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Abstract: We propose a feasible ascent method for linearly constrained
smooth optimization that uses a scaled projected reduced-gradient search
direction. This method is simple, reminiscent of reduced-gradient methods
and first-order affine scaling methods, and can start anywhere in the feasible
set. We establish global convergence and, under a Holderian error bound
assumption, sublinear convergence rate for this method. Numerical experi-
ence on simplex constrained problems with 10000 variables suggests that the
method can be effective for solving large problems.
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1 Introduction

Consider the linearly constrained smooth optimization problem

max f(z), (1)

reX

where f : R” — R is continuously differentiable and
X ={zeR"| Az =b, z > 0},

with A € R™*" b € R™. This problem has been well studied and many
solution methods have been proposed, including Wolfe’s reduced-gradient
method [1, 22], Rosen’s projected-gradient method and its active set variants
[1, 2, 10], the gradient projection method of Goldstein and Levitin, Polyak
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and its variants [2, 16|, and interior-point methods [9, 11, 18]. Some of
the methods require solving a nontrivial subproblem at each iteration while
others, such as the conditional gradient method of Frank and Wolfe [2, Sec.
2.2], can suffer from slow convergence.
In the special case of homogeneous quadratic f and unit simplex con-
straint, i.e.,
f(z) = 2" Qx, A=ce, b=1,

with @ € R™*™ symmetric and e a row vector of 1s, Bomze [3, Sections 2-
3] recently proposed a novel feasible ascent method that is simple and has
features of reduced-gradient methods and first-order affine scaling methods
[4, 7,11, 25]. In the basic version of Bomze’s method, given a current feasible
point x, it computes a reduced gradient

r(z) = Qr — T 27 Qu
and a corresponding search direction
d(z) = r(z)" — zer(x)™,

where y™ := max{0,y} componentwise for any y € R". Then a feasible
line search is performed from z along d(z) to obtain a new feasible point,
and this iteration is repeated. It is shown in [3] that d(x) is a feasible ascent
direction, and any cluster point of the sequence of = generated is a stationary
point. The direction d(x) is reminiscent of affine scaling direction in which
a reduced gradient similar to r(z) is scaled componentwise by x twice to
obtain a feasible ascent direction; see Section 6.1. Unlike affine scaling, d(x)
is defined for all z € X and is scaled only partially by = and only once. This
method has the additional novel property that it maintains 7 r(z) = 0 and
terminates when r(z) < 0.

Motivated by Bomze’s work, we propose a first-order feasible ascent method
for solving the general problem (1), using a scaled projected reduced-gradient
direction that generalizes d(z) above. This method is simple, has features
reminiscent of reduced-gradient methods and first-order affine scaling meth-
ods, and can start anywhere in X and achieve global convergence; see Theo-
rem 1. Under a Holderian error bound assumption, it has provably sublinear
convergence rate; see Theorem 2. We report numerical experience with a
Matlab implementation of the new method on simplex constrained problems



with n € {1000,10000}. When combined with reduced-gradient projection,
the resulting hybrid method shows better performance than either a reduced-
gradient projection method or a first-order affine-scaling method. Compar-
ison with MINOS (Version 5.5.1) [20] suggests that the hybrid method can
be effective for solving large problems.

In what follows, I,, denotes the m x m identity matrix. For any J C
{1,..,n}, z; = (x)jes and A; = [Aj];es, where z; denotes the jth compo-
nent of z and A; denotes the jth column of A. Also, ||z|| = V2Tz. We make
one of the following two assumptions on A and b:

Assumption 1 (a) For some A’ € Rm=1xn,

I

(b) X # 0 and, for every x € X, A; has rank m, where J = {j | x; > 0}.

Assumption 2

el 0 0 1
2
A= 0 e: 0 ’ b— 1 ’
0 O e™ 1

with €', ..., e™ are row vectors of 1s.

Assumption 1(a) says that the problem is in Karmarkar’s canonical form
[12, Section 5], which can be made without significant loss of generality.
Assumption 1(b) says that A has linearly independent rows and the problem
is primal nondegenerate. This assumption is often made for affine scaling
methods [4, 7, 5, 11, 18, 25, 28]. Assumption 2 says that the feasible set X is a
Cartesian product of unit simplices. Under this assumption, Assumption 1(b)
is automatically satisfied. While this special case of (1) can be transformed
into Karmarkar’s canonical form, the resulting method seems to be different.
Notice that X is nonempty and compact under either assumption.



2 Feasible ascent directions

A key to the new method is a mapping E : ®* — R"*™ that satisfies
AE(z) = I, and [z]° € spanE(z) Vo € X, (3)

for some 6 > 1, where [z]° denotes x raised to the power § componentwise.
We define, for each x € X,

ANz) = E()'V{(z), (4)
r(z) = Vf(z)— AT\(2), (5)
d(z) = r(z)" — E(x)Ar(z)". (6)

(As in [3], the scalar function ¢ — max{0,¢} can more generally be replaced
by any continuous function ¢ : 8 — R satisfying ¢(¢) = 0 for ¢ < 0 and
©(t) > 0 for t > 0. Theorem 1 still holds with this variant.) The following
lemma gives key properties of r(x) and d(z).

