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Abstract

The sensor network localization problem has been much studied. Recently
Biswas and Ye proposed a semidefinite programming (SDP) relaxation of this
problem which has various nice properties and for which a number of solution
methods have been proposed. Here, we study a second-order cone program-
ming (SOCP) relaxation of this problem, motivated by its simpler structure
and its potential to be solved faster than SDP. We show that the SOCP relax-
ation, though weaker than the SDP relaxation, has nice properties that make
it useful as a problem preprocessor. In particular, sensors that are uniquely
positioned among interior solutions of the SOCP relaxation are accurate up
to the square root of the distance error. Thus, these sensors, which are easily
identified, are accurately positioned. In our numerical simulation, the inte-
rior solution found can accurately position up to 80-90% of the sensors. We
also propose a smoothing coordinate gradient descent method for finding an
interior solution that is faster than an interior-point method.

Key words. Sensor network localization, semidefinite program, second-order cone
program, approximation algorithm, error bound.

1 Introduction

A problem that has received considerable attention is that of ad hoc wireless sensor
network localization [3, 10, 11, 16, 17, 22, 28, 30, 31]. The basic version of this
problem can be described as follows:

There are n distinct points in R¢ (d > 1). We know the Cartesian coordi-
nates of the last n — m points (‘anchors’) z,,41, ..., 2, and the Euclidean dis-
tance d;; > 0 between ‘neighboring’ points ¢ and j for (i,j) € A, where
AC ({1, ..,n}x{1,...m}) U ({1,..,m}x{l,..,n})® We wish to estimate
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the Cartesian coordinates of the first m points (“sensors”).

Typically, d = 2 and two points are neighbors if the distance between them is below
some threshold (the radio range). In variants of this problem, the distances may be
non-Euclidean [30] or may have measurement errors, and there may be additional
constraints on the unknown points [16]. This problem is closely related to distance
geometry problems arising in the determination of protein structure [8, 24] and to
graph rigidity [1, 17, 31].

It is known that the sensor network localization problem is NP-hard in general
[29]; also see remark in [24]. A proof for d = 1 is by reduction from the set partition
problem, which is readily generalized to d > 1. Additional studies are given in
(3, 28]. Thus, efforts have been directed at solving this problem approximately. A
method based on second-order cone programming (SOCP) relaxation was proposed
in [16]. In the case where the anchors lie on the “perimeter”, a distributed relaxation
method was proposed in [28]. The performance of these methods were tested through
simulations.

Recently, Biswas and Ye proposed an approach to sensor network localization
based on semidefinite programming (SDP) relaxation [10, 11]. In this approach, the
problem is formulated as the following nonconvex minimization problem:
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where e; is the ith coordinate vector in " and b;; = [ 0 A] (e;—e;). Throughout,

Iy, is the k x k identity matrix and (A, B)p o trace[AB] for any symmetric real



matrices A, B of same dimension. It is not difficult to see that
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Thus (1) may be reformulated as

Ugpy = mln Z <szbz;, > —d?j\
(i.4)€A (2)
s.t. [Zij] =14, Z >0, rankZ = d.

ih,j2n—d

Relaxing the rank-d constraint yields the convex problem:

Ysap = min > <bwbz€a > — d3j]
(,4)eA (3)
[Z'LJ]i,jand Iy, Z =0,

which is an SDP. In particular, by introducing slack variables, this can be written
in the standard conic form:

min Z Ui + Vg
(i,j)eA

s.t. <bZ]b£, Z>F — Uij + Vi = dZZJ V(Z,]) € .A, (4)
[ZZ]]i,jZn—d = Iy,
’U,Z'jZO, 'UijZO V(’L,])E.A, Zt(],

which has (m + d)(m + d + 1)/2 + 2| A| variables and |A| + d(d + 1)/2 equality
constraints. Here |.A| denotes the cardinality of \A. In sensor network localization,
|A| = Q(m) and d = 2, so that (4) has Q(m?) variables and Q(m) equality con-
straints. Properties of the SDP relaxation and its solutions are studied in [10, 31].5
As is noted in [11], the SDP relaxation can be solved by existing SDP solvers for
m < 100 but not for much larger m. Thus, a distributed (domain decomposition)
method is proposed to solve larger SDP relaxation. In [22], to further improve the
speed and accuracy, the distributed SDP method is terminated early and then a
gradient search method is used to locally refine the approximate solution. Simula-
tion results show that this method can more quickly and accurately position most
sensors, even in the presence of distance errors.

The challenge in solving the SDP relaxation motivates us to consider SOCP re-
laxation, first studied by Doherty et al. [16], since SOCP can be solved to much

T
4T general, [ € Null [ X )§ ] if and only if u € Null(Y — XTX), v = —Xu.

5Throughout, “solution” of an optimization problem means a global optimal solution.
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larger size than SDP [2, 27]. In fact, there has been little study of SOCP relax-
ation, compared to SDP relaxation, for nonconvex optimization. Besides [16], which
presented models and simulation results with SOCP relaxations of sensor network
localization (assuming no distance error), Kojima et al. [20, 21] studied SOCP re-
laxations of certain special classes of SDP and quadratic optimization problems, but
their results do not apply to sensor network localization. Here, we present a study,
both theoretical and numerical, of the SOCP relaxation of the sensor network lo-
calization problem (1), allowing for distance errors. In particular, we show that an
interior solution of the SOCP relaxation can be used to accurately position a high
percentage of the sensors.’ To motivate the SOCP relaxation, we reformulate (1) as

Vppe = Min 3 |y — d|
P T1y-5Tm,Yij (’i,j)EA J N (5)
s.t. Yij = ||$z — .Ij||2 Y (’L,]) S A

