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Abstract

An important issue in convex programming concerns duality gap. Vari-
ous conditions have been developed over the years that guarantee no duality
gap, including one developed by Rockafellar [22] involving separable objective
function and affine constraints. We show that this sufficient condition can
be further relaxed to allow the constraint functions to be separable. We also
refine a sufficient condition involving weakly analytic functions by allowing
them to be extended-real-valued.

Key words. separable convex program, recession direction, duality gap, Hoffman’s
error bound, weakly analytic function.

1 Introduction

Duality plays an essential role in linear programming and, more generally, convex
programming. For a given convex program (“primal problem”)

v, = min fo(x)
st fiz) <0, i=1,..m, (P)

where each f; : R — (—o00,00] is a proper convex lsc (lower semicontinuous) func-
tion, the dual problem is

vp = max q(u), (D)

where g(p) = inf {fo(z) + X", pifi(x)}. We assume throughout that the feasible
set of (P):
F ={z e domfy | fi(x) <0, i=1,..,m}
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is nonempty (i.e., v, < 00). By weak duality, v, > v_. Notice that the optimal
solution set of (P) may be empty or unbounded, and the same is true for (D).

The dual problem can offer new insights, and dual methods or primal-dual meth-
ods are often efficient at finding an optimal primal solution or determine that no
such solution exists; see [4, 5, 6, 7, 13, 17, 19, 21, 22, 23] and references therein. In
order for dual methods and primal-dual methods to be effective at solving the primal
problem, it is essential that there is no duality gap, i.e., v, = v,. It is well known
that this is not true in general, as is illustrated by Duffin’s 2-variable example [8; p.
46]:

n=2 m=1, fo(z) =1 fi(z)= 22+ 2%— 14, (1)
for which v, = 0 while v, = —oo. Thus, much study has focussed on identifying
important classes of convex programs for which there is no duality gap. If v, = —o0,
then v, = —oo by weak duality and there is no duality gap. Thus the interesting
case is when v, is finite.

It is known that there is no duality gap under any one of the following assump-
tions:

Al.
domfy C domf; and ri(domfy) C ri(domf;), i=1,...,m, (2)

and the optimal solution set of (P) is nonempty and bounded [18, Thm. 30.4].

A2. (2) and there exists a Z € ri(domfy) N F satisfying f;(Z) < 0 whenever i # 0
and f; is not affine [18, Thms. 28.2 and 30.4].

A3. fo, f1, -, fm are real-valued and there exists a & € F satisfying fi(Z) < 0
whenever 7 # 0 and f; is not weakly analytic® [16, Thm. 4.2], [2, Thm. 5.4.2]
(also see [19, 20] for earlier works).

A4. f, is separable and fi, ..., f,, are affine [22, Sec. 11D].

A5. fo, f1,-.., fm are asymptotically level stable (als) and have the same domain |1,
Thm. 2], [2, Thm. 5.4.1].*

3A function f : R" — (—o0, 00] is weakly analytic if f is constant on a line in ™ whenever it
is constant on some open segment of the line.

4A proper convex lsc function f : R® — (—oc,00] is als if, for any a > 0, any d € R", any
sequence zF € R, and any convergent sequence € € R, k = 1,2, ..., satisfying

k
X

there exists k such that f(z* — ad) < € for all k > k. Here f., denotes the recession function of
f [18, p. 66], also called horizon function or asymptotic function [2, p. 48].
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Notice that (2) holds automatically under A3 or A4 or A5. Other variants of the
above results are found in, for example, [7, Sec. 6.5.2], [8, p. 90], [10, Prop. 3.2], [15,
Thm. 4.5]. A unified treatment of A3, A5, and related assumptions is given in [9].

For Duffin’s example, fy and f; are real-valued (so (2) holds) and the optimal
solution set of (P) is nonempty but unbounded. Not surprisingly in view of Al-
A5, fi is neither weakly analytic nor affine nor als, and f;(z) < 0 has no solution.
Moreover, f; is not separable. In fact, all known examples of duality gap involve
non-separable functions [7, p. 375], [11, p. 23], [18, p. 318]. This raises a natural
question of whether the assumption of f; being affine in A4 can be relaxed to f;
being separable. In other words, does fy, fi, ..., fn being separable imply no duality
gap?

Our main result is that the answer is ‘yes’ (assuming also that domfy C domf;
for all 7). Separable programs form an important class of nonlinear programs [3,
Sec. 11.3], [22], for which efficient dual methods and primal-dual methods can be
developed [4, 5, 6, 13, 17, 21, 22, 23]. For example, they can be solved efficiently by
primal-dual interior-point methods [17] since the objective function Hessian V2 f
(assuming fy is twice differentiable) is diagonal and each constraint function gra-
dient Vf; (assuming f; is differentiable) has a fixed sparsity pattern, like in linear
programs. We also give a refinement of [2, Thm. 5.4.2] that allows fy, f1,..., fm to
be extended-real-valued in A3; see Sec. 5.

Throughout, for a function f : R” — (—o0, 00|, domf = {z|f(z) < oo}. For
a convex set C' C R”, clC and riC denote the closure and relative interior of C,
respectively. We abbreviate “convex hull” and “affine hull” as “conv” and “aft”,
respectively. For any o € R, o = max{0, a}. For any x € R", z; denotes the jth
component of x.

2 Main Result

Define the primal function

p(u) = inf fo(z). (3)

fl(.’L')S’U,Z,Z:l,,m

Then, p(0) = v,. It is well known that, under the assumption domfy C N domf;,
we have
lim inf p(u) = v, (4)

(see, e.g., [2, Prop. 5.3.1], [7, Prop. 6.5.2], [8, Cor. 4.3.6], [18, Cor. 30.2.2]) and
v, = v, 1s equivalent to p being Isc at 0.



We state our main result below. Its proof is long and is spread over this and
the next two sections. The proof makes essential use of an error bound result of
Hoffman [12], namely, the solution set of a linear equation /inequality system changes
in a Lipschitzian manner with the right-hand side.