Lemma 1 Let E : R™ — R™™ satisfy (3). Let r and d be given by (4)—(6).
For any x € X, we have ([z]°)Tr(z) = 0, Ad(z) = 0, and Vf(x)Td(z) =
[l ()" 1%
Proof. Using (5), (3) and (4), we have
E(z)'r(z) = E(z)'Vf(z) - (AE(z))" A(z)
= EB(2)"Vf(z) - Az)
= 0.
In fact, A(z) is defined so that this property holds. Since [z]° € spanFE(z),
this implies ([z]?)"r(z) = 0.
We have from (3) that
Ad(z) = Ar(z)" — AE(z)Ar(z)* = 0.
Hence
Vi@)'d(z) = Vf(z)'d(z) - Nz)" Ad(z)
= (Vf(z) — ATA(2))"d(z)
= r(z)"d(2)
r(z) r(z)t —r(@) E(x)Ar(z)"
= r(z)'r(x)*
|

= lr=)*I,
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where the fifth equality uses the property E(z)Tr(z) =0. =

Below we present three specific choices of E(x) under Assumption 1 or
2, for which the corresponding d(z) is a feasible ascent direction at z € X
whenever 7(x) € 0. Otherwise r(z) < 0 and d(z) = 0. Since we always have

xTr(z) = 0, the latter implies that z is a stationary point of (1).

2.1 A reduced-gradient-like direction

Under Assumption 1(b), there exists a scalar 6 > 0 such that, for any z € X,
A; has rank m, where J = {j | z; > ¢}. We choose any m x m subma-
trix B of A; (obtained by dropping linearly dependent columns of A;) and
without loss of generality, we assume that B comprises the first m columns
of A. In practice, such B can be found (without knowing ) by ordering the
components of z in decreasing order and checking the corresponding columns
of A for linear independence (within numerical tolerance) until we obtain m
linearly independent columns. Let

E’:[Bl[)]mo_lw, E@z)=[E z]. (7)

Here B and E' € ®"*(™=1 both depend on z through J. By construction,

AE' = I:Imb—l]. Under Assumption 1(a), we also have Az = b = (1) s

together they imply AE(xz) = I,,. Moreover, x € spanF(z). Thus, this
choice of E satisfies (3) with 6 = 1.
In addition,

[0)

E@)Ar(z)" = [E' 2] lﬂ r(z)t = lp(of”)] 42 er(a)t

!

with p(z) = B™1 0 r(z)T € R™. Also, the first m components of = exceed

§ > 0. Since x > 0 and er(z)* > 0, this shows that each of the last n —m
components of d(x) given by (6) is nonnegative whenever the corresponding
component of x is zero. Thus d(z) is a feasible direction at z. In particular,

d(z); <0 = x; >0 or xz; >




This choice of d(z) is reminiscent of reduced-gradient methods [1, 22] except
for the partial scaling by x.

2.2 An affine-scaling-like direction

Under Assumption 1(b), the matrix Adiag(z)? AT is invertible for all z € X,
where 6 > 1. Let

E(z) = diag(x)? AT (Adiag(z)? AT) 1. (9)
Then AE(z) = I,,. Under Assumption 1(a), we also have

F(z)(Adiag(z)’ A7) m _ diag(z)? A" m _ diag(x)’e” = [z,

so that [z]? € spanE(z). Thus, this choice of E satisfies (3). In fact, under
Assumption 1, x — (Adiag(z)?AT) ! is continuous on X [7, 11], and hence
so are E(-), A(+), r(+), and d(-).
In addition,
d(z) = r(z)* — diag(z)? AT (Adiag(z)? AT) ' Ar(z)*,

so d(z); > 0 whenever z; = 0. In particular,

—d(z);

; ; ;>
d(z); <0 = u(z); >0 and z; > (o)
where u(z) := diag(z)?~' AT (Adiag(z)? AT)~' Ar(x)*. This choice of d(z) is
reminiscent of first-order affine-scaling methods, especially if we take 8 = 2;
see Section 6.1. Unlike affine-scaling methods, d(x) is defined even if x % 0.
This is advantageous for warm start and parameteric optimization. If z > 0,
then diag(z)?2d(x) equals the orthogonal projection of diag(x)~%/?r(z)* on
to the null space of Adiag(z)?/2.

2.3 Another affine-scaling-like direction

Under Assumption 2, we choose

T, 0 0

B 0 =z, 0
E(z) = . : (11)

0 0 z,



where J1, Jo, ..., J, is a partition of {1, 2, ...,n} corresponding to €', €?, ..., e™.

This choice of E satisfies (3) with § =1 (since F(z)e” = x).
In addition,

. emr(x)jm
Since z, > 0 and eir(x)j > 0 for i = 1, ..., m, this shows that d(z) given by
(6) has a nonnegative component whenever the corresponding component of
x is zero. In particular,

r@); (12)
eir(x)j_

2

d(z); <0, jeJ; = xj >

In the special case of m = 1, Assumptions 1 and 2 are equivalent, and
(9) with @ =1 is equivalent to (7) and (11).