Relaxing the equality constraints to “>” inequality constraints yields the convex
problem:
def . 2
Usoep — min - Z |Yij — dij|
P L1y Tm,Yij (i,j)EA N (6)
s.t. Yij 2 ||.’13Z — 33j||2 V(Z,]) € A,

which is an SOCP. In particular, by noting that y;; > dz; in any solution of (6) and
introducing slack variables, this can be written in the standard conic form:

min Z Usj

(i,5)eA
s.t. Ty — T — W = 0 V(Z,]) € .A, (7)
Yij — uig = di; (i, 5) € A,

aij =5 V(i,5) € A
wij > 0, (045, Yij, wij) € Rcone*? V(i, ) € A,

where Reone™? ¥ {(a,y,w) € R x R x R¢ : 2ay > ||w||?} [32]. This is an SOCP
since

1 1 1 1
yZ [l = W+ 20—+l = oy 2ly— vl
(see [4, page 88] or [25, page 221]). The SOCP (7) has (d + 3)|.A| + md variables

and (d+ 2)|A| equality constraints. In sensor network localization, |A| = Q(m) and

6Throughout, “interior solution” means an element in the relative interior of the optimal solution
set.



d = 2, so that (7) has Q(m) variables and 2(m) equality constraints. Thus, SOCP
relaxation has smaller size than SDP relaxation.

How good approximation is the SOCP relaxation? Can it be efficiently solved?
We will show that the SOCP relaxation is always weaker than the SDP relaxation
and that any interior solution of the SOCP relaxation (which can be found by, say,
an interior-point method) will accurately position (up to square root distance error)
those sensors that are uniquely positioned; see Propositions 1, 5, and 6. Moreover,
the aforementioned sensors (which lie in the convex hull of the anchors) can be easily
identified; see Propositions 3 and 4. In our simulations, described in Section 9, up
to 80-90% of the sensors are accurately positioned using this technique. Thus, the
SOCP relaxation can act as a useful pre-processor by accurately positioning most
of the sensors, thus greatly reducing the problem size. The remaining sensors can
be positioned by other means, such as SDP relaxation. In Section 8, we propose a
smoothing coordinate gradient descent method that computes an interior solution
of the SOCP relaxation faster than an interior-point method. In Sections 10 and
11, we present a mixed SDP-SOCP relaxation of (1), which can flexibly mediate
between strength of relaxation and problem size, and discuss alternative problem
formulations. In particular, other objective functions can be used in (1), for which
SOCP relaxation may be more “natural” than SDP relaxation. However, changing
the objective function of (1) changes its solution. Here we consider (1) so to better
compare with existing SDP relaxation approach (Propositions 1, 2) and to introduce
the mixed SDP-SOCP relaxation. In addition, the SOCP relaxation is a useful
problem pre-processor even if it is weaker than SDP relaxation.

Throughout, R™ denotes the space of n-dimensional real column vectors (some-
times written horizontally for convenience), 8™ denotes the space of n x n real sym-
metric matrices, and ©' denotes transpose. For A € R™*", A;; denotes the (i, 7)th
entry of A. For A,B € 8", A > B means A — B is positive semidefinite. “conv”
means the convex hull.

2 An Ilustrative Example

To understand properties of SDP and SOCP relaxations, it is instructive to look at
an example. Consider the following example of Ye, with d =2, n =3, m = 1, and

Ty = (_1’0)7 T3 = (170)a d12 = d13 = 2.
The optimization problem (1) is:

min (1 —a)?+ 6% 4|+ |(—1—a)? + 5% —4].
$1:(a,ﬂ)€m2



It has two solutions at 7; = (0,v/3), z; = (0, —/3).

2 3 X, solutions
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Figure 1: The localization problem has two solutions at (0, ++/3).

The SDP relaxation (3) is:

min ly —2a — 3| + |y + 200 — 3|
z1=(ar,B)ER2
yeER
y a B
s.t. a 1 0| >0.
6 0 1

Its solutions have the form y = 3 and z; is any point on the line segment joining
(0, —+/3) and (0,v/3). If we solve the corresponding SDP (4) by an interior-point
method, then it will find the solution that maximizes the barrier (see [25, page 235],
[4, page 384])

3 0 5
det|0 1 0] =3-p%
B 0 1

The maximum is attained at 5 = 0. The corresponding zi-solution (0,0) is the
analytic center of the SDP solution set.
The SOCP relaxation (6) is:

min ly — 4| + |z — 4]
mlz(a,B)EERZ

y,2ER

s.t. y>(a—1)+p7

z> (a+1)*+ B2

Its solutions have the form y = z = 4 and z; is any point in the intersection of the
two disks of radius 2 and centered at (—1,0) and (1, 0). If we solve the corresponding
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Figure 2: The SDP relaxation has the entire line segment as its z;-solution set.

SOCP (7) by an interior-point method, then it will find the solution that maximizes
the barrier (see [25, page 223], [4, page 384], and also Section 6)

log(4 — (a — 1) — 5) + log(4 — (a+ 1)? — 82).

This maximization is attained at « = § = 0. The corresponding z;-solution (0, 0) is
the analytic center of the SOCP solution set. In general, finding the analytic center
may be more efficient and accurate than the bounding approach suggested in [16],
which entails solving an SOCP 2d times with different linear objective functions.

analytic center

Figure 3: The SOCP relaxation has the intersection of two disks as its z;-solution
set.

From the above example, we make the following observations:

e The SDP z;-solution set is contained in the SOCP z;-solution set.

e The analytic center of the SOCP z-solution set lies in the convex hull of its
neighbors x5 and x3.

We will now study in more generality these observed properties of the SDP and
SOCP relaxations.



3 Properties of SDP and SOCP Relaxations

We show below that the SDP (i, ..., z,,)-solution set is contained in the SOCP
(21, ..., T )-solution set, so that the SOCP relaxation is weaker than the SDP relax-
ation.