Theorem 1 Assume fy, f1, ..., fm are separable and domfy, C N domf;. Then p
s lsc at 0, so that v, = v,,.

Proof. Since fy, fi, ..., fm are separable, as well as being proper convex lsc, we have
filr) = 3 fij(z;), i=0,1,...m,
j=1

where each f;; : R — (—00, 00] is a proper convex Isc function. Moreover,
dOHlf()j g dOIIle']' V’L,j (5)

By (3) and (4), there exists a sequence z* € R", k = 1,2, ..., such that fo(z*) — v,
and fi(2*)* — 0,4 =1,...,m. We construct below a sequence y* € R", k = 1,2, ...,
such that

Jim inf fo(y*) <w,,  fi(yF) <0, i=1,.m, VE>0.
—00

(We write “k > 0” as short for “k sufficiently large”.) This shows that v, < v,
which, together with v, > v, yields v, = v,.
By assumption, F' # (). Also, F' is convex (not necessarily closed). Let

I={ie{l,..,m}| fi(x) =0Vz € F}.° (6)

By convexity of f;, there exists T € F such that f;(z) < 0 for alli € {1,...,m} \ I.

By passing to a subsequence, we can assume that, for each j, either xf — 00 Or

a% — —oo or {a%} converges to some x5° € R. Let

Lemma 1 If v, # —oo, then fo;(x%) is bounded above for all j € Jp.

5Notice that (2) may not be satisfied, such as when domf, is an endpoint of domf; # domf,
for some i € {1,...,m}. Thus, even in the case of I = (}, assumption A2 may not be satisfied and
Thm. 1 does not follow from existing results.



The proof of Lemma 1 is given in Sec. 3. (The proof uses a conformal decompo-
sition of z* into components 2*+!, 252, .. that have recession properties with respect
to each f;, i # 0, in a lexico-graphical sense.) If v, = —oo, then the desired {y*}
sequence automatically exists. Suppose instead that v, > —oco. By Lemma 1 and
(5), we have that

z;° € dom fo; C domf;; Vi, Vj € Jp.

For each j € {1,...,n}, let

a; = ‘%Iel;;xj, bj = ilelg Zj.
Then, for any j € {1,...,n} and any e > 0 sufficiently small, there exists a® € F
(depending on j) such that a; < a$ < a;+e€if a; > —oo and a§ < —1/¢if a; = —oo0.
Similarly, there exists b € F' (depending on j) such that b; > b5 > b; — € if b; < o0
and b$ > 1/e if b; = co. Since (1 —a)a®+ab® € F for all a € [0, 1], we have for each
1 € I that

Jie((1 — @)a; + aby) < (1 — ) filay) + afi(by), £=1,...,n. (7)
This yields
0 = fi(1—-a)a+ ab)

n

= Y ful(1 - a)ag + ab)

=1

IN
NE

(1= a)ful(ag) + oufie(by)

— a) fi(a®) + afi(b°)

O M~
h =l

Thus, we must have equalities in (7), implying in particular that
fij(1 = a)a§ + abf) = (1 — a) fij(a) + afi;(b5) Vo € [0,1].

Thus fi; is an affine function on the interval [a$, b5]. Since this is true for any € > 0
sufficiently small and the interval [aj-, b;] is nested with respect to decreasing €, we
obtain that f;; is affine on [a;,b;]. (The interval is closed since f;; is Isc.) Since

Z; € |aj,b;], for each 7 € I and j, there exists A;; € R such that

fij(x) = Aij(zj — T5) + [i5(Z5) Vs € [ay, byl (8)



Specifically, if a; < b;, then A;; is unique, finite, and given by

_ fig(by) = fij(ay)

Ay =
’ bj — a;

Y

and z; — A;j(z; — z;) + fi;(Z;) supports f;;. If a; = b;, then Z; = a; and we set
0 if jeJ_
Ay = § fuld) — fii(T5) g Vi€l

Lj— Tj

where

z;—1 ifjeJ_,
=4 3 +1 ifjeJ,,

(Our choice of A;; ensures that, for j & J_, z; — Aij(z; — Z;) + fi;(Z;) lies below
fi; in a neighborhood of xf when k£ > 0. This is used to prove Lemma 2 below. If
a; = b; and 0f;;(Z;) # 0, we can alternatively set A;; to be any element of 9f;;(Z;).)
For j & J—, let L;; be the largest interval containing [a;, b;] over which f;; has the
form (8), for i € I. For j € J_, let L;j; = {z;} for i € I. L;; is closed since f;; is Isc.
Let Az = [Aﬂ s Am]; E = Lil XX LG By (8) and fz(jf) =0 forall 7 € I, we
have

filr) =Ai(x —Z) VzeF, Viel. 9)

Notice that F' C [a1, b1] X -+ X [ay, by] C F;.
By (9), for each i € I, we have
0= fi(x) =Ai(zx—2) VereFCEF,.

Thus, AT € S+ for i € I, where T denotes transpose, and S = aff(F — z). This
implies
0=Ai(x—2z) VeeS+z, Viel. (10)

This and (9) imply
fi(x) =Ai(z —72)=0 Vo e (S+z)NE,.

Thus, if 2% € (S + z) N (Nier F}), we have f;(z¥) =0 Vi € I.
For k =1,2,..., let

k . k k k_ _k k k
z;; = arg min |£ — x|, 0 = |25 — 255 0" = max 0
E€L;;

icl,j=1,..n



Lemma 2 §° — 0.

