. Smooth Min. Reformulation

$$\min \ f_{\text{\tiny FB}}(\zeta) \stackrel{\text{def}}{=} \left\| \phi_{\text{\tiny FB}}(F(\zeta), G(\zeta)) \right\|_2^2$$

F,G smooth and $\nabla F(\zeta), -\nabla G(\zeta)$ column-monotone $\forall \zeta \in \Re^n$ (e.g., LP, SOCP, convex SOCP, monotone NCP)

For monotone NCP $(K = \Re^n_+)$,

 $f_{\rm\scriptscriptstyle FB}$ is smooth, and $\nabla f_{\rm\scriptscriptstyle FB}(\zeta)=0 \iff \zeta$ is a soln

(Geiger, Kanzow '96)

The same holds for SOCCP.

(J.-S. Chen, T '04)

Advantage? Any method for unconstrained diff. min. (e.g., CG, BFGS, L-BFGS) can be used to find $\nabla f_{\rm FB}(\zeta) = 0$.

Numerical Experience on Convex SOCP

$$x=F(\zeta)=d+(I-P)\zeta$$

$$y=G(\zeta)=\nabla g(F(\zeta))-P\zeta$$
 with $P=A^T(AA^T)^{-1}A$, $Ad=b$. (Solve $\min\|Ax-b\|$ to find d)

• Implement in Matlab CG-PR, BFGS, L-BFGS (memory=5) to minimize $f_{\rm FB}(\zeta)$, using Armijo stepsize rule, with $\zeta^{\rm init}=0$. Stop when

$$\max\{f_{\text{FB}}(\zeta), |x^T y|\} \leq \text{accur.}$$

• Let $\psi_{\mathrm{FB}}(x,y)\stackrel{\mathrm{def}}{=} \|\phi_{\mathrm{FB}}(x,y)\|_2^2$. Then

$$f_{\rm FB}(\zeta) = \psi_{\rm FB}(x, y)$$

$$\nabla f_{\rm FB}(\zeta) = (I - P)\nabla_x \psi_{\rm FB}(x, y) - P\nabla_y \psi_{\rm FB}(x, y)$$

Compute $P\zeta$ using Cholesky factorization of AA^T or using preconditioned CG. Compute $\psi_{\rm FB}(x,y)$ and $\nabla\psi_{\rm FB}(x,y)$ within Fortran Mex files.

DIMACS Challenge SOCPs

Problem names and statistics:

nb (
$$m=123, n=2383, K=(K^3)^{793} \times \Re^4_+$$
)
nb-L2 ($m=123, n=4195, K=K^{1677} \times (K^3)^{838} \times \Re^4_+$)
nb-L2-bessel ($m=123, n=2641, K=K^{123} \times (K^3)^{838} \times \Re^4_+$)

Compare iters/cpu(sec)/accuracy with Sedumi 1.05 (Sturm '01), which implements a predictor-corrector interior-point method.

Problem	SeDuMi (pars.eps=1e-5)	L-BFGS-Chol (accur=1e-5)
Name	iter/cpu	iter/cpu
nb	19/7.6	1042/16.5
nb-L2	11/11.1	330/9.2
nb-L2-bessel	11/5.3	108/1.7

Table 1: (cpu times are in sec on an HP DL360 workstation, running Matlab 6.1)

Regularized Sum-of-Norms Problems

$$\min_{w \ge 0} \sum_{i=1}^{M} ||A_i w - b_i||_2 + h(w),$$

$$A_i \sim \mathrm{U}[-1,1]^{m_i \times \ell}$$
, $b_i \sim \mathrm{U}[-5,5]^{m_i}$, $m_i \sim \mathrm{U}\{2,3,...,r\}$ $(r \geq 2)$.

$$h(w) = 1^T w + \frac{1}{3} ||w||_3^3$$
 (cubic reg.)

Reformulate as a convex SOCP:

Problem	BFGS-Chol	CG-PR-Chol	L-BFGS-Chol
ℓ, M, r (m, n)	iter/cpu	iter/cpu	iter/cpu
500,10,10 (56,566)	352/24.6	1703/6.6	497/2.4
500,50,10 (283,833)	546/85.1	3173/69.0	700/12.4
500,10,50 (246,756)	272/36.3	1290/23.0	371/5.6

Table 2: (cpu times are in sec on an HP DL360 workstation, running Matlab 6.5.1, with accur=1e-3)

Smoothing Newton Step

$$\phi_{\text{FB}}^{\mu}(x,y) \stackrel{\text{def}}{=} (x^2 + y^2 + \mu^2 e)^{1/2} - x - y$$

with
$$e = (\underbrace{1,0,..,0}_{n_1},...,\underbrace{1,0,..,0}_{n_n})^T$$
, $\mu > 0$ (Fukushima,Luo,T '02)

Given ζ , choose $\mu > 0$ and solve

$$\nabla \phi_{\text{FB}}^{\mu}(F(\zeta), G(\zeta))^{T} \Delta \zeta = -\phi_{\text{FB}}(F(\zeta), G(\zeta))$$

Use $\Delta \zeta$ to accelerate convergence.