T
Proposition 1 If Z = B/( )§ ] is feasible for the SDP relazation (3), then
d
x; = dthcolumnof X, +=1,...,m,
U7 Ulaall? — 22Ty + Y5, if (i) € A, G <m <,

is feasible for the SOCP relazation (6) with the same objective function value.

Proof. Since Z is feasible for (3), we have Z = 0, so that ¥ — XTX > 0. Then
any 2 x 2 principal submatrix of Y — X7 X is positive semidefinite, so that, for any
(1,7) € Awith i < j <m,

Yi—llzll* Yy —aiz; ],
Vij—aizy Y —llzl*] =7

implying that
Yi > llaall?, Yig > llagll®s (Y — Nl (Y55 — llgl?) > (Yig — 2iay)®. (8)

For any a > 0,b > 0,ab > ¢, we have (a + b)> = 4ab + (a — b)> > 4¢? and hence
a+b > 2|c|. Thus (8) implies

Vi — ||lzsl|? + Y5 = llzj|* > 2|V — 2] 5] > 2(Yi; — 2] ;).

Hence
yij = Yii = 2Y5 + Y5 > ||lail|® — 22525 + |51 = ||loi — ).

Similarly, any diagonal entry of Y — X7 X is nonnegative, so that, for any (i,5) € A
with j <m <1, Yj; — ||z;||* > 0 and hence

yig = llzill* = 225 25 + Yy > |lwll* — 225 25 + [lgl]* = Nz — 251"

Thus 1, ..., Zm, (Yi),j)eca is feasible for (6).



Lastly, we have from the definition of b;; and y;; that

> 1 (bih, Z>F — dZ|

(4,5)€A
= Y Ya—-2Vy+Y;—dil+ Y llwll® - 22] 25 4+ Y, — dFj]
i<j<m i<m<i
(1,j)€EA (i,j)eEA
= > lyi- dy;| + > v - dzl.
(hea hea

Thus, Z and 21, ..., Zm, (¥ij),j)ea have the same objective function value for (3) and
(6), respectively. =

Proposition 1 shows that (i) vy, > Uggepe and (ii) if vy, = vgqp, then the set
of SDP solutions is contained in the set of SOCP solutions when projected on to the
X1, -y Lyp-SPACe.

It is well known that the solution set of (3) is closed and convex, and the same
is true of (6). An interior solution can be found by, say, applying an interior-point
method to (4) and (7). We will see that such an interior solution has desirable
properties for identifying sensors that are accurately positioned.

When solving SDP or SOCP by an interior-point method, the solution set must
be bounded. It is readily seen that the solution set of (3) is bounded if and only
if the solution set of (4) is bounded. Similarly, the solution set of (6) is bounded if
and only if the solution set of (7) is bounded. In [31, Proposition 1], it is shown in
the case of v,,, = 0 (i.e., no distance error) that the solution set of (3) is bounded
if the following assumption holds.

Assumption 1 Each connected component of the graph G def ({1,...,n}, A) con-
tains an anchor indez.

It is not difficult to see that this remains true when v, > 0 and that the converse
also holds. Similarly, it is readily shown that the set of solutions of (6) is bounded
if and only if Assumption 1 holds. This is summarized in the following lemma.

Lemma 1 (a) The solution set of (3) is bounded if and only if Assumption 1 holds.

(b) The solution set of (6) is bounded if and only if Assumption 1 holds.

Assumption 1 is reasonable since if a connected component of G does not contain
an anchor index, then the corresponding sensors cannot be accurately positioned.
In the absence of anchor (i.e., m = n), as arises in protein structure prediction,
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the solution set is unbounded and, in particular, each solution can be rotated and
translated to yield another solution. In [8], an optimization formulation is proposed
to remove the translation factor and ensure bounded solution set (assuming no dis-
tance error) and an extension of the distributed SDP method in [11] is proposed, in
which points in overlapping “sub-configurations” are further rotated and translated
to match closely on the overlap.

4 Interior Solution of the SDP Relaxation

y X7
Let Z = [ X I
introduced the notion of individual traces of Z, defined by

] be any solution of the SDP relaxation (3). Biswas and Ye

2] € Vi — al?, i=1,.,m,
where z; is the ith column of X. Since Z > 0 so that Y — X7 X > 0, we have
tr;[Z] >0, i=1,..,m.

These individual traces were given a probabilistic interpretation in [10, Section 4]
as the variance of random points #; with E[Z;] = z; and E[Z]Z;] = Vj;. In [11,
Section 2], they were used to evaluate the accuracy of the estimated positions z;,
i =1,...,m, with smaller trace indicating higher accuracy. So and Ye [31, Theorem
2] proved in the case of v, = 0 that the sensors are “uniquely localizable” if and
only if, for any interior solution Z (equivalently, Z is a solution of maximum rank),
all individual traces of Z are zero, i.e., Y = X7 X.

The following proposition provides some justification for using individual traces
to evaluate accuracy of computed sensor positions. It shows that, for any interior
solution of (3), if the ith trace is zero, then the ith sensor is uniquely positioned by
the SDP relaxation (and hence is correctly positioned when v, = 0). This result
gives a local generalization of the “if” direction in [31, Theorem 2] that is analogous
to [31, Theorem 4].

y X7
X I
{1,...,m}, if tr;[Z] = 0, then z; is invariant over all solutions of (3), where x; is the
ith column of X. Moreover, Y;; — XTX; =0, where J def {i <m:tr;[Z] =0}, Yy,
s the principal submatriz of Y indexed by J, and X ; is submatriz of X comprising
the columns indexed by J.

