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Further results on stable recovery of sparse
overcomplete representations in the presence of

noise
Paul Tseng

Abstract—Sparse overcomplete representations have attracted
much interest recently for their applications to signal processing.
In a recent work, Donoho, Elad, and Temlyakov [12] showed
that, assuming sufficient sparsity of the ideal underlying signal
and approximate orthogonality of the overcomplete dictionary,
the sparsest representation can be found, at least approximately
if not exactly, by either an orthogonal greedy algorithm or by���

-norm minimization subject to a noise tolerance constraint. In
this paper, we sharpen the approximation bounds under more
relaxed conditions. We also derive analogous results for a stepwise
projection algorithm.

Index Terms—Basis pursuit, greedy algorithm,
� �

-norm mini-
mization, matching pursuit, overcomplete representation, mutual
coherence, sparse representation.

I. INTRODUCTION

A fundamental problem in signal processing is that of
finding a “good” representation of a given (possibly

noisy) signal �����	� . An approach that has been gaining
popularity is to choose an overcomplete set of elementary
signals 
���
�������
�
�������� , normalized so that ��
�������� �
for !"� �#
�������
%$ , and use optimization or other means
to find a sparse representation of � from this set. This is
guided by Occam’s Razor principle that “simplest is best.” For
example, letting &(')�+* 
��-,�,�,�
.�0/1�2����3 � , we might seek a
representation &54��6� for which 47�8� � has the fewest
nonzeros. However, this problem is known to be intractable
(NP-hard) and its solution is highly sensitive to noise in � . A
less noise-sensitive problem formulation is

9;:=<>�?A@CB ��4��EDGFIH�JLKNMPOEQRQTS ��&54VUW�X� ��ZY\[ � 

where [^]`_ is a user-chosen tolerance. Here and throughout,
�;,-��a denotes the b�a -norm ( � Ydc6Yfe ) and ��4���D�'g�h FIH�i�ikjl4nm h , where F%H�iCikjo4-mp')��qE! h 4X�sr� _�t and

h uvh
denotes

the cardinality of a finite set
u

. Thus, we seek a sparsest
(i.e., fewest nonzeros) representation with noise tolerance [ .
However, this problem is still intractable in general.

To make the problem tractable, it was proposed in [12], [18],
[31] to approximate the nonconvex discontinuous counting
function ��,%��D by ��,%� � , and thus solve the convex optimization
problem

9;:=<>�?A@ B ��4����wFIH�JLKNMPOEQRQTS ��&54VUW�X� ��ZY\[ � � (1)

The author is with the Department of Mathematics, University of Wash-
ington, Seattle, WA, 98195, USA e-mail: (tseng@math.washington.edu). This
research is supported by the National Science Foundation, Grant No. DMS-
0511283.

Manuscript received February 26, 2007; revised June 12, 2008.

This problem can be efficiently solved by various numeri-
cal methods and is closely related to least square with b � -
regularization used in basis pursuit denoising and LASSO [6],
[26], [29]:

9;:x<>L?A@ B ��&54VUW�X� ��zy|{ ��45� � 
 j {~} _ m (2)

where ��� { may be interpreted as a Lagrange multiplier for
(1) for some suitable [v]8_ [16]. In some studies [2], [21],
�Z,��P� is replaced by �Z,�� a for some _���c�� � . However,
the corresponding optimization problems (1) and (2) are no
longer convex and have spurious local minima, e.g., 4�� _ .
Thus, a global minimum is not guaranteed to be found by a
local descent method.

Another practical strategy for finding a sparse representation
is to select the members of the representation one-at-a-time in
a greedy manner, until the least square residual is below a
user-chosen threshold [#���A��](_ . One such greedy algorithm
is the orthogonal greedy algorithm (OGA) [7], [24], which is a
modification of the matching pursuit algorithm of Mallat and
Zhang [23]; see [1], [8], [12], [28] and Section IV for further
discussions of OGA.

Let 4n� be any solution of (1), and let 4 ���A� be coefficients
generated by the OGA. (Note that 4��`� _ if and only if
[�] ����� � .) How good approximations are 4-� and 4 ���#� of a
sparsest solution? This question has been extensively studied
in [11], [12], [13], [17], [18], [19], [22], [30], [31]. In the
studies [11], [12], [13], [17], [22], [30], it is assumed that the
original signal ��� lies in the span of 
 � 
�������
T
 � , i.e., ���V�� iC� < & , and 4n� , 4 ���#� are compared with a solution 4�� of

9;:x<>L?A@�B ��4��ED�F%HCJLKNM�O�Q0QIS &542�\� � � (3)

Note that 4 � � _ if and only if � � � _ . In what follows, let
u�� ')� F%H�iCikjo4-��m�
 � ')� h u���h 

4-���� � ')� 9�:=<� ?A� �

h 4 �� h 
 �G')� ����U����A� � �

It is not difficult to see that 4n�\��4 ���A� ��4-� whenever

���
�������
T
.� are pairwise orthogonal and ��� [ � _ . This
suggests that 4n� and 4 ���A� are good approximations of 4��
whenever 
 � 
�������
�
 � are approximately orthogonal and ���
[ � _ . Accordingly, central to the analysis in [11], [12], [13],
[17], [18], [19], [22], [23], [30], [31] is the following measure
of approximate orthogonality, called “mutual coherence” and
introduced by Mallat and Zhang [23] in their initial study of
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matching pursuit, � 'g� 9 ����������	 �
�.� �� 
 �� 
�� �� � (4)

As is noted in [12, page 7], there exist overcomplete sets
with $���
 � and � � ����� 
 ; see [27, pages 265-266] and
references therein.

In the noiseless case of � � _ , Donoho and Elad [11,
Theorem 7], Gribonval and Nielsen [22, Theorem 1], Fuchs
[17], Tropp [30, Theorems A and B] independently showed
that 4 � � 4n� is the unique solution of (1) and (3) whenever
[ � _ and � � �� j ��� � y �Pm . If & is the concatenation of two
square orthogonal matrices, then the latter condition can be
relaxed to � � j � � U �� m ��� � [11], [15]. Tropp [30, Theorems
A and B] showed that 4 ���A� �+4n� whenever [#�A�A� � _ and
� � �� j ��� � y ��m . In the general noisy case, Donoho, Elad,
and Temlyakov showed that

��4 � UW4 � � ��pY jl� y [ m �
�	U � j���� U\��m (5)

whenever [ ] � and � � �� j ��� � y ��m [12, Theorem 3.1].
They also showed that FIH�i�ikjl4 � m�� u � whenever � � �� � � �
and

[ } �	U
� � y � �	U � � � �
�	U � � � � (6)

[12, Theorem 4.1]. (A related result for (2) is derived in
[18, Theorem 4], showing that F%HCi�ikjo4�����m�� u�� whenever
� Y �� ��� � and { � � } � y � �� � �"! � � � �$# � , where 4%��� is any
solution of (2).) It is further shown in [12, Theorem 5.1(a)]
that F%H�iCikjo4 ���#� mz� u � whenever [ ���#� � � , � � �� j � � � y ��m ,
and