The proof of Lemma 2 is given in Sec. 4. (The proof is by contradiction, showing
that if 0¥ 4 0, then there exist d* € S and z* € conv{z* — d*, z} such that Z* has
a cluster point Z*° with z*° —z ¢ S and (1 — @)% + az® € F for a > 0 sufficiently
small. This contradicts S = aff(F — z).) The interval

Lj = Ly
i€l
is nonempty for all j (since Z; € L;). Then, defining

o - (z;?)?zl with z;-“ = arg ?Equjl |€ — xf|,
we have from Lemma 2 that zF — 28 — 0.5

For each 7 € I and j, since f;; is convex Isc and f;; is affine on L;, we have that
fij is uniformly continuous on the interval (L; + [—¢,€]) N domf;; for a sufficiently
small € > 0. Since 2% — 2 — 0 and 2 € L; and z¥ € domf;;, we see that 2z} and z%
are both in this interval for & > 0, implying fi;(z¥) — fi;(2}) — 0. Thus

filz®) = fi(z¥) =0 Viel
Since f;(z¥)* — 0 for alli € I and [-]* is a Lipschitz continous mapping, this implies
fi(Z")T =0 Viel.

By passing to a subsequence, we can assume that, for each i € I, either f;(2*) — 0
or fi(2*) < —6 for all k, where § > 0. Let

Iy={iel| f;(z*) = 0}. (11)

Since 2§ € L; C Ly; for all i € I and j, we also have from (9) that f;(2*) = A;(2*—7)
for all 7 € I and k. Hence

Ai(ZF—z) =0 Viel, A(zF—z)<—6 Vk, Viel\l,.

Also, for each j and each k > 0, either zf = xf or else zf is an endpoint of L; and

mf & L;. In the first case, since xf is in dom f;; for all ¢, then so is z;-“. In the second

More precisely, for each j and k, either zf; = % for all i € I or else zf; is an endpoint of Ly

for some ¢ € I. In the first case, z;.“ = :1:;?; in the second case, zf is one of these endpoints. In either
case, |z} — 2| = maxies 8.



case, since Z; € L;, then z¥
; j 7o

J lies between xf and Z;. Since acf and T, are both in
dom f; for all 4, then so is 2§. Thus 2* € domf; for all i = 0,1, ...,m.

For each k, consider the linear system

) o . j = Ly +»
Aiz <Az —6 Yiel\l, 2= zf Vi€ Jy.

This linear system is consistent for all k£ > 0 (2* is a solution). Since z¥ — 2F — 0
and A;(zF —z) — 0 for all 4 € Iy, the right-hand side is bounded as k — ooc.
By Hoffman’s result [12], it has a solution z* that is bounded as k¥ — oo. Since
AizF — Az for all i € I, any cluster point 2> of {Z*} is a solution of

Zj < Z;j VjeJ_,
Zj > .’fij \V/] € J+,
Zj = .’13?0 V] € Jb.

Az = AT Vi € Io,
Az < AF—6 Viel\D,

Since, 2§ — —oo for all j € J_ and 2§ — oo for all j € Jy, then 2 in fact satisfies
k<2 < ]
AZ'Z = Azj',' Vi € Io, Z‘;C =% =T VJ < J_’

Az < Ag—06 VielI\l, =52%2% Vi€l (13)
Rj =X, V] € Jy

for all £ > 0.
For each k> 0, since z* satisfies

k <y <7 i
Az=Adt - vieh,  3SUSTET
Aiz < Az —06 Yiell\l, i, =z;? ARy

and (13) is consistent and differs from this system only in the right-hand side,
Hoffman’s result [12] implies (13) has a solution z* such that

125 = 2| =0 (Z [Ai(2" = 2)[+ D |25 — 003"0\) :
iclo i€y
Since Yicr, [Ai(2" — 2)| = Cicr, [fi(2F)] = 0 (see (11)) and 2 — z%° for all j € Jj,
we obtain that z*¥ — 28 — 0. This together with z* — 2% — 0 yields

k

¢ — a2k — 0. (14)



For j € J U J,, since z;-“ € Lj and z; € Lj, then conv{a_cj,z;?} C L;. For j € J,,
since zf — x5° and L; is closed, then z5° € L;. Since Z* is a solution of (13), this
together with (9) implies z¥ € L; x --- x L,, and

fi(Z") =0 Viel, fi(ZF) <=8 VieI\I, Vk>0. (15)

For each j € J_, we have from :Ef — zf — 0 that Zf — —o0 so the left endpoint

of L; is —oo, implying xf = zf € L; for all £ > 0. Hence z; > Zf > xf for all
k > 0. Similarly, for each j € J;, we have Z; < Z;? < acf for all £ > 0. Thus, for
each j € J_UJ, and k£ > 0,

: ko k _k — Lk
either zj =7 or 2 € conv{Z;,x;}.

By further passing to a subsequence, we assume that for each ¢ ¢ I and j € J_UJ,,
either fi;(2%) — oo or {fy(«%)} is bounded above. If fi;(z%) — oo, we have from
the above relation that

either  fi;(2}) = fi(@}) or  fi;(2F) < max{fi;(z;), fi;(@})} = fij(z})

for all £ > 0. If {fi; (xf)} is bounded above, then the convexity of f;; implies f;;
is uniformly continuous on the interval (—oo,Z;] (respectively, [Z;,00)) if j € J_
(respectively, j € J). Since both xf and Zf lie in this interval, (14) yields

fii(ZF) — fi;(a¥) — 0.

For each 7 € I and j € J4, since f;; is continuous on the interval domf;; and both
a% and 2§ = x%° lie in this interval, (14) yields

fii(ZF) — fi(2f) — 0.
Thus, we have
Jlim sup{fi; () — fi;(z5)} <0 Vi &I, ¥j.
Then, upon summing over all j,
Jim sup{fi() = ()} <0 Vig 1
Since f;(z*)* — 0 for all  # 0 and fo(z¥) — v, this implies

fi(Z)t =0 Vie{1,..,m}\ I, kli_)rgoinffo(z’“) <wv,. (16)



Since f;(z) < 0 for all ¢ € {1,...,m} \ I, then for

y'=(1-aF7"+afz, oF =

B
X bl
ie{l,..,m\I | fi(2%)T — fi(x)

we have of € [0,1) and fi(v*) < (1—aF) fi(Z*) T+ f;(z) < Oforalli € {1,...,m}\I.
We have similarly from (15) that f;(y*) < 0 for all : € I. Thus y* € F. Also, we
have from (16) that o — 0 and hence

lim inf fo(y*) < lim inf (1 — o®)f3(2F) + oF fo(z) = lim inf f3(2F) < v,.
k—o0 k—o00 k—o0
Thus, y* is the desired sequence. =

Note 1: Our proofis complex since xf and f;; (xf) can tend to oo or —oo at different
rates for different ¢ and j. Also, f;; may not be uniformly continuous. As an
example, for

min e™™ s.t. 22+ x5 <0,
we have v, = v, = 0, and any sequence z*¥ € R?, k = 1,2, ..., satisfying
fo(z*) = v, and fi(z¥)T — 0 must have z¥ — oo and z& — —oco quadratically
in z¥. On the other hand, by Lemma 1, fo;(z%) cannot tend to oo for any j
(since v, # —o0). Thus, the constraint functions have different behaviors from
the cost function along x*, which must be taken into account in the proof.