Proposition 2 Let Z = [ ] be an interior solution of (3). For each i €

10



Proof. Consider any solution Z’ of (3). Since Z is an interior solution, then
'Yy -2), 22¥7-«7-2)
are both solutions of (3) for any sufficiently small € > 0. Write them in the forms:

Yl (Xl)T YQ (X2)T
1_ 2 _
d _[Xl I, ] and 7 _[XQ I, ]

Since Z = (Z' + Z?%)/2, this implies that, for any i € {1, ..., m},

tr;[Z] = tr,-[(Zl+ZQ)/2]
(Vi +Y2)/2 = ||z} +22) /2]
= (G + YD) /2= (I + 1211? — ll=} — 2211/2) /2
= (tn[2'] +tr;[2%])/2 + ||2} — 22]|/4,

where z},z? are the ith column of X!, X2 respectively. Since tr;[Z'] > 0 and
tr;[Z?] > 0, if tr;[Z] = 0, then z} = 2? and hence 2} = ;.

Since Y—XTX > 0, we have YJJ _X}—’XJ >~ 0. Since 0 = tI’Z[Z] = [Y —XTX]”
for all 7 € J so that Y;; — X7 X; has zero diagonals, this implies Y;; — XTX; = 0.

Proposition 2 shows that any interior solution identifies some subset of sensors
that are uniquely positioned by the SDP relaxation. It is an open question whether
the converse of Proposition 2 holds, i.e., if Z is an interior solution of (3) and
tr;[Z] > 0, then x; is not invariant over all solutions of (3). We will prove in Section
5 an analogous result for the SOCP relaxation (6).

When an interior-point method is used to solve the SDP relaxation (4), it will
find not only an interior solution, but an interior solution that maximizes the nonzero
traces in some sense. Using such a solution should make the zero-trace test more ro-
bust under computation errors. A rigorous study of this topic requires knowledge of
the asymptotic behavior of the central path for SDP, which is not fully understood-
see [26] and references therein. On the other hand, the simpler structure of the
SOCP relaxation (7) makes possible such a study, as we will do in Section 5.

5 Interior Solution of the SOCP Relaxation

Since the SOCP is a convex minimization problem, there exists a maximal subset
of constraints that are tight/active at every solution. In particular, there exists a

11



unique B C A such that
||.’L‘Z — .’Ej||2 = yij V SO]UtiOIlS L1y eeey T,y (yij)(i,j)EA Of (6) < (Z,j) - B (9)

Any solution that satisfies strictly the remaining constraints of (6) lies in the relative
interior of the solution set, i.e., it is an interior solution.

In what follows, we denote the set of neighbors of i € {1,...,m} relative to any
B C A by

Ng()) € {j e {1,...n} : (44) € B}.
Also,
Mg {ie{1,..,m} : Ng@i)#0}.

The next result is key for identifying those sensors that are uniquely positioned by
the SOCP relaxation.

Proposition 3 Let 21, ..., Tm, (Vij)(i,j)ca be any interior solution of (6). Let B be
given by (9). The following results hold.

(a) For each i € Mg,
z; € conv {z;}, n oo - (10)

(b) Each connected component of the graph Gz & (MgU{m+1,...,n}, B) contains
an anchor indexi € {m +1,...,n}.

(¢) For each i € {1,...,m}, x; is invariant over all solutions of (6) if and only if
1€ Mg.

Proof. (a) We argue by contradiction. Suppose that (10) fails to hold for some
1 € Mpg. Let p; denote the nearest-point projection of x; onto conv {xj}j ENg ()" Then,

pi # x; and, for each j € Ng(i), we have (x; — p;)” (pi — z;) > 0, implying

|z: — 5] = @i — pi +pi — 25
= |lzi — oall” + llpi — z5* + 2(z — )" (pi — ;)
> |lpi — x|

For € € (0,1), let

Since ||z; — ;]|* = y;; for all j € Np(i) and ||z; — z;]|* < y;; for all j € Ng\p(i), the
convexity and continuity of || - ||? yield that

|zf — zl1* < yi; Vi € Na(d),

12



for all e sufficiently small. Thus, replacing x; by z¢ yields another solution of (6),
and it satisfies strictly the constraints corresponding to j € Np(7). This contradicts
the assumption that z1, ..., Zm, (¥ij)(i,j)c4 is an interior solution.

(b) Choose any i € Mp and initialize M < {i}. Then, whenever there is an
i € M N Mg with Ng(i) € M, we add Ng(i) to M, i.e., M < M U Ng(i), until no
such i exists. Since, for each i € Mg, each j € Np(i ) elther indexes an anchor or else
belongs to My (since Ng(j) # 0), we see that M C Mz U {m +1,...,n}. Moreover,
for each i € M N Mg, we have Nz(i) C M and, by (a), (10) holds, so that

z; € conv {Z; }c n ) € conv{z;}ti
implying that x; is not an extreme point of {arj} iz~ Thus, all extreme points of
conv {z;},;; are anchors. Let

A=1{(,7) : i€ MN Mg, j€ Ng(i)}

Then (M, A) is a connected subgraph of G, and it contains an anchor index; see
Figure 4 for an illustrative example. Thus the connected component of Gz that
contains this subgraph contains an anchor index. Since the choice of ¢ € My was
arbitrary, this shows that every connected component of Gz contains an anchor
index.

Ty
o anchor

% 10 @ sensor

Figure 4: In this example, B is shown as lines and Mz = {1,2,...,6}. For
1 € {1,2,3,4}, we have M = {1,2 3478910}A—{(12)( )(19)(3)
(2)( 7),(3,4),(4,10)}. For 7 € {5,6}, we have M {567910}

6

{(5.6),(5,9), (5, 10), (6.7), (6,10)}.