4 ���� � ] � �
�	U � j � � U ��m � (7)

In this paper, we derive new stable recovery results for b��
minimization (1) and OGA in the noisy case. In particular,
we improve on the main results in [12] by sharpening the
aforementioned approximation bounds under more relaxed
conditions. For example, we sharpen the bound (5) and extend
it to hold whenever � � j �� U'&;j � m%m ��� � y � ; see Theorem 1
and (22). We further extend this bound to the case of [�� � ,
which had not been studied previously. The bound involves an
additional quantity (*) (see (12)), which is the � 
�� -norm of the
pseudo-inverse of at most +�� ��4-�#�ED y � linearly independent
columns of & . If 4n� is also sparse so that � + � � , then(,) Y � �.- + � � U � ; see (13). The sufficient conditions (6) and
(7) for FIH�i�i jo4n��m/� u�� and F%H�iCikjo4 ���#� m�� u�� are similarly
relaxed; see Theorems 2, 3 and Corollary 1. In particular, the
condition [#���#� ��� and (7) are relaxed to [#���#�v] � and either
�7��� or

� ] � � <10 4 ���� � ] 9 � � 2 � �
�	U � j � � U`�Pm 
 � y [��A�A��	U � jo� U`�Pm�3 �

(8)
In addition, we show that another greedy algorithm, called
stepwise projection algorithm [1], has similar sparsest support
identification properties as OGA; see Theorem 4 and Corollary
2.

The preceding analyses are worst-case in the sense that the
results hold for all & subject to conditions on �V
 � 
I�P
 [ , etc.
In particular, for � � ����� 
 , the results require � �4&;j�� 
km .
There has been much recent work showing that, for & ran-
domly generated from certain classes of distributions (e.g.,
Gaussian), stable recovery by b�� minimization (1) or OGA is
likely even when � is nearly &;j5
km ; see [3], [5], [10], [14],
[32] and references therein for the noiseless case and [4], [9]
for the noisy case. These results are based on approximate
isometry properties of submatrices of & . The approximation
bounds in [4], [9] for (1) require [^] � , as well as $ �6&;j5
km
in [9].

II. MATRIX NOTATIONS AND NORMS

For any 7(�V� a 318 , define

�97^� � ')� 9 � �:�;<:�= 	 � �
7?>.� � 

�
7����9@ �G')� 9 � �:�;<:�A 	 � �
7?>.�P��

�97^� � ')� 9 � �:�;<:�A 	 � �
7?>.� � �

Then, for any >�� �B8 , we have �
> � � Y � C �
> � � Y C �
> �9D
and �97/> � � Y �
7^� � �9>.� � , �
7/> � � Y �
7�� �9@ � �
> � � , �97/> � � Y
�
7�� � �9>.� � . Also, �
7^� � � 9 � � �FE � h 7 �g� h [20, Section 2.2],

�
7�� �9@ � YG� c �97^� � , and �97^� �
@ � Y E �1H E � h 7 �g� h � .
For any 4���� � and nonempty set

u � qA�A
�������
%$ t ,uJI ')� qA�A
������E
%$ tLK u , 4 � denotes the subvector of 4
comprising those 4 � with ! � u , and & � denotes the
submatrix of & comprising those columns 
 � with !�� u . The
following lemma derives bounds on the singular values of & �
and on the norms of its pseudo-inverse [20, page 139] and
j & � � & � m � � . It will be used to prove Theorems 1–4. Lemma
1(a) and its proof are similar to [12, Lemma 2.2] and its proof.

Lemma 1: For any nonempty
u ��q��#
�������
I$ t , the follow-

ing results hold with M 'g� h u�h .
(a) �P& � � �� Y � y � jNM U`�Pm and

�P& � >.� �� ] j%� y � m��
> � �� U � �
> � � �
] j%�	U � jNM U`�PmIm��9>.� �� O >��s�QP��

(b) If � jRM6Us��m � � , then & � � & � is invertible and S8')�
j & � � & � m � � satisfies

h S �)� h Y 2
� y � A ! P � ��#� � �"! P � ��# if T���!�� u�� � �"! P � �$# if T0r��!�� u (9)

�9S�� � Y �
�	U � jNM U`�Pm 
 (10)

�9S^& � � � � Y �- �	U � jRM U ��m � (11)

Proof: By (4) and ��
C�����0�(� for all ! , we have & � � & � �U UWV , where VX�Y� � _ and
h VX�g� h Y � for T	r� !�� u .

(a). For any >^��jR>���m � ?A� �~� P , we have

��& � > � �� �Z> � & � � & � >^�6> � j U U'V�m�>^� �
> � �� U\[�]�	 � > � V �)� > � �
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Since
h VX�)� h Y � ,

h E �]�	 � >��NV?�)� >�� h Y E �]�	 � � h >"� hxh > � h �� �
> � � � U � �
> � �� . Thus

jN� y � m��9>.� �� U � �9>.� �� Y �P& � >.� ��pY jN�	U � m��9>.� �� y � �
> � � � �
Using �9>.� �� Y M+�9>.� �� and the definition of �P& � � � completes
the proof.

(b). For
� � � 
���
������ ,

h jRV��lm$�g� h � ������ [) �	 � j5V�� � � m�� ) V ) � ������
Y � [) �	 � h jRV � � � m$� ) h
Y � jNM U`�Pm 9 ���) �	 � h j5V�� � � m�� ) h 
 O T�
 !;� u 


from which it follows by induction on
�

thath jRV��lm �g� h Y � �%jNM U`�Pm�� � � 
 O T�
 !;� u 
 � � � 
���
������E�
Since � jRM U �Pm � � , it follows that

U U V is invertible andS�� j U U\V�m � � � U y V y V � y ,�,�, , so thath SB�)� h � h j U y V y V � y ,�,�, m$�g� h
�

	 h � y jRV � m��Y� y j5V�
�m��Y� y ,�,�, h if T���!h V?�)� y jRV � m��)� y ,�,�, h if T0r��!
Y

	 � y � � jNM U`�Pm y � 
AjNM U`�Pm � y ,�,�, if Tn� !� y � � jRM U`�Pm y � 
#jRM U`�Pm � y ,�,�, if T	r� !
Y

2
� y � A ! P � ��#� � �"! P � �$# if Tn��!�� � �"! P � �$# if T	r��! .

This proves (9). Lastly, (a) shows that the singular values of
& � have magnitude of at least - �	U � jNM U`�Pm } _ . Using
the singular value decomposition of & � , it is straightforward
to verify (10) and (11).

III. SPARSE REPRESENTATION FROM b � -REGULARIZATION

For +;� �#
 � 
������ , let( ) ')� 9 ����
�I������� 	�� ��� � ) �#j & �� & � m � � & �� ���
@ � 
 (12)

i.e., the maximum is taken over all � � qA�A
�������
I$ t such thath � h Y + and & � has linearly independent columns. When� jR+�U`�Pm � � , it follows from (11) that( ) Y � +- �	U � jR+^U ��m � (13)

When
h 
 �� 
 � h �Wq _ 
������ 
 t for T0r��! [27, page 266], (*) may

be estimated using Cramer’s rule for any + ; see [33, Lemma
5]. In general, ( ) may be difficult to estimate. However, it
plays a key role in the following extension of [12, Theorem
3.1] when [ � � .