3 A scaled projected reduced-gradient method

0

We now describe our method. Starting with any z° € X, we iteratively

generate z**! from z¥ € X (k=0,1,...) by
" = 2F 4 ofdb with  dF = d(2F), (13)

where d(-) is given by (4), (5), (6), and the stepsize o* > 0 is chosen to
ensure that zF*! € X and f(2**!) > f(z*). We call this a scaled projected
reduced-gradient (SPRG) method since d(z) is obtained by scaling r(z)* with
I — E(z)A. By Lemma 1, the SPRG method maintains ([2*]°)7r(z*) = 0
and V f(z*)Td* < 0 whenever r(z*) £ 0.
For each k, since z¥ € X and Ad* = 0 (by Lemma 1), 2! € X if and
only if of < a*, where ,
ko i Y
Q"= j{%l?o v (14)

We can choose o by the maximization rule:

o € argmax f(z* + ad®).
0<a<ak
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However, this is practical only if f is quadratic or cubic. For general f,
we choose of by an Armijo rule [2, Section 2.2.1]: oF is the largest a €

{sa*(B8)}1=o,1,.. satisfying
f(@* + ad®) > f(zF) + caV f(zF)Td, (15)

where 0 < s < 1,0 < 3,0 < 1 are constants. If d* = 0, then (15) is satisfied
by any @ > 0 and the Armijo rule yields of = sa*. In general, if d* is a
feasible ascent direction at z¥, then & > 0 and o is defined and positive.

4 Global convergence

The following theorem establishes the global convergence of the SPRG method.
Its proof uses Lemma 1, the feasible ascent properties of the search directions
of Section 3, and properties of the Armijo rule [2, pages 43-44]. This theorem
will also be used for the convergence rate analysis in Section 5.

Theorem 1 Let {z*} be generated by the SPRG method (4)—(6), (13), with
o chosen by the Armijo rule (14), (15) and E chosen by either (7) or (9)
under Assumption 1 or (11) under Assumption 2. Then z* € X for all k,
{f (@)} 1, {d*} is bounded, and every cluster point of {z*} is a stationary
point of (1). If V f is Lipschitz continuous on X, then inf, of > 0.

Proof. Since 2° € X, an induction argument using Ad* = 0 and o < af
yields that zF € X for all k. Since X is bounded, this implies {z*}, {E(2*)},
and {r(z*)} are bounded, regardless of whether E is given by (7) or (9) or
(11). Thus d* = d(z*) given by (6) is bounded. Also, {p*} is bounded, where
pF = r(zF)*. Since a = oF satisfies (15), (13) and Lemma 1 yield

f@h) = f(@*) > 0a*V f(2*)"d" = oo ||p*||*  VE. (16)

Thus {f(z¥)} 1. Since f is continuous and {z*} is bounded, this im-
plies {f(z*)} converges and so {f(z**') — f(2*)} — 0. Then (16) implies
{o*lp*[I*} — 0.

We claim that &* given by (14) satisfies

iréf@k > 0. (17)

8



If F is given by (7) under Assumption 1, then for each k with d} < 0, either
k k — ok _ okopk
xi > 0 or df = pj — zjep” (see (8)), so that
5 ¥ 1
either dk 2 & or @k 2 ﬁ 2 —
max;; |dj| Tjept —p;  €p
for some j with z¥ep® > p¥ > 0. Since {d*} and {p*} are bounded, this
implies (17). If E is given by (9) under Assumption 1, then (10) yields

& . 1
a” > min .
jru(zk); >0 u(xk)

Since u(-) is continuous on X and {z*} is bounded, this implies (17). If E is
given by (11), then for each k we have (see (12))

k
& T 1

— J
= Tk ik _ ok ink
rj €p;, —P; €Dy

v

for some 7 and j € J; with xf eip’ji > pf > 0. Since {p*} is bounded, this
again implies (17).

Let Z be any cluster point of {z*}. Consider any subsequence {z*}icx
(K C {0,1,...}) converging to Z. By further passing to a subsequence if
necessary, we will assume that either (i) infrex o > 0 or (ii) {&*}rex — 0.

In case (i), since {a*||p*||?} — 0, we have {||p*||?}rex — 0. If E is given
by (7), then since E' is from a finite set, we can assume by further passing to
a subsequence that E' is constant for all k € K. Then {E(z*)}rex — [E" 7],
which together with the continuity of V f implies that

{r(@)}pex — 7:= Vf(x) — AT,

with A := [E' z]TV f(z). Moreover, ([z*]?)Tr(z*) = 0 for all k (see Lemma
1) and {||p*||?}kex — O imply, respectively, ([Z]°)T# = 0 and ¥ < 0. Since
T > 0, this implies 717 = 0 so 7 is a stationary point of (1). If E is given by
(9) or (11), then {E(z*)}1ex — F(Z), and a similar argument shows T to be
a stationary point of (1).

In case (ii), we have from (17) that o® < sa* for all k € K sufficiently
large, implying that the ascent condition (15) is violated by a = o*/8, i.e.,

fa* + (a*/B)d") — f(a*)

ok /7 < oV f(zMTdr. (18)




Since {d*} is bounded, by further passing to a subsequence if necessary, we
can assume that {d*}cx — some d. Since {&*}rcx — 0 and f is continu-
ously differentiable, the above inequality yields in the limit that

ViE)'d<oVf(z)d

Since 0 < o < 1, this implies Vf(z)"d < 0. Thus limgex k00 V f(2F)T'd* <
0. By Lemma 1, this implies {||p*||*}rex — 0, so the same argument as in
case (i) yields that Z is a stationary point of (1).