Note 2: By adding the indicator function for N* ,cl(domf;) to fo (which does not
affect p nor ¢), we can always assume that domfy C cl(domf;) for all i. This
raises the question of whether (5) can be relaxed in Thm. 1. The difficulty
lies in that a limit point z3°, j € Jp, can then lie outside of domf;; for some .
An example is

min z; s.t. —In(z) + 22 <0.

Thus, if (5) can be relaxed, a more complicated proof would be needed.
Note 3: The assumption F' # () is needed for (4) to hold. As an example, for the

linear program
min x s.t. 0-2+1<0,

we have F' = (), so that v, = co. Moreover,

00 ifu<1
—o0 Hfu>1"
so that lim, ,¢inf p(u) = co. On the other hand,

q(p) =min{z + p(0-z + 1)} = —co Vu >0,

P(U)ngn{x|0-x+1§u}:{

80 Uy, = SUpP,5q (1) = —oc. All other assumptions are satisfied.
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3 Proof of Lemma 1

In this section we prove Lemma 1. Suppose that, for some j € J,, foj(2¥) is not

bounded above. We show that v, = —oo. Since fg; is convex and a:;—“ — x3°, we

have that foj(xf) — oo. Since fo;(z¥) is bounded below for all j € J,, this implies
Yjer, foj(zh) = oc. Since fo(z*) = v, < oo, this in turn implies J_ U J, # 0 and

Y. foi(ah) = —o0. (17)

JEJ _UJ 4
Let M; ={0,1,...,m}. Let
I, ={ie M | f”(xf) — oo for some j € Jp}.

Then 0 € I, (since foj(x;—?) — o0). Denote the left and right derivatives [22]:

fii(O) = fi;(E) fii(Q) = fii(&)

fi'(@:clg?_ (—¢ , z’j(@:glg}r (—¢
It is known that f; and f;; are nondecreasing [22, Sec. 8A]. Let
¢ = lm f;(€),  diy= lim f;5(€) (18)

(possibly ¢;; = —o0 or d;; = 00). If ¢;; = —o0, then limg_,_ fi;(§)/|€] = o0. If d;; =
00, then limg_,q, f3;(€)/[€] = o0o. If ¢;; > —o0, then f;;(§) — ¢;;& is monotonically
decreasing as & — —oo and limg, (fi;(§) — ¢;;€)/|€] = 0. If d;; < oo, then
fij(§)—d;;€ is monotonically decreasing as £ — oo and limg_, o (f3;(£)—d;;€) /1€ = 0.7
For each 7 € M, denote

J;:{jEJ_‘Cij>—OO}, J*Z{j€J+|dij<OO},

K ={jeJ;| ggljloo fij(€)—ci€ = —o0}, K ={jeJ| 61520 fij(€)—d; ;&€ = —o0}.

Since f;(z*) is bounded above, we must have J;” U J;" # () for all i. (K U K;" may
be empty.) Define

o7 e gt
JEJ; JEJ;

"For example, if fi;(§) = 1/& + & for £ > 0 (otherwise fi;(§) = o0), then ¢;; = —o0, dij = 1,
and limg_, o fi;(§) — di;€ = 0. If we change 1/€ to —log&, then we still have d;; = 1, but
limg 00 fi5(§) —di;€ = —00. Our analysis will need to distinguish between these two asymptotically
linear and sublinear cases.
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Notice that [nf| = O(||z¥|)) for all i € M. B{ passing to a subsequence if
I k” 1 € My, and

hm ||xk|| # 0} Jy = {j e {1,...,n}

(I; may be empty. J; Z0. J1NJ, =0.) Let

necessary, we can assume that both converge. Let

[[*]]

. @}
Il =11 € M1 Pt ||_’L‘k|| .

k _
= max |7f| + max|aj].

For each k, consider the linear system

xjgij—fy{“ VjieJ_NJy,
Z Cijl'j + Z dijﬂfj = 77;c Vl S M1 \Il, .73]' 2 j?j + ’)/{c \V/j c J_|_ N J1, (19)
jed; jedi Tj =z Vi & Ji.
This system is consistent for all k£ > 0 (z* is a solution). By Hoffman’s result [12],
it has a solution z*! such that ||z%!|| = O (7{“) = o(||z*||). Let

JU SR "
Then
Z CZ] + Z dz]ZJ =0 Vi e M1 \Il, (20)
jed; jest
1
— 1 > c” 'y > d”zk1 —1 Ve l, (21)
i jea; jert
k,1
2 =0V ¢ i, L1 Vje€J. (22)

J
Also, {z*1/||z*||} and {z*/||z*||} have the same cluster points. Since {f;(z*)} is
bounded above for each i € M;, any cluster point z of {z%1/||z*||} is a recession
direction for f; [2, 8, 18]. Thus z satisfies

Zcijzj‘f‘ZdiijSOViEMl, zj:(]Vj¢<m Ji_)U<m Jj)
JeJ; jert ieM; ieM,

(This follows from the limiting properties of f;;(-)/| - | discussed after (18).) Since
limy, .o 7 # 0 for all i € I, the left relation implies that

<0 Vk>0, Viel. (23)
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zk
Since limy_, HTvkLH # 0 for all 7 € Jp, the right relation implies that J; C (ﬂieMl J[)U
(ﬂieMl J:’) and hence
Ji C(J7UJt) Vie M. (24)
Combining (23), (24) with (20), (21), (22) yields that, for each £ > 0,

2%1 is a recession direction for f; Vi € M.