Theorem 1: If � ] � , � jl� U ��m � � , and � � � � � , then

��4 � UW4 � � � Y�� � ��� y � y � � ��	U�� � ���� � y � ���"!$#�jl� y [ mE

(14)��4 � UW4 � � ��

Y&% � y � � � ��� y � y � � ��	U�� � � �' � y � �(�)!*# ��+ jo� y [ m �� y � 

(15)

where��'g� � y � � jo� U`�Pm
�	U � jo� U`�Pm 
 �v')� �- �	U � jo� U`�Pm 

 � ')�-, ( : >/. :10�2 � if [^� � ;

_ else.

Proof: Since
u�� � F%H�iCikjo4-��m , 4-� solves (3), and 4n�

solves (1), we have

& � � 4 �� � � � � 
 (16)

& � � 4 � � � y & � �3 4 � � �3 � � y54 (17)

for some 4 �s�	� with � 4 ��� Y`[ . Moreover, either � 4 ���0� [
or 4n�0� _ .

Assume that � ] � , � jo��U��Pm � � (so that � } � ), and� � � � � . If [|] � , then 4-� is feasible for (1) and we let64|')� 4-� . Otherwise _;Y`[ � � , and 4-� is not feasible for (1).
In this case, we construct below a feasible point

64 of (1) that
is near 4-� . Let7 ')� �^U�� � y84 
 9� ')� FIH�i�i jo4 � UW4 � m�� (18)

Then &;:� jo4n�pU 4-��m<:� � 7 , i.e.,
7 � � iC� < j &=:� m . Moreover,7 r� _ (since either � 4 � � � [ � �Z� �E�;U|���#� � or 4n�^� _ ,

implying � y>4 � _ r� �C� ). By dropping linearly dependent
columns if necessary, we have that

7 � � i�� < j & � m for some
nonempty � �?9� such that the columns of & � are linearly
independent. Then there exists a unique @W�~� � satisfying

& � @ � � 7 
 @ � 3 � _ �
Multiplying both sides of the first equation by & �� on the left
yields @ � � j & �� & � m � � & �� 7 �
Let 64�')� 4 � y @1�
Then & 64W� � y84 so

64 is feasible for (1).
Since � � � � � and � } � , we have � jo��U��Pm � �

and Lemma 1(b) implies & � � � & � � is invertible. Let Sf')�
j & � � � & � � m � � . Multiplying (16) and (17) by S�& � � � on the
left yields

4 � � � y SBAp4 �� �3 �6S^& � � � j � � y 7 m � 4 �� � y S^& � � � 7 
 (19)

where A 'g� & � � � & � �3 �(� � 3 ! � � � # . This and the triangle
inequaliy yield

� 64 � � � � U\��4 �� � � �
Y � 64 � � UW4 �� � � �
� � 64 � � UW4 �� � UWS^& � � � 7 y S�Ap4 �� �3 � �
Y � 64 � � UW4 �� � ��� y �
S^& � � � 7 ��� y �
S�A��P����4 �� �3 �P���

This in turn yields

� 64�� � � � 64 � � � � y � 64 � �3 � �
Y ��4 � � � � � y � 64 � �3 � � y � 64 � � U24 �� � � �
y �
S^& � � � 7 � � y �
S�A�� � ��4 �� �3 � �

� ��4 � � � U\jN�	U �
SBA�� � m���4 �� �3 � �
y � 64VU24 � ��� y �
S�& � � � 7 ��� �
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Since
64 is feasible for (1) and 4-� is a solution of (1), the

left-hand side is greater than or equal to ��4-����� . Thus

jN�	U �
S�A��P��m���4 �� �3 ��� Y � 64VU24 � �P� y �9S^& � � � 7 ��� � (20)

By (4) and Lemma 1(b), for T � u � and !�� u �I ,

h jRS�A m �)� h � ������ [) ?A� � S � ) A*) � ������ Y [) ?A� � h S � ) h �
Y � � y j � � y � m�jl� U ��m

�	U � jl� U ��m # �
� � y

� � jo� U`�Pm
�	U � jl� U`�Pm � � � � 


so that

�9S�A�� � � 9 � �� ?A� �3 [� ?A� � h j5SBA m �)� h Y � � � � �#�
This together with (20) yields

��4 � � �3 �P� Y �
�	U�� � � � � 64vUW4 � �P� y �9S^& � � � 7 �P���-�

We now bound the right-hand side. We have � 7 �P��� �E��U
�L� y>4 ��� Y �E��U�������� y � 4 ���;�8� y [ . Thus properties of
�5,A��� 
P�5,���� and (11) in Lemma 1(b) yield

�
S^& � � � 7 � � Y � ���9S^& � � � 7 � �
Y � ���9S^& � � � ���A� 7 ���
Y � ��jo� y [ m- �	U � jo� U ��m
� � ����jl� y [ mE�

If [^] � , then
64~U24 � � _ ; otherwise

� 64VUW4 � �P��� � @ ���
� �#j & �� & � m � � & �� 7 � �
Y �#j & �� & � m � � & �� � �
@ � � 7 � �
Y ( � ��� jo� y [ m
Y ( : > . : 0 2 � jo� y [ m�


where the last inequality uses (12) and
h � h Y h 9� h Y ��4 � � D y� (see (18)). The above three inequalities together with the

definition of  � imply

��4 � � �3 � � Y �
�	U � � � �  � y � ��� ! jo� y [ m��

Also, (19) yields

��4 � � � UW4 �� � � � � �9S^& � � � 7 UWS�Ap4 �� �3 � �
Y �9S^& � � � 7 �P� y �9S�A����#��4 �� �3 �P�
Y � � ��jl� y [ m y � � ����4 �� �3 � � �

Combining the above two inequalities with ��4�� U�4n�A� � Y
��4n�� � UW4-�� � � � y ��4n�� �3 � � yields (14).

Finally, using Lemma 1(a) with
u � q��#
�������
I$ t and >��

4n��UW4-� , we have

j%� y � m���4 � U24 � � ��
Y �P&Zjo4 � U|4 � m�� ��zy � ��4 � U24 � � � �
� � 7 � �� y � ��4 � UW4 � � � �
Y jl� y [ m � y � � � ��� y � y � � ��	U�� � � ,

�  � y � �(�)!"! � jo� y [ m � 

where the last inequality uses (14). This proves (15).