Suppose that V f is Lipschitz continuous on X with Lipschitz constant
L > 0. Then the mean value theorem yields

F) = F@)> Vi@ (g -a) ~ gy —al?  VayeX

(see [2, page 667]). For each k € {0,1,...}, either of = sa* or else (15) is
violated by o = o*/3, i.e., (18) holds. In the second case, applying the above
inequality with z = 2%,y = 2% + (o*/8)d* and using (18) yields

k

ot L (aF\? o¥ o
LVt () 11 < 1 (4 G )6 < Sov ity

Dividing both sides by ¥/ and rearranging terms yields

(1~ o)V < S 2

Since {F(z*)} is bounded, (6) implies ||d¥|| < C||p*|| for some constant
C > 0. Also, Vf(z*)Td* = ||p¥||* by Lemma 1, so the above inequality
further implies
Lo*
1_ k2 « O
(-l < 55
Since of # sa¥, we have d* # 0 and hence p* # 0, so this yields 1 — o <
%%02. Thus in both cases we have

C|lp*[I*.

200

k> mi _
a” > min {sa Tor
This and (17) show that infyo* > 0. =
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5 Sublinear convergence rate

In this section we analyze the asymptotic convergence rate of the SPRG
method of Section 3. For our analysis, we define the projection residual

R(z) := Px[z + Vf(2)] — =,

where Px[y] := argmin, y ||z — y||, and we make the following assumption
similar to Assumptions A and B in [15]; also see [13].

Assumption 3 (a) The stationary point set X = {z € X | R(z) = 0} is
nonempty.

(b) There exist scalars T > 0, € > 0, and v € (0,1] such that
dist(z, X) < 7||R(2)||” whenever € X, |R(z)] < e, (19)
where dist(x, X) := ming 5 ||z — z||.
(c) There exists a scalar § > 0 such that

|z —y||>06 whenever z€ X, ye X, f(z)# f(y).

Assumption 3(a) is redundant when X is bounded. Assumption 3(b) is a
local Hoélderian error bound assumption, saying that the distance from z to
X locally grows at most like ||r(x)*]|”. Error bounds of this kind have been
extensively studied and hold under very weak assumptions [8, 13, 14, 15, 21].
For example, it holds with v = 1 when f is quadratic or f(z) = —h(Hz) +
cTx for all z € ", where H € R™ ¢ € R", and h is a strongly convex
differentiable function on R¢ with VA Lipschitz continuous on R¢. It holds
with some v € (0, 1] if f is analytic (e.g., polynomial). Assumption 3(c) says
that the isocost surfaces of f restricted to the solution set X are “properly
separated.” Assumption 3(c) holds automatically if f is quadratic or concave
[14, Lemma 3.1]. Thus Assumption 3 holds for any quadratic program.

The form of 7(z) (see (5)) hints at a connection between r(z)™ and R(x),
which we will exploit. However, the search direction d(z) used by the SPRG
method also has features of first-order affine scaling direction due to the
scaling by x This complicates the analysis. In fact, previous convergence
rate analyses are only for second-order affine scaling methods and only when
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f is quadratic [23, 26] or f is convex/concave with V?f having constant null
space on X [18, Lemma 4.11], [24].

We begin with a key lemma which relates ||r(z)"|| to ||R(z)||. In what
follows, y 1. z means y”z = 0 for any vy, 2z € R, and, for each 7 € X,

AZ)={ eR™|0>Vf(z)— A"\ L1}
denotes its set of Lagrange multiplier vectors.

Lemma 2 Let E : R™ — R™™ satisfy (3) with @ = 1. Let r be given by (4)
and (5). Assume X is bounded. Then the following results hold.

(a) Vf(z)T(z —x) < zlr(x)" for allz,7 € X.

(b) There exists a scalar k1 > 0 such that ||R(z)|| < ki4/||r(x)t]| for all
z € X.

(c) Suppose that every T € X satisfies strict complementarity in the sense
that
T— (Vf(@) —ATA) >0 Ve Ax). (20)

Then there ezist scalars ky > 0 and € > 0 such that || R(z)|| < kal|r(x) ||
for all z € X with ||r(z)*|| <€

Proof. (a). For any z,Z € X, we have from (5) and A(Z — z) = 0 that
Vi@ (@-2)=r(@)"@-2)=r@)'z<(r(@)")'7,

where the second equality uses Lemma 1 and the inequality uses r(z) <
r(z)*t, z > 0.

(b). In what follows, we denote y~ = max{0, —y}. Fix any x € X. For
simplicity, let ¢ = Vf(z) and abbreviate A(z), r(x)*, r(z)” as A, r*, r™,
respectively. Then (5) implies

g— AT N=rt —¢p7, 0<rt Lr=>0.
Let J:={j € {l,..,n}|z; < r; }- Let 7,5 € R be given by

2.0 ifjelJ,; . g if j eJ; (21)
T @+ else, Tyt else

12



Thus if j € .J, we have TJ“-L = 0 and hence :Ej—acj—gj-i—A}ﬂ)\: —z; — g +

A]T/\ = —z; +r; >0, as well as Z; = 0; otherwise T; — x; — g; +AJT/\ =

Tj_gj_T;+A?)\:0, aswellasf:j:xj+r;“20. Thus
0<zli—z—g+ATX>0. (22)

Let z = Px[x + g]. We have that z is the optimal solution of
1
min clly -z —gl* st Ay=by>0.

This is a convex quadratic program, so z satisfies the necessary and sufficient
optimality condition

0<zlz—z—g+ATu>0 Az= Az,

for some pu € R™. Comparing this with (22), we see that Z, g defined by (21)
is the optimal solution of

1
myin 5”9—113—@”2 st. Ay = Az, y>0.