This requires more work per iteration. Use it judiciously.

Observations

For our unconstrained smooth merit function approach:

Advantage:

- Less work/iteration, simpler matrix computation than interior-point methods.
- Applicable to convex SOCP and column-monotone SOCCP.
- Useful for warm start?

Drawback:

- Many more iters. than interior-point methods.
- Lower solution accuracy.

SOCP from Dist. Geometry Optim (ongoing work..)

n pts in \Re^d (d = 2, 3).

Know $x_{m+1},...,x_n$ and Eucl. dist. estimate for pairs of 'neighboring' pts

$$d_{ij} > 0 \quad \forall (i,j) \in \mathcal{A} \subseteq \{1,...,n\} \times \{1,...,n\}.$$

Estimate $x_1, ..., x_m$.

Problem (nonconvex):

$$\min_{x_1, \dots, x_m} \sum_{(i,j) \in \mathcal{A}} |||x_i - x_j||_2^2 - d_{ij}^2|$$

Convex relaxation:

$$\min_{x_1, \dots, x_m} \sum_{(i,j) \in \mathcal{A}} \max\{0, ||x_i - x_j||_2^2 - d_{ij}^2\}$$

This is an unconstrained (nonsmooth) convex program, can be reformulated as an SOCP. Alternatives?

Smooth approx.:

$$\max\{0,t\} \approx \mu h\left(\frac{t}{\mu}\right) \quad (\mu > 0)$$

h smooth convex, $\lim_{t\to-\infty}h(t)=\lim_{t\to\infty}h(t)-t=0.$

We use
$$h(t) = ((t^2 + 4)^{1/2} + t)/2$$
 (CHKS).

Smooth Approximation of Convex Relaxation

$$\min_{x_1,...,x_m} f_{\mu}(x_1,..,x_m) \stackrel{\text{def}}{=} \sum_{(i,j)\in\mathcal{A}} \mu h\left(\frac{\|x_i - x_j\|^2 - d_{ij}^2}{\mu}\right)$$

Solve the smooth approximation using Inexact Block Coordinate Descent:

- If $\|\nabla_{x_i} f_{\mu}\| = \Omega(\mu)$, then update x_i by moving it along the Newton direction $-[\nabla^2_{x_i x_i} f_{\mu}]^{-1} \nabla_{x_i} f_{\mu}$, with Armijo stepsize rule, and re-iterate.
- Decrease μ when $\|\nabla_{x_i} f_{\mu}\| = O(\mu) \ \forall i$.

 $\mu^{\rm init}=1e-3.~\mu^{\rm end}=2e-6.$ Decrease μ by a factor of 5. Code in Matlab.

Simulation Results

Uniformly generate $\tilde{x}_1,...,\tilde{x}_n$ in $[-.5,.5]^2$, m=0.9n two pts are nhbrs if dist< .06.

Set

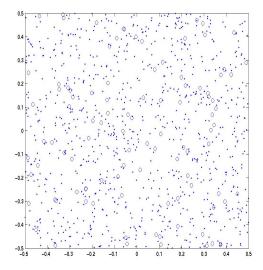
$$d_{ij} = \|\tilde{x}_i - \tilde{x}_j\|$$

(Biswas, Ye '03)

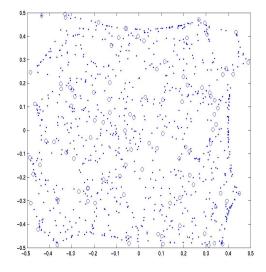
		SeDuMi	Inexact BCD
$\mid n \mid$	SOCP dim	cpu/Err	cpu/Err
1000	21472×33908	330/.48	373/.48
2000	84440×130060	12548/.57	2090/.52

Table 3: (cpu times are in secs on a Linux PC cluster, running Matlab 6.1.)

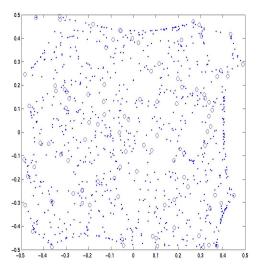
$$\mathsf{Err} = \sum_{i=1}^{m} \|x_i - \tilde{x}_i\|_2^2$$
.



True soln (m = 900, n = 1000)



SOCP soln found by SeDuMi



SOCP soln found by Inexact BCD

Observations

For our smoothing-Inexact BCD approach:

- Better cpu time than using SeDuMi.
 Add barrier term to find analytic center soln.
- Computation easily distributes.
- Code in Fortran (instead of Matlab) to improve time?

Lastly...

Thanks, Christian, for lending the use of your laptop!