Below we compare Theorem 1 with existing results.
1. By letting � � � jl� U��Pm we can write � � � � �

equivalently as jN� y � � m�j�� y � m � ��U�� , which is
a quadratic inequality in � . Solving this gives� jl� U`�Pm � �	U �H � y � y �� � � y � y �� � � � (21)

If �"� � , this is clearly satisfied whenever � � � .
It can be verified numerically that if � � � , this
is satisfied whenever � Y � ��� ; and if ��� � , this is
satisfied whenever � Y �x��� . As �
	 _ , the right-hand
side of (21) increases towards �� . Thus � jl� U\�Pm ��� U &;j � m or, equivalently, � � j �� U &;j � mIm ��� � y � .

2. For the noiseless case of [ � ��� _ considered in
[11], [17], [22], [30], Theorem 1 says that 4-�Z��4-�
whenever (21) holds. As ��	 _ , (21) approaches the
sufficient condition � jl� U �� m Y �� derived in [11],
[17], [22], [30].

3. For the noisy case of [ ] � considered in [12,
Theorem 3.1], Theorem 1 yields

��4 � UW4 � ��� Y�� � y � y � � ��	U�� � � # � �(�-jl� y [ mE

��4 � UW4 � � ��
Y % � y � � y � y � � ��	U � � � # � � �(� � + jo� y [ m �� y �

(22)
whenever (21) holds. In contrast, the bound (5)
requires the stricter condition � � j5�A� U+��m � � .
Suppose �P
 [ 
I� are fixed. As ��	 j���� U ��m � � , the
right-hand side of (5) tends to e while the right-
hand side of (22) remains uniformly bounded. As��	 _ , the right-hand side of (5) has the form
j%� y j��A� U �Pm � y�
 j � m%m�jl� y [ m � while � 	 �
and � 	 � , so the right-hand side of (22) has
the form ! � 2 � �*� 2 � ! � #�#� 2 � jl� y [ m � . Since

� 2 � ���� 2 � �� y j��A�"U ��m � y�
 j � m , we see that (5) and (22)
are equally sharp up to first-order in � .

4. For the noisy case of [^� � , we have from (13) that � Y ��� H � 2 �: > . : 0 2 � U � whenever ��4n�#� D y � ���� � y � . If ��4n���ED y � Y ��� � ��� , with � } � , then � Y ��� - � j���U ��m and (15) yields ��4-�RU`4n�A��� Y
��� jo� y [ m , where ��� depends on � .

The following example shows that, even in the noiseless
case of [ � �5� _ , the sparsest solution and the least b � -norm
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solution can be arbitrarily far apart when the mutual coherence� approaches 1. In this example, all except one column of &
are pairwise orthogonal.

Example 1: Suppose that $ �Z
 y � , �;� �C� , [ � _ , and


L� � ! th unit coordinate vector 
 !^���#
�,�,�,�
$
�


 � � � �L�5U|
 �� 


where � } _ and
� ')� � � ���5U�
 � � � } _ . Then ��
 � � � � � for

!~� �#
�������
%$ , 
 �� 
 � � _ for all � Y T^r� ! Y 
 . (Note that� 	 � and 
 � 	 U0
 � as � 	 _ .)For any feasible point 4 of (1), i.e., &54�� �C� , we can solve
for 4-� 
�������
T4 � in terms of 4n� to obtain

4 � � � �� y � �	U����� �� #~4 � 

4 � � � �� � �	U��� 4 � # 
 !�� � 
�������
$
��

Thus

��4����	�
���� � �� y � �	U����� �� #~4n� ���� y �� �[� 	 � h � �� h �� ���� �	U��� 4n� ���� y h 4 � h �

The right-hand side is a piecewise-linear function of 4 � , with
three breakpoints. To simplify the analysis, we further choose
�L� and � so that

_;� � �� � � � 
 U � � �	U �E�����P� �� � �A

� �� r� _ 
QT-� � 
�,�,�,�
$
��

(For example, choose �C� } _ and set � ��� ������� � � .) Then the
three breakpoints can be ordered as

U � �L��
�	U�� �� � �\_;�

�
� �

The derivative of the right-hand side with respect to 4 � on
the interval

���
	 �=� ��	 �=
� � 4 � �`_ is

� �	U����� �� #\U �� �[� 	 � h � �� h �� �� U �0� �	U\������� � �� U`� � _ �

The derivative of the right-hand side with respect to 4�� on
the interval _;� 4n� � � � is

� �	U����� �� #\U �� �[� 	 � h � �� h �� �� y �0� �	U\������� � �� y � } _ �

Thus
4 �� �\� �� 
5!^�(�A
�������
 
�
 4 �� � _ 


is a stationary point of (1) and hence a solution of (1) (since
(1) is a convex program).

On the other hand,

4 � � � � � 
 4 �� � ,�,�, � 4 �� � _ 
 4 �� �
�
�

is feasible for (3) and has � nonzeros. Since ��� is not a
scalar multiple of any of 
X��
�������
T
.� so that (3) cannot have
a feasible point with fewer nonzeros, this is a solution of (3).

As � 	 _ , 4n� and 4-� become arbitrarily far apart. Note that
��4n�#� D �G
 while ��4-�#� D � � .

Not surprisingly,
h 
 � � 
 � h 	 � as � 	 _ , so that � 	 � .

This example shows that the sparsest solution and the least
b � -norm solution can be arbitrarily far apart when the mutual
coherence � approaches 1.

By orthogonal subspace decomposition [25, page 5], we can
uniquely express

��� ��
 y ��� y �����
for some � 
 ���RH���� j & � m , � � � � i�� < j &�m����RH���� j & � � � m , and
� ��� � � iC� < j & � � m . Then ��&542U��X� �� �7�P&542U�� � U�� ��� � �� y
�E� 
 � �� and, by replacing [ � with [ � U���� 
 � �� , we can without
loss of generality assume that � 
 � _ , i.e., ��� � iC� < j &�m .
The following theorem refines [12, Theorem 4.1] and shows
that 4n� has a support identification property whenever [ is
sufficiently large relative to � ����� � � � .

Theorem 2: Assume ��� � i�� < j &�m . If � ] � , � j � ��U �Pm �
� , and

[ } �P
 [ � } ��� � � ��zy �	U � jo� U`�Pmj%�	U � j � � U ��m%m � ���E� � � �� 
 (23)

then FIH�i�ikjl4n��m�� u�� .
Proof: For notational simplicity, let� jo4-m�')� �� � ��&54~U��X� �� U [ � � �

Thus 4 is feasible for (1) if and only if
� jo4-m Y _ . Consider

(1) with FIH�i�ikjl4nm restricted to
u �

:

9;:x<>L?A@ B ��4�� � FIH�JLKNM�O�QRQIS � jo4-m Y _ 
04 � �3 � _ � (24)

Since [ } � , 4-� is feasible for (24) and
� jo4���m �`_ . Let 94 be

any solution of (24). If
� j 94-m � _ , then it must be that 942� _

and hence 4n��� _ , implying FIH�i�ikjl4n��m � u � . It remains to
consider the case of

� j 94nm1� _ .
First, we show that 94 is a solution of (1). Since (24) is

a convex program and
� jo4���m � _ , this implies (24) has a

Lagrange multiplier [25, Theorem 28.2], i.e., there exists a� �(* _ 
 e m satisfying the following optimality condition for
(24): �

� � y � � � � � _ 
 (25)

where
�
� � �|*xU �#
���/ � (with

�
� � F :�!A< j 94X�Pm if 94X��r� _ ) and we

let � ')�#" � j 94-m . Since 94 r� _ , we have
�
� � r� _ and hence� } _ . We will use (25) to show that�

� �3 y � � �3 � � _
for some

�
� �3 �2* U �A
���/ � � � , or, equivalently,

� � � �3 � � D Y �#� (26)

Since 94 � �3 � _ , this will show that 94 satisfies the optimality
condition for the convex program (1) and hence is a solution
of (1).