(c) If 23, ..., 77, (Vi) (ij)ea is any solution of (6), then for each (4,7) € B,
=i — 511" = wi

13



(with z} = z; for 4 > m). Combining this with ||z; — z;||*> = y;; yields
2
+

1112

!
Ti—T; T — X

2 2

!
Ti—T;  T;— T
2 2

Yij t Y
2

(11)

Since the solution set of (6) is convex, so that 1(z1 + 1), ..., 3 (Tm + 20,), (3(vij +
Yi;))(i.j)ea also forms a solution, (4,7) € B implies the right-most term in (11) must
be zero. This in turn implies that

Tp — Ty = Ty — x5
Thus, for each (4,7) € B there exists A;; € R¢ such that

! I AL : / ! Iy
z; — ;= AV solutions z7, ..., 2, (yij)(m)EA

of (6) (with z = z; for i > m). (12)

Let (M, B) be any connected component of Gg. By (b), there exists i € M N
{m +1,...,n}, i.e., x; is an anchor. For each j € Ngz(i), we have (i,j) € B so that
(12) implies

LEi—Jf;-:Aijzﬂfi—.’Ej,
for all solutions 1, ..., 7, (¥i;)@j)ea of (6). Hence z; = z;. Since j € M, we can
repeat the above argument with j in place of 7 and so on. This yields z}; = x; for
all 7 € M. Since the choice of the connected component was arbitrary, this shows
that ) = x; for all j € Mp.

If i <m and i ¢ Mg, then Ng(i) = (. This implies

|zi — 2;1* < yi; Vi € Na(d).

Then, we can perturb z; and obtain another solution i, ..., 2], (i;)()ea of (6)
with o} #x;. =

As a corollary of Proposition 3(c), we have that the solution of (6) is unique if
and only if each connected component of the graph ({1, ...,n}, B) contains an anchor
index (i.e., Mg = {1,...,m}).

Proposition 3 shows that those points x; with ¢+ € Mg have the following three
properties: (i) they satisfy (10), (ii) ||z; — x;||* = ys; for all j € Ng(i), and (iii)
their positions are uniquely determined by the anchors z,, 1, ..., x, and (yij)(i,j)eg.
Might the first two properties (i), (ii) imply property (iii)? This question is related to
graph rigidity and uniqueness of graph realizability. However, the following example
in Figure 5, suggested by Bob Connelly [15], shows that this is not true. The outer
three points are anchors, the edges of B are as shown, and the inner three points
(sensors) form a triangle that can be twisted slightly clockwise or counterclockwise
to be in two different positions, both of which have properties (i) and (ii).

14



@ (b)

Figure 5: An example in R? of non-unique sensor positions satisfying (10) and
perserving distances.

6 Analytic Center Solution of the SOCP Relax-
ation

As is mentioned in Section 2, when we solve (7) using an interior-point method, the
method will generally find not only an interior solution, but an analytic center of
the solution set. We study this in more depth below. We first need the following
lemma to relate the solutions of (6) and (7).

Lemma 2 (y;j)(ij)ea @5 invariant over all solutions of (6).

Proof. Let B be given by (9). Suppose we have two solutions of (6): 1, ..., T,
(yij)(i,j)e_A and $'1, -.-,x,l,nv (yéj)(i,j)eA- Then, for each (7,,]) € B, Yij = ||$Z _ xj||2 and
yi; = ot — 25||” (with 2} = z; for 4 > m), so that

T — 1T, T
2 + 2

Yij Y
2

Since the solution set is convex so that (z1+ 1), ..., 5(Tm +2,), (35U + i) G.)ea
also forms a solution of (6), the right-most term must be zero, i.e., z; —z; = x; — /.
Thus y;; = ;-

For each (i, j) € A\ B, we have y;; > ||z; —z;||? for all interior solutions z1, ..., Tp,,
(4ij)ijyea of (6), implying yi; = df;. (If y; # di;, then y;; can be perturbed to
decrease |y;; — d3;| and hence decrease the objective function value.) Taking closure
yields that y;; = d?j for all solutions z1, ..., Zm, (¥ij)(i,j)ca of (6) so that y;; is unique.
]

By using Lemma 2, we see that (u;;)( e is invariant over all solutions of (7).
Then, under Assumption 1, the limiting point of the central path for (7) would be
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an interior solution of (7) that maximizes (see [25, page 223], [4, page 384))

1 1
> tog (s + 9"~ s — pw)l?) = X tog (v — llzs — 5l

(4,5)€A\B (,5)eA\B

Accordingly, we define an analytic center solution of (6) to be an interior solution

of (6) that maximizes
> log (v — llai — z]?) (13)
(4,5)eA\B

over all interior solutions. Thus, an analytic center solution in some sense maximizes
the slacks y;; — ||@; — z;||* for all inactive constraints (i,j) € A\B. Its existence
is guaranteed by Assumption 1. It is unique because of Proposition 3(c) and that,
by Lemma 2 and the strict concavity of log(vyi; — || - ||?), 2; — z; is unique for all
(i,7) € A\ B. This is the interior solution that a log-barrier interior-point method
will likely find. If a barrier method based on a different barrier function is used to
solve (7), then the interior solution found need not be the analytic center.

The next proposition verifies one of our observations from the example in Section
2. This is further illustrated in Figure 7.

Proposition 4 If z1,...,Tm, (Yij),5)ea 15 the analytic center solution of (6), then

z; € conv {z;} i=1,..,m.

JENA(%)
Proof. We argue by contradiction. Suppose there exists i € {1,...,m} such that
zi & conv {z;} n i)

Let p; denote the nearest-point projection of x; onto this convex hull. Then, as in
the proof of Proposition 3(a), we have

lpi — zl1* < Nl — 2;0° Vi € Na().

Thus, replacing z; by p; would yield another interior solution of (6). Moreover, if
(4,7) € A\ B, then y;; — ||pi — z;]|* > vij — ||zi — z;]|*> > 0, so that

log (yij —||ps — xj||2) > log (yij — ||lzi — xj”?) .