Notice that the objective function in the above two quadratic programs have
the same positive definite Hessian (the identity matrix) and differ only in
their linear terms. The constraints differ only in the right-hand side. Then
it is known (see [6, page 696, Exercise 7.6.10]) that

|z = z[| = O(l|z — =|| + (I3 — gl})-
Since ||Z — z|| > ||z — z|| — ||Z — z||, this yields
|R(2)]| = [lz = 2] = O([|Z — z[| + [|g — gl])- (23)
Since z"r™ = 2"r™ > z;r; for all j, the definition of J implies that
2Trt > (z;)? Vjed, aTrt > (r;)2 V¢

Hence ||g — gll = [[(r} ) j¢sll = O(VaTr™) and [|& — z|| < [lo ]l + [[(r)) il =
O(VzTr*+ + ||r*||). Since X is compact by assumption, ||z|| = O(1) for all
z € X and hence

19 =gl =OWIllr*l), Iz ==l = O(/lIr+ID-

13



This together with (23) proves (b).
(c). We claim that there exist scalar constants € > 0 and p > 0 such that

z+7(r)” > pel’ whenever z € X, ||r(2)t|| < & (24)

If this were false, then there would exist a sequence ¥ € X, k = 1,2, ..., such
that {r(z*)*} — 0 and 2% + r(z*); — 0 for some j € {1,...,n}. This would
imply {#%} — 0 and {r(z*);} — 0. Since 2" lies in the compact set X,
by passing to a subsequence if necessary we can assume that {z*} converges
to some T € X. Since, by Lemma 1, r(zF) = V f(z¥F) — ATA\(2*) L z* for
all k and A(z*) = E(z*)TV f(z*) is bounded, we would have in the limit as
k — oo that
0>VfE) —-ATN 1Lz

for some A € R™, implying Z € X and A € A(Z). Moreover, 7; = 0 and
Vf(z); — A;T/_\ = 0, which would contradict (20).

Fix any € X with ||r*|| <€ where for simplicity we abbreviate r(x)",
r(x)~ as rt, r~, respectively. Let J := {j € {1,..,n} | z; < r; } By (24),

i > p/2 VieJ and z;>p/2 VigJ.

T

Since 2Trt = 2Tr= > x;ry, this implies that

[\
&}

z; < =zTrt Vje J and ry < STt Vi

S
)

Hence, for z, g defined by (21), [|§—gll = [|[(; ) je5ll = O(z"r*) and ||Z2—z|| <
|z 5] + ||(7";-r)j€j|| = O(zTr* 4 ||r*]|). Since ||z|]| = O(1) for all z € X, this
yields

1g—gll=0(Ir"I), Iz -zl =O(r).

This together with (23) proves (c). =

The strict complementarity assumption (20) is also used in the analyses
of affine scaling methods [4, 5, 28]. Note that, under Assumption 1 or 2,
A(z) is a singleton for all z € X. Below is our main convergence rate result.
Its proof uses Theorem 1 and Lemma 2, as well as ideas from [15, Appendix|
for the linear convergence rate analysis of gradient-projection-like methods.
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Theorem 2 Suppose that V f is Lipschitz continuous on X and Assumption
3 holds. Let {z*} be generated by the SPRG method (4)—(6), (13), with oF
chosen by the Armijo rule (14), (15) and E chosen by either (7) or (9) (with
0 = 1) under Assumption 1 or (11) under Assumption 2. Then there ezist
scalar C > 0 and integer k such that

0

IN

C
ke U
e < (25)

fOT all k > k, where w = %} Ny = min{y,l}/Q, ek = o — f(:vk), and
0 = limy_o f(z%). If every T € X satisfies (20), then we can instead take
7 = min{y,1/2}.

Proof. By Theorem 1, {f(z*)} 1 and 2* € X, o* > q for all k, where
a > 0. By the Armijo rule and Lemma 1 (see (16)),

f(@*) — f(2®) > 0!V f(2¥)Td" = ao¥||p*||? > oa|p*|> VE,  (26)

where p* := r(z¥)*. Also, X is nonempty and bounded by Assumption 1 or
2.

Since {f(z*)} converges, we have {f(z*™') — f(z¥)} — 0 and hence (26)
yields {p¥} — 0. By Lemma 2(b), ||R(z*)|| < &1y/||p¥|| for all k, where
k1 > 0, and hence {R(z*)} — 0. By Assumption 3(b), there exist an index
k and a scalar 7 > 0 such that

lz* — 2*|| < 7| R(=*)|" VE > k,
for some ¥ € X. Hence
le* — 2| < Tl Yk > k. (27)
Combining (27) with {p*} — 0 gives
¥ —z% =0, (28)

Then, Assumption 3(c) implies that Z* eventually settles down at some iso-
cost surface of f, i.e., there exist an index k£ > k£ and a scalar © such that

f(@¥*)y=v Vk>k. (29)
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Fix any index k£ > k. Since zF € X and Z* is a stationary point of f
over X, we have V f(z*)T(z*¥ — z¥) < 0 and from the Mean Value Theorem
that f(z*) — f(a*) = Vf(4*)T(zF — z*), for some * € R" lying on the line
segment joining Z* with 2*. Upon summing these two relations and using
(29), we obtain

o — f(z") (V") = Vi@E*)" (z* - o)