Since � � & � j & 94~UW��m , (25) yields

& � � � j & � � 94 � � UW��m � �(U � � � �
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Since � j � � U��Pm � � , Lemma 1(b) implies S ')�
j & � � � & � � m � � is well defined, so we can solve for 94 � � � :94 � � � �6S�j & � � � � � U � � � m (27)

and plug it into the left-hand side of (26) to obtain

� � � �3 � � D
� ��& � � �3 j & � � S�j & � � � � � U � � � mnU�� � m�� D
Y ��& � � �3 & � � S � � � � D y ��& � � �3 j & � � S^& � � � U U mN� � � D
� 9 ���� ?A� �3 h 
 �� & � � S � � � h y 9 � �� ?A� �3 h 
 �� � � h �
Y � �
S � � � � � y 9 ���� ?A� �3 ��
 � � � �����T� � �
Y � � ���
S � � � � � y �E� � � � �
Y � � ���
S � � � � � � � � y �E���E� � �
Y

� �
�	U � jo� U ��m y ��� � � � � 
 (28)

where the last inequality also uses (10) in Lemma 1(b).
Since

� j 94-m1� _ , we have

[ � � ��& 94~UW�X� �� �G�P& � � 94 � � UW���kU������E� ��
� ��& � � 94 � � UW� ��� � ��zy �E� � � �� �

Also, using (27), & � � � ��� & � � � � ��� and (11), we have

��& � � 94 � � UW� ��� ��� � � �P& � � S�j & � � � � � � � U � � � m-UW� � � � ���
� �P& � � S � � � ���
Y �P& � � S�� � � � � � � �
Y �9S^& � � � � � � ��� � � � �9D
Y � �- �	U � jo� U`�Pm �

The above two relations yield� Y � ���
�P& � � 94 � � UW� ��� � � � � � �- [ � U\��� � � �� 


where we let �v')� ��� - �	U � jo� U`�Pm . This together with (28)
yields

� � � �3 � � D Y � �
�	U � jo� U`�Pm y �E� � � � � ���- [ � U\��� � � �� � �#
 (29)

where the strict inequality is equivalent to (23). To see the
equivalence, substract � �� � �"! � � �$# from both sides of the strict
inequality and then square both sides and simplify to obtain

�E� � � �� �
[ � U\��� � � �� � j%�	U � j � � U`�PmIm ��	U � jo� U`�Pm �

Rearranging terms yields (23). This proves (26).
Finally, we show that 4-�� �3 � _ for any solution 4n� of (1).

Since 94 and 4n� are both solutions of (1), we have

_ � � 94 y � jo4n�	U 94nm����5U � 94������ jo4 � :� U 94 :� m � F :�!#< j 94(:� m y ��4 � :� 3 � � (30)

for all _ � � Y � sufficiently small, where 9u ')� FIH�i�ikj 94nmX�u��
. Also, since

� j 94-mz� _ and
� jo4-��m Y\_ , we have

_;] jo4 � U 94-m � � �
Multiplying this by � and adding to (30) yields

_ ] jo4 � :� U 94(:� m � F :�!#< j 94(:� m y ��4 � :� 3 �P� y jl4 � U 94�m � � �
� ��4 � :� 3 ��� y jo4 � :� 3 m � � :� 3 �
� ��4 � � � � :� ��� y ��4 � � �3 ��� y jo4 � � � � :� m � � � � � :� �
y jo4 � � �3 m � � � �3 �

] ��4 � � � � :� ��� y ��4 � � �3 ��� U ��4 � � � � :� �P��� � � � � :� � � D
U ��4 � � �3 � � � � � �3 � �9D 


where the first equality uses 94�:� 3 � _ and U � :� � � F :�!A< j 94 :� m
(see (25)). By (25), � � � � � :� � � D Y � while, by (29),
� � � �3 � �9D � � . Thus, 4n�� �3 � _ .

How does condition (23) compare with (6), assuming � Y
� � �� ��� � ? Since

� � � ���.U	� � � ��p] 9;:x<�n?���� �T� ! ��� � # ���.U 4 � �� � ��� U	��� �I� �� � �E���T� �� 

we see that (6) implies

[ } �	U
� � y � �	U � � � �
�	U � � � �

� % � y � � y - jN�0U � �vm%�
�	U � � � +

�

} % � y - � � y jN�0U � �vm%�
�	U � � � y � +

�E� � � �
}

	
� y

� � y jN�	U � �vm%�
jN�	U � � � y � m � �E���T� � 


where the second inequality also uses 
 y � � ] � 
 y � for
 ](_ 
 � ] �� , and the last inequality uses � y 
 ] � � y 
 �
for 
 ]`_ . Since the right-hand side equals the square root of
the right-hand side of (23), this shows that (6) implies (23).
Notice that (23) relaxes (6) significantly only when � is small
or �E� � � � is small relative to � (i.e., the noise is concentrated
in
� iC� < j & � � m ).
IV. SPARSE REPRESENTATION FROM ORTHOGONAL

GREEDY

In [12], Donoho, Elad, and Temlyakov proposed the follow-
ing noise-aware version of an orthogonal greedy algorithm
(OGA) [7], [8], [24], [28] to find a sparse 4 with residual
��&54~U��X� � below a prescribed tolerance.

OGA:
0. Input [ ���#� ]`_ . Initialize

u
���
. Go to Step 1.

1. Let 4 � be any solution of
9;:=<> � ?A@�� � � ��& � 4 � U��X����
 (31)

Let ����& � 4 � U~� � If ����� � Y`[����#� , then output
u

and 4 � ; otherwise choose9!��s��� !�9 � �� ?A� 3 h 
 �� � h 
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update
u � u � q 9! t , and return to Step 1.

In the noiseless case of ��� _ , Tropp [30, Theorems A and
B] showed that 4 �A�A� ��4-� (equivalently, FIH�i�ikjl4 ���#� mz� u�� )
whenever [����#� � _ and � j � � U �Pm � � . In the general case,
Donoho, Elad, and Temylakov [12, Theorem 5.1(a)] showed
that FIH�i�ikjl4 �A�A� m1� u � whenever [#�A�A� � � , � j � � U`�Pm � � ,
and (7) holds. When ��� _ , this recovers Tropp’s result (since
(7) holds trivially). The following theorem extends these two
results to allow [#���#��] � . This shows that OGA can still
identify the sparsest support when using an overestimate of
the noise level � .