Let
L = nulie Mi\L | (K7 UK})NJi#0}.

(I; may be empty.) For each i € I;, we have from (23) that nf < 0 for all £ > 0
and hence (21) yields

Z CijZ;?’l + Z dijZ;-c’l <0 Vk > 0.

. ot
JeJ; JEJ;

This together with (22) and limg_, o f;;(§)—ci;€ < coforall j € J; and limg_, o0 fi;(§)—
dij€ < oo for all j € J;* implies that, for any = € domf;, fi(z +t2F!) = —oc as
t — oco. For each i € M; \ I with (K; U K;")NJ; # 0, we have similarly from (20)
and (21) that, for any = € domf;, fi(z +tzF') = —oc0 as t = oo. Thus, 2! is a
strict recession direction for f; for all i € I;.%

For each i € M, \ I, we have (K; U K;") N J; = 0, which together with (24)
implies

kli_)m L@ =1 Y e+ YD dyat is finite.
% ien jer jertnn

Since z* = %! 4+ 2% and, by I, C I, and (20), (22), we have

> ciizyt + > dz-jz;-“’l =0 Vk>0,

JEJ NIy jertng
this yields
lim Z fij (.’Ef) — Z Cij.T?’l + Z d,-jx?’l is finite.

k—o00 4
JE€J1 JEJ Ny jestnan

8We say d € R" is a strict recession direction for f; if, for any = € domf;, fi(z + td) = —oc as
t — oo.
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Since (K; UK;")NJ; =0 and (24) imply

. . k,1 _ B k,1 B k,1 . .
kll)rgo Z fij(5) Z iz + Z di;x; is finite,
Jed JeJ; NIy jestrnn

this yields
lim {Z fzg(xf) - Z fz](xf’l)} is finite.
k—oo | ! -
JE€J1 JE€J1

Since zf = 2! for j & Jy (see (22)) so that fi;(z%) = fi;(z}"), we obtain upon

summing over all j that

lim {fz(xk) - f,-(:vk’l)} is finite.

k—00

Since {f;(«*)} is bounded above, then {f;(z*')} is bounded above.
Since z*! satisfies (19) and I; C I, then |n¥| = O(||z*']|) for all 1 € M,, where

we define )
MQ == Ml \ Il-
k
By passing to a subsequence if necessary, we can assume that ”2721”, 1 € M, and
x )
k1
——— both converge. Let
|1
0 x5
=<1 i ! =<7 1,... li .
12 {Z € M2 Icli{go ||l‘k’1|| 7é 0}, J2 J € { ) an} ki{go ||l‘k’1|| 7é 0

(I, may be empty. Jo # (.) Since ! satisfies (19), we have
gt <zj—oF Vied.nd, P >z4+4F Viednd.

Since ||z%!|| = O(7f) and Jy N Jy = 0, this shows that J; C J,. By the definition of
vk, either I} # I or Iy # () or J; # Jp. Let

k k k1
Y = max |n;|+max|z;].

Then, we proceed exactly as before, but with My, I1, Ji, ¥, ~f replaced by My, I, Ja,
zF1 5 to obtain 2%2, 25?2 ;. In particular, for each k > 0,

2% is a recession direction for f; Vi € M,

14



and %2 is a strict recession direction for f; for i € I,. In this manner, we obtain
My, Iy, Jg, a*¢, 284 1, € = 1,2,... We terminate this construction when either (i)
Jo & (J_UJy) or (ii) 0 € I,. The construction must terminate finitely since, for
each £ = 1,2,..., we have M, D My, J; C Jpy1, and either I, # I, (so that
My # Myyy) or Iy # 0 (so that My, # Myyo) or Jp # Jyy1.

Case (i): We terminate when J, ¢ (J_ U J,) for some ¢. Then we must have
Jo1 C(J_UJy), 80 Jp\ Je_1 C Jp. Since, by construction, we have

ko 0—1

. okl ko i J

#0 VjeJ,
then {z**'} is bounded. Also, we have 0 € M, (since 0 ¢ I; U---U I, ;) and, by
construction, fo(z%¢!) is bounded above. However, since fo; ($§,3—1) = foj(z¥) — o0

for some j € J,, we must have foj(:rf’e_l) — —oo and hence \xf’e_l\ — 0o for some

j & Jp. This contradicts the boundedness of {z*¢~1}.

Case (ii): We terminate when 0 € I, for some £. By construction,

2% is a recession direction for f; Vi e My, Vk > 0,
ks is a strict recession direction for f; Vi€ I, Vk> 0, s=1,---,¢.
Ms—|—1 :MS\IS) Js g (J—UJ+)7

z

Moreover,
k,s .
kys ks _ , . zj’ <0 VjelJ_ndJ,, o
125°] = 0o, 2" =0Vj¢J,, lim B {>0 vielng, S=bhod
(25)

Fix any &£ > 0. Fix any v € R. For any (3, > 0, since f;(Z) < 0 for all i € M, \ {0},
we have

fi(@ + Be2™) <0 Vie M\ {0}. (26)

Since 0 € I, so that z*¢ is a strict recession direction for fy, by taking B, > 0
sufficiently large and using fo(Z) < oo, we have

fo(z + B2 < w. (27)

Since (—o00, Z;] C domf;; for all j € J_ and [Z;,00) C domf;; for all j € J,, we also
have from (25) that
fi(@ + Be2™) < 00 Vi & M. (28)

Since My = My_, \ I;_1, then for any 8,_; > 0, we have from (26) and (27) that

fo(z + Bez™ + B 1284 <w,  file 4 Bed™t + B2 <0 Vi e My )\ {0},
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Since 254~ is a strict recession direction for f; for i € I,_;, by taking 3,_; sufficiently

large, we have from (28) that
Fi(@ + B2t + B 2P <0 Vie I .