>
> —[[Vf(*) - Vi@EhIlIz* -
>

—L||z* — 2*|1%,

where L is the Lipschitz constant for V f over X and |[¢* — z¥|| < ||z* — z*||.
This together with (28) yields

lim sup f(z*) < ©. (30)

k—o00

Fix any index k > k. Since z*, 2% € X, we have from Lemma 2(a) that
V(=) (@* - 2*) < (@)
We also have from the Mean Value Theorem that
f@*) = f(ah) = V(EN) (@ —2b),

for some &% € R lying on the line segment joining Z*¥ with z*¥. Combining
these two relations and using (29), we obtain

v — f(z")

(VF(E") = V(") @" - a*) + Vf (") (@* - 2*)
IVF(&*) = VF@EhIz* — =¥ + (7*)"p"

<
< Lllg = a®|lll2* - 2*)| + (@)D"

Take k sufficiently large so that ||p*|| < 1 for all & > k. Then the above
inequality, together with ||€¥ — 2| < ||z* — 2*|| and (27), yields

D — f(z*) < rllph|™m 0 VE >k,

where k3 > 0 depends on L, maxy ||Z*||, 51, 7,7. Combining this with (26)
and 7 = min{v, 1}/2 yields

U= f@@") <R(fEM) = f@6M)T VE>E,
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where & = k3/(0a). Using e = © — f(2¥) and rearranging terms, we have

K\ 1/7
eftl < ek — (e_) Yk > k.
K

We also have from (30) and the fact {f(z*)} 1 that f(z*) < ¥ and hence
ek > 0 for all k.

Take k sufficiently large so that ef < (f‘f’k)ﬁ for all k > k. Take
C > g7 sufficiently large so that (25) holds for k¥ = k. Then an induction
argument shows that (25) holds for all £ > k. In particular, if (25) holds for
some k > k, then we have from C > R that (C’/Fa)% > C and hence

NNy C C\7 11 1
k4l < b _ [ E <__(_) <C(———w><07
© = (R) =% \ake) ST\ T )Y ke

where the first inequality uses (25) and t — ¢ — (t//?;)% being increasing

on [0, (f_ﬁfi)%]; the last inequality, which is equivalent to 1 —

e S
1 w
(1 — k——i-l) , holds since w/y —w =1 and (1 — k%l)‘” >1- k—lel (using

w<1).

If every 7 € X satisfies (20), then {p*} — 0 and Lemma 2(c) yield that
||R(z*)|| < kol|p¥|| for all k sufficiently large, where k3 > 0. Then the same
argument applies, but with 4 = min{~, 1/2} instead. =

Why can we prove only sublinear convergence instead of linear conver-
gence, as was done in [14, 15] for gradient-projection-like methods under
Assumption 37 We see from the proof of Theorem 2 that linear convergence
is achieved if o — f(z*¥) = O(||p*||?). In contrast, the proof of Theorem 2
only shows that © — f(z*) = O(||p*|™™{»1). This is because the upper
bound on Vf(z)"(Z — z) in Lemma 2(a) involves Z'r(z)™ which is linear,
not quadratic, in ||r(z)*||. Notice that Theorem 2 requires E to satisfy (3)
with # = 1 in order to apply Lemma 2. If § > 1, can sublinear convergence
still be proved?
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6 Numerical Experience

In order to better understand its practical performance, we have implemented
the SPRG method in Matlab to solve the special case of (1) with simplex
constraint, i.e.,

A=ce, b=1.

In this section, we describe our implementation and report our numerical
experience on test problems with n € {1000,10000} and objective functions
f from Moré et al. [19], negated for maximization. We compare the per-
formance of the method with a reduced-gradient projection method and a
first-order affine scaling method, which are also feasible ascent methods with
simple iterations, as well as MINOS [20], a well-known Fortran code for con-
strained smooth optimization.

6.1 Implementations and Test Functions

Since A = e, we have E(z) = x using either (7) or (11) and E(z) = [x]%/e[z]’
using (9). We use the latter more general choice, for which

k_ .k ko_ep” . k(. k\+
d" =p® —[z"] T with  p" = r(z")". (31)

In our implementation of the SPRG method, we use the standard setting
of s =1, § = .5, 0 = .1 for the Armijo rule (15). To save on function
evaluations, we note that typically o ~ o*~!, so we use instead

k—1 k
—_k _ . -5 « . x]
@" = min< max{ 1077, , min —— 5,
153 judh<0 —d;

= 00. It can be checked that this modification to & does not affect

with a1

the global convergence or convergence rate results in Theorems 1 and 2.
Tsitsiklis and Bertsekas [27] proposed, in the context of data network
routing, a reduced-gradient projection method for simplex constrained smooth
optimization. This method is as simple as the SPRG method, and is prov-
ably linearly convergent under Assumption 3 and Lipschitz continuity of V f
on X [17]. Specifically, for a given z*¥ € X and ¢g* = Vf(z*), this method
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chooses an index j* € argmax;_; ., g}“ and a stepsize o > 0, and updates
oFtl = 2F[ak]) where

Haly = {5 T i 77
! 1=, 2¥a]; if § = g%,

with r* = ¢g* — e"gl. The stepsize can be chosen by an Armijo-like rule
along the projection arc [2, page 226]: o* is the largest o € {a*(8)'}1=0.1,..
satisfying

f(Z*la]) > f(z*) + o(g") (#[a] — 2¥), (32)

where af = min{max{10*5,ak*1/6},s} and s > 0,0 < 3,0 < 1 are con-
stants. We use the setting s =1, 5 = .5, 0 = .1.