Summing these inequalities yields

> log (v —llpi—=l?) > X log (v — [l — =) -

JEN 4\p(4) JEN 4\p(7)
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This contradicts our assumption that x1,...,Zm, (i) )ea is the analytic center
solution of (6). m

It is an open question whether a result analogous to Lemma 2 holds for the SDP

. . . 2". . . . .?
relaxation (3), namely, is (<bwbw,Z >F)(i,j A invariant over all solutions of (3)7
There does not appear to be a result analogous to Proposition 4 for SDP relaxation.
In particular, (3) need not have any solution satisfying the convex hull condition of

Proposition 4; see an example in Figure 1(a) of [31].

7 Error Analysis for the SOCP Relaxation

In practice, the distance d;; has measurement error, i.e.,
43 =7+ 6 V(i,5) € A,

where 6;; € ® and 7;; = ||z — x;‘“enz

true true
; for some z; ...,z

m Tepresenting the true

positions of the sensors, and with x;we = x; for + > m. What is the corresponding
error in the solution of (6)7 We study this question in this section.
In what follows, we denote for simplicity z = (21, ..., Tr,) € R% x - -+ x R¢ and

def _ .
i () = |lwi — 21> — vy V(@ 4) € A. (14)

Also,
2% (o1 gy(z) <0V (i,)) € A} (15)
Then = contains the true solution z"™ = (z;™, ..., z,"*). By the convexity of g;;, =

is a convex set and there exists B C A such that

gij(z) =0Vz € 2 <<= (i,5) € B.

Since 2", (¥ij)(i,j)c.4 is feasible for (6), any solution & = (21, ..., Zm), (¥ij)(i)ea Of
(6) satisfies
Yooy —dil < Y lm—dil= Y 16yl (16)
(1,4)eA (1,4)eA (i,4)eA
Since ||$Z - .’Ej||2 < Yij SO that q,j(a:) < Yij — @ij, this yields

o oGi@) e <Y (Wi — Tig)+

(3,§)e A (5,4)eA

< > v — Bl

(i,j)eA
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<5 (v — b+ 1 = )

IN
DN
™
>

(17)

where a; % max{0, o}.

Using Proposition 3, we show below that if the distance error is small so the
right-hand side of (17) is small, then (z;);ecn, in a solution of (6) has small error (in
fact, proportional to the square root of distance error), where B is given by (9); see
Propositions 5 and 6. Moreover, we can find B from an interior solution of (6); also
see Section 9. Although there exist sensivity analysis results for convex quadratic
inequalities of the form (15), the results either make the restrictive assumption that
E has nonempty interior [23] or prove a much weaker result that the solution error
is proportional to the 24*1th root of distance error [33]; see discussions following
Corollary 1. Existing sensitivity analysis results for general nonlinear programs
make technical assumptions that either do not hold or are difficult to verify for (15);
see, e.g., [12, Sections 5.2, 5.3].

For any B C A,

= def

Eg={z€Z : ¢i(x)=0V(i,j) € B}.
For any nonempty closed subset Z' of =, let

diSt((.’I)l, ey .’Em), EI) déf min “max ||xz — .Tz”
(Z15e.yZm)EE! 1=1,...;m

Proposition 5 (a) For each € > 0, there exists a scalar 6 > 0 such that
Eg#£ D and dist (z,Z5) <€

whenever B satisfies (9), £ = (1, .., Tm), (Yij) G )ea 15 a solution of (6), and
Yigyealdij] < 6.

(b) There exists an € > 0 such that, for each 0 < € < €, there exists a scalar § > 0
such that

true

BCB and |z: — z;

|S€ V’iEMB,

whenever B satisfies (9), T1, .-, Tm, (Yij)@g)ea 18 a solution of (6), and Y jyea |0ij] <
J.

Proof. (a) Fix any ¢ > 0. If the desired 0 does not exist, there would exist
(0;)Gyeas t = 1,2,..., with 3 yea|df;| = 0, and a B C A satisfying (9) with
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di; = ;5 + 0; for (i,7) € Ain (6), t = 1,2,... In addition, for each t = 1,2,..., there
would exist a solution 2" = (%, ..., 2},), ¥* = (¥§;)@j)ea, of (6) with di; = 7;; + 5,
and yet the set Zp is either empty or dist(z', Z5) > € for all ¢.

We see from (16) that {y;;} — i for all (4, j) € A. Also, we can assume without
loss of generality that {z'} is bounded.” By passing to a subsequence if necessary,
we assume that {z'} converges to some T = (71, ..., Zn,). By (17),

Y ogiah)e <2 > |6, t=1,2,..

(4,5)€A (4,5)€A
This yields in the limit 3(; ;yc 4 ¢i5()+ < 0, implying € =Z. Since B satisfies (9)
with d?; = gi; + of; for (i, j) € Ain (6), we also have
|z} — b2 =y V(i,j) € B, t=1,2,.... (with 2} =1, Vi>m).

3

This yields in the limit
||.’f’Z — .’i’j”? = gij V(Z,j) eB (Wlth X, = x; Vi > m),

implying Z € 5. Moreover max;—,_n ||z} — Z;|| — 0. This contradicts =5 = @) or
dist (2*,Z5) > € for all .
(b) Since each g¢;; is convex, = has an interior solution, i.e., 2’ = (2], ...,z},) € E
satisfying
l2; — 25| < gy V(i,j) € A\ B, (18)

j
where we let z; = z; for i > m.