Since (—o0, Z;] C domf;; for all j € J_ and [Z;,00) C domf;; for all j € J, we also
have from (25) that

fil@ 4 Bed™ + B2 < 00 Vi g M.

Continuing in this manner, we obtain

¢ ¢
folz +32 82" <v, fila+ 382" <0 Vie M\ {0}
s=1 s=1
Since M, \ {0} = {1,...,m}, this shows that Z + >-°_, 5,2%* is a feasible solution
with cost below v. Since v is arbitrary, this shows that v, = —co. =

Note 4: In the last paragraph, instead of fixing £ and add to Z a suitable positive
combination of 2¥¢, ..., 2¥! we can instead add to Z the sum zFof 4 .. . 4 2kl
with kg, ..., k1 suitably chosen (k;_; depends on ky, etc.)

Note 5: Our proof makes essential use of the conformal decomposition of z* in
terms of 281 2F2 .. with (2F1, 252 ...) having recession properties with re-
spect to each f; in a lexico-graphical sense. Working with, say, recession
directions obtained by taking cluster points of {z*/||z*||} does not seem to
work.

4 Proof of Lemma 2

In this section we prove Lemma 2. We argue by contradiction. Suppose there exists
§ > 0 such that 6 > § for an infinite number of k. By passing to a subsequence
if necessary, we can assume that for each ¢ € I and j, either 55- > ¢ for all k£ or
6; — 0. For each 7 € I, denote

Ji={j €{1,...,n} | 68 > 6 Vk}.

Then J; # (0 for some i € I. For each j with a; < bj, since z; — A;j(x; —Z;) + fi;(Z;)
supports f;; for each ¢ € I, we have

fi(@h) > Ay (2§ — ;) + fi5(z5) VE. (29)
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For each j with a; = b; and j ¢ J—, we have that Z; € conv{x?,a‘cj} for all £ > 0,
so the convexity of f;; and the definition of A;; imply (29) for all ¢ € I [22, Sec.
8A]. For each j € J_, we have zzk] = I; which, together with :L'f — x7° = I, implies
(5@- — 0, i.e., 7 & J; for all + € I. Moreover, for each 7 € I and j € J;, there exists
pij > 0 such that

f”(xf) Z Aij (.T;C — .Tj) + fz](.’fj) + ,Oijéfj Vk. (30)
This is because j ¢ J—, so that f;; is affine on L;;, and is convex but non-affine on
any larger interval containing L;;.” Let p = min;es jey, pij. Then, for each i € I, we
have upon using (29), (30), and A;; = 0 for all j € J_ that
fila®) = 3 fiy(h)

1

~

> zn: (Aij(l“f —T;) + fz'j(fj)) + 3 (fiy(ah) = fii (@) +p D 6%

= jeEJ= Jjed;

= Ai(z*—7)+ > (fzg($f) — fi (@) +p D 51{6]"

jeJ= JjeJ;

~

k

where the last equality also uses f;(Z) = 0. We can decompose =" uniquely as

2% = uF +oF, (31)
where u* € S + z and v* € St. Then (10) yields that A;(u* — Z) = 0 and hence
fil@®) > A® + 37 (fis(25) = fis (7)) +p 2 05 Viel.
jei= i€
Since f;(«*)* — 0 and 2% — 7; so that fi;(z%) — fi;(z;) for all j € J_, this implies

PYjes 08 < —AwF +o(1) for all i € I. Thus, if J; # 0, then § 3¢, 6 < —A;v*
for all £ > 0. This yields

2 2
¢* < max Z 0y < ~ max(—A;*) < e IAT|I|[v*]] = O(J]v*]])  Vk > 0.
J;#£0 jEJ; J; 70 J; #0
By further passing to a subsequence, we can assume that, for each j, either
k /(|0,k k /(|0k k| — k
23 [||v*|| — oo or 7 /||v*|| = —oc or [2F| = O([|v"|]). Let
oo}.

9Specifically, if 2§ > zf5 + 6, then zf; equals the right endpoint of L;; and we can set p;; =
k k k k
(2R 4+ §) — foa(2F gk —8) = £ (2F
fii(zy ()5 fis(zy) — Ay I :cf < zfj — 4, then we can similarly set p;; = fis (=5 ()5 fis(25) +

7 - xf = . xf
J_ = {_] e{1,..,n} ‘ ToF] — —oo}, Jp = {_] e{1,..,n} ‘ ToF] —

Ai]’.
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(Either J_ or J, may be empty.) Then, by § < 6* = O(|[v*|)), we have ¥ — oo Vj €
Jy and :E — —oco Vj € J_, sothat J_ C J_, J. C J,. Thus, for each i € I, we
must have

(left endpoint of L;;) = —o0 Vj e ez_, (32)
(right endpoint of L;;) = oo Vj e Jy.
(Otherwise we would have |z¥ /6 — 1 and hence |z¥| = O(6*) = O(||[v*]|).) Thus,

for all £ > 0, we have x € LijforallieIand j € J_U J, implying

fi(@®) = ™) - fi@) = Y Ayt -3+ Y (fi(ah) - fiu(3) Viel

jeJ_UJy jeJ_UJdy
(33)
For each i E I and j ¢ J_ U J., we have that either f,](acf) — fij(z;) if j € J= or
fij(@5) > Aij (2% — z;) + fi;(z;) for all k> 0if j & J_ (see (29)). In either case, we
obtaln from \:L' \ O(||v*]|) and 6 < 6% = O(||v¥||) that there exists 7 > 0 for which

fi(@h) > fij(@;) — 7o Viel, j¢J Uy, Vk>0.
This combined with (33) and f;(z*)* — 0 for all ¢ € I yields
> A,-j(x;? —7;) < nr||of|| +o(1) Viel, Yk > 0.

jEj_UJ_+

By passing to a subsequence, we can assume for each ¢ € I that

Yo Ayl —z;)

jeJ_UJ+

f:{ie[

For each k£ > 0, consider the linear system

=O(|o*l) or Y Ay(eh—z)/ o] - —co.

jeJ_UJy

either

Let

Yo Aylah —z5)

jeJ_UJy

= 0(||v'“||)}-

3 v <z;  Vjed,
Z Aijl‘j = Z AUJ)? Vi € ], T, > i‘j Vj S J_|_, (34)
jeJ-uJy jeJ-uJy T; = :Ef Vi J_UJ,.