Another simple method for simplex constrained smooth optimization is
the first-order affine-scaling method [4, 11, 25]. Specifically, for a given z* €
X with z*¥ > 0 and ¢* = Vf(2*), we compute

kK12\T k
d* = diag(z*)*r* with rF = ¢* — eT%,
T
and updates zFT1 = 2F + o*d* for some of > 0 so that z¥*! > 0. (Equiva-
lently, d* has the form (31) with # = 2 and p* = diag(z*)%¢* instead.) We
choose o by the Armijo rule (15) with s =1, 3 =.5, 0 = .1, and

k-1 ok
&® = min { max { 1075, a , .95 min —Jk ,
b 5:d¥ <0 —dj

where a1 = 0.

The above three methods can all be efficiently implemented in Matlab
using vector operations. Since the starting points given in [19] may not
satisfy the simplex constraint and the affine scaling method requires z° > 0,

we use the starting point
2 =e'/n

for the above three methods. We also experimented with other positive
starting points, and the results are qualitatively similar. We terminate the
methods when

| min{z*, —r(z*)}|| < tol.
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We set tol = 102 in our tests, which yields solutions whose objective values
are accurate to 5 significant digits. Roundoff error in Matlab occasionally
causes this termination criterion never to be met, in which case we exit. In
particular, we exit at iteration k if either ¥ = 2*¥~! or if the Armijo ascent
condition (i.e., (15) or (32)) is still not met when « reaches below 107%.

MINOS (Version 5.5.1) is a well-known Fortran implementation of an
active-set method for constrained smooth optimization [20]. To accomodate
problems with n = 10000, we set Superbasics limit to min{2n + 1, 3000} and
Workspace to 8,000,000 in MINOS.

For f, we choose 9 test functions from the set of nonlinear least square
functions used by Moré et al. [19] and negate them for maximization. These
functions, listed in Table 1 with the numbering from [19, pages 26-28] shown
in parentheses, are chosen for their diverse characteristics: convex or noncon-
vex, sparse or dense Hessian, well-conditioned or ill-conditioned Hessian, and
are grouped accordingly. The first three functions ER, DBV, BT are nonconvex
with sparse Hessians; TRIG, BAL are nonconvex with dense Hessians; EPS is
convex with sparse Hessian; VD is strongly convex with dense Hessian; LR1,
LR1Z are convex quadratic with dense Hessians of rank 1. The functions ER
and EPS have block-diagonal Hessians, and VD, LR1, LR1Z have ill-conditioned
Hessians. Upon negation, these convex functions become concave functions.
The functions and gradients are coded in Fortran and in Matlab using vector
operations.

Problem SPRG RPG AS
iter/nf/cpu/obj iter/nf/cpu/obj iter/nf/cpu/obj

ER (21) 1/2/.01/498.00 1253/2515/1.8/498.00 13/14/.02/498.00
DBV (28) 328/667/.8/4.9.10~7 627/1267/1.7/5.1-10~7 8/18/.03/2.9-10~7
BT (30) 4193/8387/3.6/999.03 58/122/.07/999.03 | 2-10%/4.0-10°/2433.5/999.03
TRIG (26) 8/17/.03/2.7-10~° 541/1090/1.1/4.2.10~° 23/44/.05/1.2.10~°
BAL (27) 1/2/.0/9.9899-108 75/63/.03/9.9899-108 720/106/.03/9.9899-108
EPS (22) | 4191/8379/11.6/1.0-10-6 | 24340/48688/54.7/8.5-10—° 1162/2322/3.42/3.6-10~6
VD (25) 7/8/.01/6.2250-10%2 1/2/.01/6.2250-10%2 23/164/.04/6.2250-10%2
LR1 (33) 7/8/.01/3.3283-108 1/2/0/3.3283-108 82/214/.07/3.3282.10%
LR1Z (34) 22/69/.02/251.12 24/790/.19/251.15 33/105/.05/251.12

Table 1: Comparing the SPRG method with reduced-gradient projection
and first-order affine scaling on test functions from [19], with n = 1000 and

2% =eT/n.

 Exits due to roundoff error causing z* = 2*¥~1, with o* ~ 10716.
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6.2 Numerical Results

We now report on the performance of the SPRG method, and compare it
with the performances of reduced-gradient projection (RGP), affine scaling
(AS) methods, and MINOS. All runs are performed on an HP DL360 work-
station, running Red Hat Linux 3.5 and Matlab (Version 7.0). MINOS is
compiled using the Gnu F-77 compiler (Version 3.2.57). Tables 1 and 2 show
the number of iterations, number of f-evaluations, cpu time (in seconds),
and final objective value (before negation). For the SPRG method, we ex-
perimented with # = 1 and # = 2 and found # = 1 to perform consistently
better. Thus we report the results for § = 1 only.