Theorem 3: Assume � jl�7U\�Pm � � . The following results
hold.

(a) For any nonempty
u � u�� and any solution 4 � of

(31),

��4 � UR4 �� ��� Y
� - h uvh ��4-�� � � � � �
�	U � j h uvh U`�Pm y �- �	U � j h u�h U ��m �

(b) If [����#�V] � and

��4 �� � � � �9D } � � � y � y � �
�	U � j h u�h U`�Pm ��4 �� � � � � � #O � r� u�� u�� 


(32)
then
u ���#� � u�� , where

u ���A� is an output of the
OGA. If in addition

��4 �� � � ��� � } � � � � �� � � �"! � � � � �$# ��4-�� � � � ��� y � y [��A�A�- �	U � j h u � K uvh U`�PmO � r� u��\u�� 

(33)

then
u �A�A� � u�� .

Proof: For any nonempty
u � u � , we have � j h u�h U;�Pm Y� jo��U2�Pm � � , so Lemma 1 implies S8'g� j & � � & � m � � is well

defined. Since 4 � is a solution of (31), we have

4 � �6S^& � � � � (34)

Also, & � 4-�� y & � � � � 4n�� � � � �\��� , so that

4 �� y S^& � � & � � � � 4 �� � � � �6S^& � � � � � (35)

(a) For any nonempty
u�� u��

, we have from (34) and (35)
that

��4 � UW4 �� ���
� �
S^& � � & � � � � 4 �� � � � y S^& � � j ��U�� � m����
Y �
S�� � ��& � � & � � � � 4 �� � � ��� � y �9S^& � � � � �E��UW� � � �
� �
S�� � 	 [� ?A� h 
 �� & � � � � 4 �� � � � h � y �
S�& � � � � �
Y - h uvh � ��4-�� � � � � �
�	U � j h uvh U ��m y �- �	U � j h uvh U`�Pm 


where the last inequality uses (10) and (11) in Lemma 1, as
well as

h 
 �� & � � � � 4-�� � � � h Y � ��4n�� � � � � � for !�� u .

(b) Assume [ ���A� ] � and (32) holds. First we prove by
induction that

u � u�� at Step 1 of the OGA. This is true

when initially
u � � . Suppose this is true at the beginning

of Step 1. We show that it remains true at the end of Step 1.
There are two cases to consider: (i)

u�� u �
and (ii)

u � u��
at the beginning of Step 1.

In case (i), by (34) and (35), for any !�� u,I ,

 �� � � 
 �� j & � 4 � U���m
� 
 �� � & � jl4 � U24 �� m-U|& � � � � 4 �� � � � U\j � UW� � m !
� 
 �� � j & � S^& � � U U m�jo�^UW� � m
y & � S�& � � & � � � � 4 �� � � � U & � � � � 4 �� � � � ! �(36)

We now bound the right-hand terms of (36). Since
U Up& � S^& � �

is a projection matrix and ��
 � � � � � , the Cauchy-Schwarz
inequality implies thath 
 �� j & � S^& � � U U m�j � UW� � m h

Y ��
 � � � �P& � S^& � � U U � � �E��UW� � � � � ���
Also, by (10) in Lemma 1,h 
 �� & � S^& � � & � � � � 4 �� � � � h
Y ��& � � 
�� �����
S����#��& � � & � � � � 4 �� � � � ���
Y ��& � � 
�� ��� �

�	U � j h u�h U ��m [
��� ?A� � � � �P&

� � 
�� � ��� h 4 �� � h
Y

� � h uvh
�	U � j h uvh U ��m ��4 �� � � ��� � 


where the last inequality uses �P& � � 
�� � ��� Y � - h u~h for all
! ��� uJI . If !�� u �I , then

h 
 �� & � � � � 4 �� � � � h � ������ [
� � ?A� � � � 


�� 
 � � 4 �� � ������
Y [
��� ?A� � � �

h 
 �� 
�� � hxh 4 �� � h
Y � ��4 �� � � � � � �

Using this and the previous two inequalities to bound the right-
hand side of (36) yields

h 
 �� � h Y � ��4 �� � � � ��� y � y � � h uvh
��U � j h uvh U`�Pm ��4 �� � � � ����� (37)

If !�� u�� K u , thenh 
 �� & � � � � 4 �� � � � h � h 4 ��	y 
 �� & � � � ! ���
	 ���$# 4 �� � � ! ���
	 ��� # h] h 4 �� h U h 
 �� & � � � ! ���
	 ��� # 4 �� � � ! ���
	 ��� # h] h 4 �� h U � ��4 �� � � ! ���
	 ��� # ���] h 4 �� h U � ��4 �� � � ��� � � (38)

Using this and the earlier two inequalities to bound the right-
hand side of (36) yields

h 
 �� � h ] h 4 �� h U � ��4 �� � � � � � Uv�-U � � h u�h
�	U � j h u�h U`�Pm ��4 �� � � � � � �

(39)
Since, by (32),

9 � �� ?A� � � � h 4 �� h } � � � y � � y � � h u~h
�	U � j h uvh U ��m #���4 �� � � � ��� #|




IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. ?, NO. ?, ? 2009 8

(37) and (39) together imply that

9 � �� ?A� � � � h 
 �� � h } 9 � �� ?A� �3 h 
 �� � h �
Hence in Step 1 we choose 9!�� u�� K u , so that

u � q 9! t � u�� .
In case (ii), since

u � u�� , we have � �L� � Y �P& � 4n�� U
�����0�8�E��� UW�X���0� � . Since [#�A�A��] � , then we have ������� Y
[��A�A� , so Step 1 would output

u
and 4 � .

Suppose that
u

is a nonempty proper subset of
u �

. We
have from (34) and (35) that

�P& � jo4 � UW4 �� m y � � U��X� �
� �P& � S^& � � � & � � � � 4 �� � � � y � UW� � ! y � � UW�X���
� �P& � S^& � � & � � � � 4 �� � � � y j U U�& � S^& � � m�jo� � U���m�� �
Y �P& � S�� � ��& � � & � � � � 4 �� � � � � �
y � U U�& � S^& � � � � �E� � U��X� �

� �9S^& � � � � 	 [� ?A� h 
 �� & � � � � 4 �� � � � h � y �
Y - h uvh � ��4-�� � � � � �- �	U � j h uvh U`�Pm y �P


where the second inequality uses (11) in Lemma 1(b), as well
as
h 
 �� & � � � � 4n�� � � � h Y � ��4-�� � � � �P� for !�� u . Thus

��& � 4 � U��X���
� ��& � jl4 � U24 �� m y & � 4 �� U�� � y � � U��X���
] ��& � 4 �� U�� � ����U ��& � jo4 � UW4 �� m y � � U��X���
] ��& � 4 �� U�� � ����U - h u~h � ��4-�� � � � � �- �	U � j h uvh U ��m UW�P�

Lastly, by Lemma 1(a),

��& � 4 �� UW� � � �� � ��& � � � � 4 �� � � � � ��
] jN�	U � j h u � K uvh U`�PmIm���4 �� � � � � �� �

Thus, �P& � 4 � U��X��� } [��A�A� whenever

- �5U � j h u � K uvh U\�Pm���4 �� � � � ����U - h u�h � ��4 �� � � � ���- �	U � j h uvh U`�Pm U2�
} [ ���A� 


which is equivalent to (33).
Theorem 3(a) is a generalization of [12, Theorem 5.1(b)]

in the special case of
u � u � . The proof of Theorem 3(b)

amounts to showing that
h 
 �� � h is small for all !2� u��I (see

(37)) and is large for some !`� u � K u (see (39)). In [12,
Theorem 5.1(a)], it is shown that

u �A�A� � u�� whenever
[��A�A� � � , � j � �`U��Pm � � , and (7) holds. The following lemma
shows that this result can be improved by using Theorem 3(b).