By (a), for any € > 0, there exists § > 0 such that, for any interior solution
L1y ey T, (yij)(i,j)EA of (6) with Z(z’,j)EA |52]| < 5, there exists £ = (.’fh ,.Tm) € EB
with max;_1__m ||z; — Zi|| < €, where B satisfies (9). Let

di = fi—.’Ei, 1= 1,...,’]’L,
! ! = -
d = z;,—%;, 1=1,..n,
with Z; = z; for i > m. Since Z and 2’ are both in =, we have ||Z; — Z;||* = ||z} — 2}]|?

for all (4,7) € B, which yields (also see the proof of Lemma 2)

di—d; =0 V(i,j) €B. (19)

"Consider any connected component C of the graph G = ({1,...,n}, A). If C contains an anchor
index, then {z!} is bounded for all i < m in C. If C does not contain an anchor index, then it can
be seen that {||lz} — %||} is bounded for all i and j in C, so we can translate «} for all ¢ in C by
the same displacement (thus preserving the distances between them) so that one of them is at the
origin.
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For each (7,j) € B, we have

| — 2511 = 5i; — s

for some s;; > 0, or, equivalently,
1d; — dj + Ti — ° = |7 — ZI* — si5-
Expanding the quadratics yields
2(; — 7;)"(d; — d}) = —||dj = dj||* — sy
or, equivalently
2a; — )" (dj —dj) = —|dj — dj|I” — si — 2(di — d;)" (d} — d})
< =ld; = dilI* = si; + 2lldi — djllld; — dj]l.
Since s;; > 0, this implies that
(z; — x;)7(d - d;) <0 whenever ||d; —d;|| < ||d; — dj]|/2. (20)
Let us choose

e<— min _{/7i; — |l — 2|}, (21)

(i) A\B

where the right-hand side is positive by (18). For each (i,7) € B with d; — d;; # 0,
we have from (19) that (i, ) € B. Then, by using ||d;|| < € and (21), we have

ot d—d
Jds - ] < 2e < VI Wi m il M- ),

where the last inequality follows from
1 — dill = [l — 5 — (@ — 2)|| = M2 — 2l — [l — 25l = /% — |5 — 5.

Then, by (20), (z; — z;)" (dj — dj) < 0. Thus, for each (i,j) € B and for all a > 0
sufficiently small, we have

. AN ) I\ 12 <||.Ti—.’L‘j||2:yZ-j lfd;—d;;é(),
Also, for each (i,j) € A\ B, since ||z; — z;||* < yi;, we have
(i + ad}) — (z; + ad))||* < yi;
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for all & > 0 sufficiently small. Thus, if d; — d’; # 0 for some (i, j) € B, this would
contradict the definition of B. Hence d; — d; = 0 for all (i,5) € B. This in turn
implies
o = 2501 = 117 — 751" = 5 V(. 4) € B.
Hence (18) yields that B C B.
Since Z € Z, by applying Proposition 3(c) we have

_ true .
T, = x, Vi € Mg.

1

Since B C B, Mgz C My. Thus

true

|z —x; || = llzi — @l < e Vie Mpg.

From the proof of Proposition 5(b) we see that we can take € to be the right-hand
side of (21), maximized over all (z,...,z!,) € E. Proposition 5(b) says that if the
distance error is not too large, then the error in the position of those sensors indexed
by Mjpg is also not too large. However, it does not say how fast the position error
grows with the distance error. We show below that the position error grows at most
like the square root of the distance error.

We say that B C B is active with respect to M C {1, ...,m} if

true

gij(x) <0 V(i,j5)€B, zi=z;, YVigM = g¢(z)=0 VY(i,j)e€B.
We say that B is minimally active with respect to M if there is no proper subset of
B that is active with respect to M.

Proposition 6 There exist a constant K > 0 such that

true

max ||z; — x; 12
iEMB ¢ ?

| < K max g;j(z)/" Vo= (21,...,Tm).
(i,4)eB

Proof. If B = (), then our proof is complete. Otherwise, by its definition, B is active
with respect to {1,...,m}. Then, there exists nonempty B; C B that is minimally
active with respect to {1,...,m}. By using Gordan’s theorem as in the proof of [33,
Theorem 3.1], there exist A\;; > 0, (4, j) € B, satisfying

Z tij(xtrue))\ij = 0.8 (22)
(4,4)€B1

8Why? Since B; is active with respect to {1,...,m} and g;; (:cme) = 0 for all (i,j) € By, the
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Fix any z = (2, ..., 25,). For each (4, j) € By, we have from g;; (") = 0 that

gij(7) = Vg (@) (@ — ™) + |z — Zj— (wir"e - x;’me)”Q-

Multiplying both sides by A;; and summing over all (¢, j) € B; and using (22) yields

true true
> w@hi= 3 llwi—ai— (@~ )Py

(i,j)EB1 (i,j)€B1
Thus
lzi — 25 — (2 —z; )|PAy < (i’j)ZEBI Aij - Jhax aij(z)+  V(i,7) € Bi.
This in turn implies
i — 25 — (2, — x;'me)H <Ci (if)eBs qi]-(x)ff v(i, j) € By, (23)

where 12
O, df ( 2(ij)eBy Nij )
1= |/ :
ming jes, Aij

We can then apply Proposition 3(b) with d;;, A, B, {1,...,m} replaced by, respec-
tively, /7, Bi, Bi, My & {i € {1,...,m} : Ng, (i) # 0} = Mg,. This yields that
each connected component of the graph G; def (MiU{m+1,..,n},B;) contains
an anchor index j € {m + 1,...,n}. (In fact, this graph is connected since B is

minimally active with respect to Mj.) Then, for each i € Ng, (j), we have from (23)

and z; = x;-rue that

true

2 — V2

I < Cr max gi(x)"

Continuing this argument with each neighbor of 7 in Gy, and so on, we obtain that

true

Iz =27l < CuDy max gs(@) Vi € M, (24)

linear system Vg;; (™)Td <0, (i,5) € By, is infeasible. By Gordan’s theorem [13, page 23], there
exist A;; > 0 for (i,5) € By, not all zero, satisfying (22). Let By < {(i,j) € By : A\;; > 0}. By
Gordan’s theorem again, the linear system Vg;; (z"")Td < 0, (i,7) € By, is infeasible. If B; # By,
then the quadratic system g¢;;(z) <0, (¢,j) € By, would be feasible. (Otherwise there would exist
a nonempty By C B such that ¢ij(x) = 0, (i,§) € Bi, whenever ¢;;(z) <0, (i,]) € Bi. Choose
B, to be maximal. Then B; would be active with respect to {1,...,m}, contradicting B; being
minimally active with respect to {1, ...,m}.) Then the linear system Vg;; (z""VTd < 0, (i,5) € By,
would be feasible, a contradiction. Thus Bl = B;.
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where D, def max 1;11n (minimum # edges in a path between i and j in Gy).
ieMi g