Problem (n) SPRG-RGP SPRG-RGP MINOS

20 =eT /n z0 = (1,0,...,0)T z9 by default initialization
iter/nf/cpu/obj iter/nf/cpu/obj iter/nf/cpu/obj

ER  (1000) 1/16/.02/498.00 52/196/.16/498.00 1049/2105/2.49/498.00
(10000) 1/19/.11/4998.00 23/89/.57/4998.00 4555/9118/312.3/4998.00
DBV (1000) 328/1335/1.5/4.9-10~7 | 348/1394/1.56/5.8-10~" 10/48/.01/5.96-10~2
(10000) 0/1/.03/2.0-10~8 2/22/.2/7.6:10~8 10/48/.06/5.96-10—2
BT  (1000) 180/725/.3/999.03 25/104/.05/999.03 11/24/.00/999.03
(10000) 97/393/1.98/9999.03 25/104/.56/9999.03 11/24/.02/9999.03
TRIG (1000) 8/41/.03/2.7-10~6 23/84/.08/4.7-10~° 2023/4051/27.23/1.3-10~©
(10000) 3/24/.16/8.5-10~7 21/77/.68/7.2:10~7 | 6017/12805/763.2/2.16-10~%
BAL (1000) 1/3/.0/9.9899-108 6/152/.04/9.9899-108 2/32/1.9/9.9899-108
(10000) *2/59/.1/9.9990-101T 1/6/.03/9.9990-101T 1/5/2.22/9.9989-1011
EPS (1000) | 2469/9884/10.6/1.0-10—% | 1110/4439/4.9/1.4-10~F 3199/6534/10.08/3.0-10~7
(10000) 99/407/4.2/6.7-10~ 7 88/351/3.4/1.3.10°° 3199/6534/13.6/3.0-10 7
VD  (1000) 1/3/.0/6.2250-1022 1/3/.01/6.2250-10%2 70/6/.01/6.2749-10%2
(10000) 1/3/.01/6.2475-10%0 1/3/.01/6.2475-10°C 70/6/.01/6.2524-10%0
LR1 (1000) 1/3/.02/3.3283-108 0/1/0/3.3283-108 0/5/.00/3.3283-10%
(10000) 1/3/.02/3.3328-1011 0/1/.0/3.3328-1011 10/16/.02/3.3328-10'!
LR1Z (1000) 6/283/.09/251.12 5/279/.06/251.12 2/8/.00/251.12
(10000) *2/87/.22/2571.81 *1/84/.16/2571.81 ¥1/29/.01/3756.89

Table 2: Comparing the SPRG-RGP hybrid method and MINOS on test
functions from [19], with n € {1000, 10000} and different, x°.

f MINOS exits due to problem being badly scaled.

t MINOS exits due to current point cannot be improved upon.

* SPRG-RGP exits due to roundoff error causing Armijo ascent condition
not met when o < 10720,

We see from Table 1 that none of SPRG, RGP, AS method performs
better than the others on all problems. The stepsizes for SPRG and RGP
typically range between 10 and 10~%. In contrast, stepsize for AS can vary
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widely between 10% to 107!, Interestingly, SPRG never performs the worst
on any of the problems (either the best or second best), unlike RGP and
AS. Thus SPRG has more robust performance. This motivated a hybrid
method that at each iteration generates new z using both SPRG or RGP
(which, unlike AS, do not require z > 0) and chooses the better (higher
f-value) of the two. Table 2 reports the performances of this SPRG-RGP
hybrid method and of MINOS, with n € {1000, 10000} and different z°. In
MINOS, z° is chosen by its default initialization procedure. MINOS has
better performance (lower iter and nf) on BT while SPRG-RGP has better
performance on ER, TRIG, VD, and is slightly better on LR1. On the remaining
problems, neither clearly outperforms the other. On DBV, VD, and LR1Z with
n = 10000, MINOS returns inaccurate solutions. In contrast, SPRG-RGP
seems to return reasonably accurate solutions. Of course, we must keep in
mind that MINOS is a general-purpose NLP solver, whereas SPRG-RGP is
specialized to simplex constrained problems. For n = 1000 and z° = e” /n,
SPRG-RGP is outperformed by RGP on BT only and is outperformed by AS
on DBV, EPS only.

Theorem 2 suggests that the convergence rate of SPRG may be influenced
by strict complementarity (20) at stationary points. To check this, we test
the methods on

f(z) = —(ex)? —zx

with n = 1000. The problem has a unique stationary point at Z = (0, ...,0, 1),
which violates strict complementary (20) at all except one component. From
three positive starting points e”'/n, (.5, =5, ..., -2)7, ﬁ(n, n—1,..,1)7T,
SPRG takes 1, 27, 56 iterations, respectively, to converge to z with tol =
1073, In contrast, RGP and hybrid take 1, 1, 1 iterations and AS takes 2,
19, 228 iterations, respectively. From starting point (1,0,...,0)” (not pos-
itive), SPRG takes 29 iterations while RGP and SPRG-RGP hybrid take,
respectively, 1007 and 12 iterations. Thus SPRG seems not adversely af-
fected by a lack of strict complementarity and the hybrid method has best

overall performance.
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7 Conclusions and Future Directions

We have proposed a new feasible ascent method, based on scaled projected
reduced-gradient direction, for linearly constrained smooth optimization. This
method has features of reduced-gradient methods and first-order affine scal-
ing methods, and can start anywhere in the feasible set and achieve global
convergence. Under a Holderian error bound assumption, it achieves sub-
linear convergence. Numerical experience on simplex constrained problems
suggests that the method is promising for solving large problems, especially
when it is combined with reduced-gradient projection.

There are various directions for future study. Can the primal nondegen-
eracy assumption (Assumption 1(b)) be relaxed? Can the sublinear conver-
gence result in Theorem 2 be improved to linear convergence? Can the new
method be extended to conic programs? What about implementation and
testing of the method for general linear constraints?
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