This linear system is consistent since z* is a solution Since the right-hand side is

O(||v*]]), by Hoffman’s result [12], it has a solution Z* with [|Z*]| = O(||v*||). Then
d¥ = 2% — 7* satisfies

. dé <0 Vi€ J_
=0 Viel i iln
Z Z]d‘];{ . L d >0 VJ§J+,_ (35)
jel o, <0 VielI\l d’c—o VidJ UJ..
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for all £ > 0. This together with (9), (32), and Z € F implies that, for each i € I,
jEJ_Uj+

with the inequality being strict if i € T\ I. For each i € {1,...,m} \ I, we have from
fi(z) < 0, (35), and (—oo,Z;] C domf; for j € J_ (since z¥ — —o0), [Z;,00) C
domfi; for j € J; (since 25 — oo) that f;(Z + adF) < 0 for all a > 0 sufficiently
small. Thus, Z + ad® € F for all a > 0 sufficiently small, with f;(Z + ad*) < 0 for
iel\ I. Then, d* € S and, by the definition of I, we must have

=1 (36)
Since Z* satisfies (34) for all £ >> 0, we have from (32) and (36) that

jeJ_udy
Thus f;(#*)T — 0 for all s € I. Also, we have 7% = 2% — d* and d* € S. Let

1
k= ok h(ak _ 7).
max(LF =gy o rtE D)

Notice that ||z¥ — z|| is uniformly bounded away from zero due to § < 6% = O(||v*]|)
and u* — d* — 7 € S and v* € St so that (31) yields

3 = 2l = |lu* = d* = al/*+ 5] Vi > 0. (37)

Then t* € (0,1]. Also, it can be seen that ||z¥ —z|| = min{1, ||Z* — z||} for all &£ > 0.
Thus {Z*} is bounded and, since ||Z* — Z|| is uniformly bounded away from zero,
the same is true for ||Z* — Z||. Since

fi(@) < (1 =1) fi(z) + " fi(@*) <" (@) =0 Viel,

then, by the Isc property of f;, any cluster point z°° of {z*} satisfies f;(z*°) < 0 for
all 7 € I. Moreover, > — z # 0. Since

F—z =P —d" —z) + Rk, WF—db—z€S, v eSt VE>0,

and, by (37), [[u* —d* — 2| < [|#* — || < [|2*]| + [lz]] = O([[v"]l), we also have
|zF — z|| = O(||tFv*||). Hence tkv* 4 0, implying that 2°° —z & S.
Let z(a) = (1 — a)Z + az® for « € [0,1]. We have from f;(z>°) < 0foralli e T
that
filz(a)) < (1= a)fi(z) + afi(z*) <0 VYael0,1], Viel.
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Also, we claim that
z*° edomf;, 1=0,1,..,m. (38)

To see this, notice that

Ty <z Vk>0,Vje ., &j=af— —ocoVjeJ \J.

Thus, for all j € J_ and k> 0, we have % < z; and hence z¥ < z;. This implies
z3° < ;. Since 2% — —oo, we also have (—oo, Z;] C domf;; for all 4. Thus

fjo S domfij Vi=0,1,...,m.

By an analogous argument, this is also true for all 7 € J,. For each j € J;, we have
j & (J-UJy) (since J_ C J_, Jp C Jy), implying #¥ = 2% — 25°. By Lemma 1,
r € dom fo;. Thus, 22° € conv{z;,z3°} C domfy; C domf;; for all 4. This proves
(38). By (38) and f;(z) < 0 for all i ¢ I, we have

filz(a)) < (1 —a)fi(z) + afi(z*) <0 VYa € (0,1) sufficiently small, Vi ¢ I.
Thus z(a) € F for all @ € (0,1) sufficiently small. Since z° — z ¢ S, then
z(a) —x ¢ S. This contradicts S = aff(F — z). =
5 Weakly Analytic Functions

The following result refines Thm. 4.2 in [16] (also see [2, Thm. 5.4.2] and a gener-
alization to parametric convex inequalities in [14, Sec. 3]) by allowing fo, f1, .-, fm
to be extended-real-valued in A3. For example, the composition of a real-valued
convex weakly analytic function with a convex strictly increasing function is convex
weakly analytic, but not necessarily real-valued. In what follows, I is defined as in
(6) and we define

C = () domf;, F,={x € F| fo(z) <v} YveR. (39)
il

Notice that 7 ¢ I means i € {0,1,...,m} \ I.

Theorem 2 Assume f; is weakly analytic for all© € I and
F,NriC#0 Yuv>u,. (40)

Then p 1s lsc at 0.
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Proof. Let v = lim,_,inf p(u). Then, there exists a sequence z* € R*, k = 1,2, ...,
such that fo(z*¥) — v and fi(z*)™ — 0,4 = 1,...,m. We show below that v, < v
which shows p is Isc at 0.

Since F # (), by convexity of f;, there exists a & € F such that f;(Z) < 0 for all
i ¢ IU{0}. Fix any € € (0,1). By (40), there exists a & € F satisfying

fo(Z) <wv, +e¢, z eriC.

Let
T=€eZ+(1—¢) 2.

Then z € F, fi(Z) < 0 for all i ¢ T U {0},
fo(®) < efo(7) + (1 =€) fo(2) < €fo(Z) + (1 =€) (v, +6), (41)
and 7 € riC. The latter implies there exists p > 0 such that
T+ (pBNL) C riC, (42)

where L = aff(C' — z), B={z | ||z|| = 1}, and || - || denotes the Euclidean norm.
Let S = aff(F — ). Since F C C, S C L. For any z € F with x # &, we have

filz)=fi(x) =0 Viel.