Lemma 2: Assume � j%� y � m � jl��U^�Pm � � . Then � jl��U^�Pm �
� and (32) is implied by either � � � or

� ] � � <10 4 ���� � } � �
�	U � � jN� y � m�jo� U`�Pm 
 (40)

and (33) is implied by either � � � or

� ] � � <10 4-���� � }
�	U � jo� U � m y � � � U`� - �	U � jl� U � m

j%� y � m�jN� y � U � �vm jo� y [ ���A� m��
(41)

Proof: Clearly � jo� U���m Y � j%� y � m � jl� U��Pm � � . If
� �(� , then (32) and (33) hold trivially. Suppose � ] � .

Since ��4n�� � � � � � Y jo� U h u~h m���4-�� � � � �9D for all nonemptyu��\u �
, (32) is implied by

��4 �� � � � � D } � � y � j � y � � m � U h u~h�	U � j h u�h U ��m ��4 �� � � � � D
for all nonempty

u��`u �
. This in turn is implied by

��4n�� � � � �9D
} � � y � j � y � � m � 9 ���� � � � � � � � U ��	U � j � U`�Pm #���4 �� � � � �9D �

It is straightforward to verify that
; ; � � � �� � �"! � � �$# ��"! � � �$# � �! � � �"! � � ��#5# A � _ for � � *x�#
I� U ��/ , so that the

maximum is attained at � � � . Rearranging terms and
using � j � y � � m�jo� U`�Pm � � yield

��4 �� � � ���9D } � �
�	U � j � y � � m�jo� U`�Pm �

Since ��4-�� � � � � D ] 4n���� � , this is implied by (40).

Since ��4-�� � � � � � Y - � U h uvh ��4-�� � � � � � for all nonemptyu��\u �
, (33) is implied by

��4 �� � � � � � } � � � � �� � � �"! � � � � �$# - � U h u~h ��4-�� � � � ��� y � y [����A�- �	U � jo� U h uvh U`�PmO � r� u��\u�� �
Rearranging terms and using ��4��� � � � � � ] - � U h uvh 4n���� � ,
this in turn is implied by

4 ���� � 9;:=<� � � � � � � � � U � % - �	U � jo� U � U`�PmnU � � � � � U �- �	U � j � U`�Pm +} � y [��A�A� �
We now simplify the expression inside the minimization. By
making the substitution �`� � U � and bringing it under a
common denominator, this expression can be written as� � � � y � U � � � � y � U � � y �

�;U � � � U�� � �� � y � U � � y �
�



with � Y � Y � U�� . Multiplying top and bottom by the
conjugate of the numerator and simplifying, we obtain� �kj%� y � m�jN� y � U � �vm� � y � U � � � � y � U � � y �

� y � � � U�� � �
, �� � y � U � � y �

�



which can be written as

jN� y � m�jN� y � U � ��m- A � j��Cm y � - A � j��Cm 
 (42)
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whereA � j �Cm ')� � � y �
�
U � #�j%� y � U � � y �

�Cm � 
A5�Aj �Cm ')� jl� U��Cm�jN� y � U � � y �
�CmE�

We haveA �� j �Cm
�(U � � y �

�
� jN� y � U � � U � �Cm y � � � # j%� y � U � � y �

�Cm�

which is negative for � Y � U`� (since � y � U � � U � � ]
�	U � j � � U � m } _ ). Similarly,A �� j��Cmz��U�jN�	U � j � � U`�	U � �Cm%m�

which is negative for � ] � . Thus both A � j��Cm and A � j��Cm are
decreasing with � on � Y � Y �(Us� , so - A	��j �Cm y � - A ��j��Cm
attains its maximum at � � � , so its maximum value is jN�RU� jo�7U � mIm y � - jo� U`�Pm�j%�	U � jl� U � m%m . Plugging this into
(42) yields (41).

When � j � � U���m � � , we have � jN� y � m�jo� U���m�� � � U��.U
jN��U � j � � U � mIm � � � U�� , so the condition (40) is a relaxation
of (7). Also, in the special case of [ ���#� � � , the condition (41)
is implied by (40). This is because U�jo� U � m y � � U`� Y
� for all � ] � , so the right-hand side of (41) is at most� ���Lj%� y � U � �vm , which in turn is less than the right-hand
side of (40). This yields the following corollary of Theorem
3 and Lemma 2, which relaxes the condition [ �A�A� � � and
sharpens [12, Theorem 5.1(a)] in the case of [A�A�A� ��� .

Corollary 1: Assume � jN� y � m � jl� U ��m � � and [ ���#� ] � .
If either � ��� or (8) holds, then

u �A�A� � u�� , where
u ���#�

is an output of the OGA.

V. SPARSE REPRESENTATION FROM STEPWISE

PROJECTION

The OGA uses the residual correlation term
h 
 �� � h to

estimate the reduction in the residual when 
�� is added to
the representation and chooses ! with the largest estimated
reduction. We can instead look ahead to add a 
�� that
yields the largest actual reduction in the residual. This is
more costly, but promises to yield a larger residual reduction.
The resulting algorithm is known as the stepwise projection
algorithm (SPA); see [1].

SPA:
0. Input [

���
� } _ . Initialize

u
� �
. Go to Step 1.

1. Compute

� �0� 9;:=<> � ?A@ � � � @ � ?A@ �P& � 4 � y 
�� � U��X� �� O !;� u I 

(43)

choose 9!��s��� !19;:=<� ?A� 3 � � 


and update
u � u � q 9! t . If � � :� Y6[ ��� � , then

output
u

and the corresponding solution 4 � of (31);
otherwise return to Step 1.

Notice that during the first step when
u � �

, we have
� � � ��
 � 
 �� �RU �X� �� � ���X� �� U h 
 �� � h � for all ! . Thus, the SPA
would initially choose ! to maximize

h 
 �� � h , the same as the

OGA. However, in subsequent steps, the choices could differ.
The work per step increases with

h u~h
in the SPA. A possibly

more efficient variant would be to switch back to OGA steps
when
h u~h

exceeds some threshold.
The following theorem shows that the SPA has similar

sparsest support identification properties as the OGA. Its proof
differs from the proof of Theorem 3 in that we work directly
with the least square function instead of its gradient.

Theorem 4: Assume � jl� U ��m � � . If [
���
�~] � and

��4 �� � � � � D } � � � ��4 �� � � � ��� y ��� � y � ! O � r� u�� u � 

(44)

then
u ��� � � u � , where

u ��� � is an output of the SPA and

� � ')� - h uvh % � - h u�h y ����4-�� � � � � ��	U � h uvh y �- �	U � h uvh + �
If in addition (33) holds with [ ���#� replaced by [

���
� , thenu ��� � � u�� .

Proof: Assume [
���
��] � and (44) holds. First we prove

by induction that
u � u � at Step 1 of the SPA. This is true

when initially
u � � . Suppose this is true at the beginning of

Step 1 with
u��`u �

. We show that it remains true at the end
of Step 1.

Fix any !�� uJI . Let
6u � u � q�! t , 6u � � u � � q�! t , and let

4	�� be any solution of

9;:x<>�
� ?A@ � 
� � ��&��� 4
�� U��X� � �

Then � j h 6uvh U ��m Y � jo� U\�Pm � � and & �� � 4-� �� � � ��� . Thus,

arguing as in the proof of Theorem 3(a), with
6u 
 6u � replacingu 
 u � , we obtain that

��4	�� UW4 � �� � � Y
� H h 6uvh ��4 � �� 0 � �� � �
�	U � j h 6u�h U`�Pm y �H �	U � j h 6uvh U`�Pm �

Since ��4��� U 4-� �� � � ] ��4 � U\4-�� � � ] �� � � � ��4 � U 4n�� � � ,h 6u~h � h u�h y � , and
6u D K 6u � u D K u , this and the definition

of � � implies
��4 � U24 �� � � Y � � � (45)

Thus, the minimization (43) is unchanged if we add (45) as a
constraint, i.e.,

� � � 9;:=<
��� ��� ������� � � � � =��� ��� � �� � =��! � � � jo4 � 
 � m O !;� uJI 
 (46)

where for simplicity we let

� � jo4 � 
 � m5'g� ��& � 4 � y 
 � � UW�X� �� �
Let "�'g� �	U���� . For any !�� u I , we have from & � � 4n�� � �
��� that

� � jo4 � 
 � m
� ��
L� � y & � 4 � U�& � � 4 �� � U#" � ��
� ��
 � � �� � � y � � 
 �� � & � 4 � U|& � � 4 �� � U#" � y �;jo4 � m
� � � y � � A1�Ajo4 � m y ��jl4 � m�
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where �;jo4 � m ')�+��& � 4 � U�& � � 4-�� � U#" � �� is a function of
4 � only, independent of ! , andA1�Ajo4 � m ')� 
 �� � & � 4 � U|& � � 4 �� � U " �

� 
 �� � & � jo4 � U24 �� mnU|& � � � � 4 �� � � � U#" ! �
Suppose (45) holds. Thenh 
 �� � & � jo4 � UW4 �� m-U#" � h Y h 
 �� & � jo4 � U24 �� m h y h 
 �� " h

Y � ��4 � U24 �� ��� y ��
�������� " ���
Y ��� � y ���

If !�� u��I , then
h 
 �� & � � � � 4 �� � � � h Y � ��4 �� � � ��� � 


so the previous two relations yieldh A � jl4 � m h Y � ��4 �� � � � � � y ��� � y �P�
If !�� u�� K u , then (38) implies

h 
 �� & � � � � 4 �� � � � h ] h 4 �� h U � ��4 �� � � � ���P

so the earlier two relations yield

h A � jo4 � m h ] h 4 �� h U � ��4 �� � � � � � U ��� � UW�P�
Thus, if (45) holds and

� r� _ , then for any !(� us� K u
satisfying

h 4-�� h � ��4-�� � � � � D and for every ! �X� u��I , we have

9;:x< q �	�Ajl4 � 
 � m�
 �R�Ajo4 � 
�U � m t
� � � U � h � h=h A1�Ajo4 � m h y ��jl4 � m
Y � � U � h � h � h 4 �� h U � ��4 �� � � � �P� U ��� � U2� ! y ��jl4 � m
� � � U � h � h � � ��4 �� � � � � � y ��� � y � ! y �;jo4 � m
Y � � U � h � h=h A1���Tjo4 � m h y �;jo4 � m
Y � � y � � A � � jo4 � m y ��jl4 � m\� � � � jo4 � 
 � mE


where the strict inequality uses (44) and
� r� _ . This and (46)

imply that 9;:x<� ?A� � � � � � � 9;:x<� ?A� �3 � � �
Hence in Step 1 we choose 9!�� u � K u , so that

u � q 9! t � u � .
In case of

h u�h �8� U � , we have
u � q 9! t � u�� so that� � :� Y ��& � 4-�� UW�X� � � �E���5U��X� � � � . Since [

���
��] � , this

implies � � :� Y [ ��� � , so Step 1 would output
u �

and 4 � � .
If in addition (33) holds with [ ���#� replaced by [

���
� , then

the same argument as in the proof of Theorem 3 shows thatu ��� � � u � always.
Condition (44) is comparable to (32) and can be similarly

simplified as in Lemma 2 to obtain the following identification
result analogous to Corollary 1.

Corollary 2: Assume
� � 2 � A� � � jo�7U\��m � � and [

���
�W] � . If

either � ��� or

� ] � � < 0 4-���� � ]
9 � � �� � � � � � y � H � � �� � �"! � � ��# !

�	U � � 2 � A� � � jl� U ��m 
 � y [����A��	U � jl� U ��m � �
� 
 (47)

then
u ��� � � u�� , where

u ��� � is an output of the SPA.

Proof: By following the proof of (40), we see that (44)
is implied by

��4 �� � � ��� D
} � � � � y � 9 � �� � � � � � � � �� ��U � � #
y � � 9 � �� � � � � � � � � y � � � � � y ��	U � � # jo� U � m���4 �� � � � �9D �

The argument of the first maximization is increasing with � , so
the maximum is attained at � � �8UW� . By using � � � � y �nU� � � � ��j � � y � y � � m � �� to bound the argument of the
second maximization, we see that this in turn is implied by

��4 �� � � � �9D ] � � % � y � � � U �- �	U � jo� U`�Pm +
y j � � y � � m 9 � �� � � � � � � � U ��	U � � ��4 �� � � � �9D �

Since � � �� � � � is decreasing over � � * �A
I�7U���/ , the maximum

is attained at � �(� . Rearranging terms and using
� � 2 � A� � � jo��U�Pm � � , ��4-�� � � � �9D ] 4-���� � , we see that this is implied by

(47). Also, as is shown in Lemma 2 and the ensuing discussion,
(47) implies (33) with [#���#� replaced by [

���
� .

The sufficient condition for identifying
u �

by SPA is
slightly more stringent than that for OGA (compare (8) and
(47)). This is because the minimizing 4 � in (43) changes with
! , and we have only a uniform bound � � on this change (see
(45)) which adds to our error estimate.
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