Since f; is weakly analytic for all + € I, this implies f; is zero-valued on the line
through = and z. Thus

filz)=0 VozeS+z, Viel. (43)

Thus, by Thm. 8.6 of [18], any d € S is a recession direction of f; for all i € I.
Since —d € S, then f; is in fact constant along d. For each k, since ¥ € C so that
k k uniquely as

z® —x € L, we can decompose x
=7+ d* + 0",
where d* € S and v* € St N L. Let
F=z+d" Vk

By (43), fi(2*) =0 for all i € I and all k.
We claim that v* — 0. Suppose the contrary. By passing to a subsequence if
necessary, we can assume that there exists § > 0 such that ||v*|| > § for all k. Let

P _k — k k
tk = = t .
max(L, oy ¢ oY
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It can be seen that t* € (0,1] and [[t*v*|| = pmin{1, ||v¥||} for all k. Thus {z*} is
bounded and p > |[t*v*|| > pmin{1,§}. Since d* € S so that f; is constant along d*
for each ¢ € I, we have

fi(@®) = fi@+d*+t5)
= fi((1 —tF)2F + tha)
= thfi(a®) Viel, Vk,
where the last equality uses f;(2*) = 0 for all i € I and all k. Since f;(z*)* — 0,

this shows that f;(z*)™ — 0. Since {Z*} is bounded and f; is lsc, this shows that
any cluster point 7% of {z*} satisfies

fi(@®)<0 Viel (44)

Moreover, Z%° = Z +w™ for some w™® € St NL with p > ||[w™®|| > pmin{1,d}. Thus
T*° -7 ¢ S. Since w™® € pBN L, (42) implies 7*° € C. Let z(a) = (1 — a)Z + oz
for o € [0,1]. We have from (44) that

filz(e)) < (1 — ) fi(Z) + afi(z*) <0 Vael0,1], Viel.
Since z*° € C and f;(Z) < 0 for all i ¢ I U {0}, we also have
filz(a)) < (1—0a)fi(z)+afi(z*) <0 Va e (0,1) sufficiently small, Vi ¢ I U {0},

as well as z(a) € domfy. Thus z(«) € F for all a € (0,1) sufficiently small. Since
z*° -7 ¢S, then (o) — % ¢ S. This contradicts S = aff(F' — 7).

Let

wk =7 — k.

Then w* — z € 1iC. Since v* € L, (42) implies w* € 1iC for all k sufficiently large,
so the continuity of f; on riC [18, Thm. 10.1] yields

fiw®y — f() <0 VigIu{o},
fo®) — fo(z).

Let
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i) = fi (zk+x> < L+ Vie I, VE,

2 = 2

fily") = fi (Ik;wk> < f"(xkﬁ;f"(wk) — fif) <0 VigIu{o},
k k k k =

W) = 1o (T < DEIEROD L vE )

The first two relations imply y* € F for all k sufficiently large, in which case
fo(y*) > v,. This and the third relation yield in the limit that

v, < 2F fo@) o vt efo@) + 1= +6)
2 2
where the last inequality uses (41). Rearranging terms yields

vp S U €(fo(E) —vp +1—6).

Since this holds for any € > 0 while Z is independent of ¢, taking € | 0 yields v, < v.
]

Note 6: Weakly analytic function was introduced by Kummer [16] as a generaliza-
tion of faithfully convex function (i.e., is affine on a line whenever it is affine
on some open segment of the line) introduced by Rockafellar [19, 20]. An
algorithm for solving convex programs with faithfully convex constraints was
presented by Wolkowicz [24]. Relaxing the assumption of fy, fi, ..., f being
real-valued allows Thm. 2 to be applied to a broader class of problems. A part
of our proof uses ideas from the proof of Lemma 2. The last paragraph of our
proof is a refinement of the proof of Lemma 5.4.3 and Theorem 5.4.2 in [2].

Note 7: Dimitri Bertsekas suggested that we can more simply work with
min fo(z) st. fi(z) <0, i€l (45)

where fo(z) = fo(z) + Yigrogoy i fi(x), and (45)ier is a Kuhn-Tucker vector
associated with

min  fo(z) st. fi(z) <0, i¢IU{0}, (46)

and fo(x) = {Og(a:) iaflsjecj(m) <Oforalliel, Such (u})ier exists whenever

v, is finite [18, Cor. 28.2.1]. Accordingly, we work with C' = domf;, which
is effectively the same as C' given by (39). Also, fo, f1,.-., fm being separable
implies fy is separable (since it is the sum of separable functions).
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Note 8: A reviewer remarks that, for any J C {1, ..., m}, (P) can be written equiv-
alently as
Up = min fO(x)
st fi(z) <0, ¢ Ju{0},

where fo(fﬂ) = {fo(x) if f(w) < 0foralli € J, The corresponding dual
o0 else.
problem is

Up = max q(i),

where /i = (p:)igsu(0y and §(2) = info{fo(z) + Xigsuqop #ifi(z)}. Tt is readily
seen that v, < 0, < wv,. Thus if fy, fi, ..., fm satisfy assumption A3 so that
v, = U,, then we also have 0, = v,. In other words, assumption A3 can
be relaxed to allow fy to take the value oo outside the feasible set of certain
real-valued convex constraints. The domain of such fy is necessarily closed,
but this can always be assumed for (P) by adding to fy the indicator function
for {z | fo(z) < fo(Z)} with Z € F, which does not affect v, or v,. However,
for such fy, the directional derivative f{(z;y — z) must be finite for any z,y €
domfy [18, Thm. 23.4], so it excludes functions such as fy(z) = zlnz (with
fo(0) = 0 and domfy, = [0,00)). Moreover, fi,..., f still need to be real-
valued, so it excludes the example in Note 2, which satisfies the assumption
of Thm. 2 with I = (), C = (0,00) x R, v, = 0, while f;(z) = —In(z1) + 22 is
not real-valued. Thus, the assumption of Thm. 2 is more broadly applicable
than A3.
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