If B = By, then our proof is complete. Otherwise, _3\15’1 is active with respect to
{1,...,m} \ My. Then, there exists nonempty B, C B\ B; that is minimally active
with respect to {1,...,m} \ M. Repeating the above argument, we obtain that

o= 2y = @™ = ")) < Co max ay(@)V? VGG € B (25)
with C, defined analogously as C; and with z; = 2, for i € M;. We can then
apply Proposition 3(b) with d,j, A, B, {1, ..., m} replaced by, respectively, \/vi;, Bo,
By, My & {i € {1,....,m}\ M1 : Ng,(i) # 0}. This yields that each connected
component of the graph G, & (M1 UMyU{m +1,...,n},Bs) contains a node
j e MiuU{m+1,..,n}. Then, for each i € Ng,(j), we have from (25) and (24) that

true

1/2

|z =z || < CiDy max g (@)Y + Cy Joax aij ()

Continuing this argument with each neighbor of 7 in G5, and so on, we obtain that

true

| <CiD; (m)ax ¢ij(z){ V2 4 CsDs (irg_l)%é qz-j(x)i/2 Vi € Moy,

||$z'

with D, defined analogously as D;.
Continuing the above argument inductively completes the proof. =

O anchors
& true soln (exact distance)

@ SOCP andly center soln (inexact distance)

Figure 6: In this example, M, = {1,2,3,4}, B = {(1,2),(1,4),(1,9),(2,3),(2,8),
(3,7),(3,4),(4,10)}, My = {5}, By = {(5,2),(5,9),(5,10)}, and B = B; U Bs.
Removing a point indexed by M, affects points indexed by M5 but not conversely.

The proof of Proposition 6 shows that the points indexed by M;, which are
the sensors ‘nearest’ to the anchors, are the least sensitive to distance measurement
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errors. An important (and intuitively reasonable) result shown by Proposition 6 is
that the errors affect the sensor positions additively as they percolate to My, and
so on; see Figure 6 for an illustrative example.

Corollary 1 There exist a constant L > 0 such that

dist(z,2) < L max g;(z); + LK max g;(2)Y? Vo= (21, ..., 2m),
@5) (i,j)eA\Bq‘?( )+ (i’j)EBQ]( ) (21 )

where K is defined as in Proposition 6.

Proof. Consider the system of convex quadratic inequalities and linear equations
inz=(x1,..,Tm):

true

gi;(z) <0 V(i,5) € A\ B, xi=x, Vi€ Mz
By applying Proposition 3(c) with d;; replaced by /7;;, we see that = equals the so-
lution set of this system. Moreover, each interior solution of = satisfies the quadratic
inequalities strictly. Thus, applying a result of Luo and Luo [23], there exists L > 0
such that

dist(z,2) < L max q;(z). + Lmax ||z —z; || Yz = (21, ., Trm)-
@3) <L max a0+ Lmpxlle; =™ Ve = (@1,02)
Using Proposition 6 to bound the second term on the right-hand side completes the
proof. =

The error bound in Corollary 1 sharpens the Holderian error bound of Wang
and Pang [33] for general convex quadratic inequalities. In particular, a direct
application of the result in [33] yields the existence of 7 > 0 and integer ¢ < |A|+ 1
such that

. - 1/2¢
dist(z, Z) < /f(?})agi (qij(x)+ + gij(x)Y ) Vo = (21, e, Trm)-
An example in [33] shows that, for general convex quadratic functions g¢;;, £ = | A|
is possible. Corollary 1 in effect shows that we can take / = 1 in the special case
where each ¢;; has the form (14). It is an open question whether the active set index
B can be identified using the Lipschitzian error bound. The difficulty lies in that y;
is unknown, so that ¢;;(x) cannot be directly evaluated.

Lastly, we show that the z-component of the analytic center solution of (6)

converges to the analytic center solution of = as the distance error goes to zero.
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Proposition 7 Under Assumption 1, let x° = (x5, ..., x¢

s Tpn)s (yicj)(i,j)eA be the analytic
center solution of (6). As E(z’,j)eA|5ij| — 0, x¢ converges to the analytic center

z¢ = (7§, ...,Z¢,) of E.

Proof. Fori=1,...,m, let

~.d_ef{a:;~’ if i € Mg;
T \ae ifi ¢ Mg

By z¢ € Z and Proposition 6, we have z¢ = z; " for all i € Mg. Let

def _
—= — max 07 LEC > 0 26
p (i,j)eA\qu( ) (26)
Suppose >; iyea |0ij| < & for some 6 > 0. By (16), (17), and Proposition 6, we
have

max [yi; — 9l <0, maxlaf — 23] < KV20. (27)

For each (7,j) € A, consider the following three cases: (i) If i € Mz and j € Mz,

then
& — 2511 = ||z — 5]1” < v

(ii) If i ¢ Mg and j ¢ Mg, then (i,) € B and hence (26), (27) yield
12 — 2501 = 1175 — Z511° < G — p < 955 + 0 — p.

(iii) If i € Mz and j € My, then (i, ) & B and hence (26), (27) yield

12 — 2|1 = [laf - z5]°
< (=5 — 5 + 175 - Z51)°
< (KV26 + |75 - ])?
< 2K6+2KV26, /5, + i — p
< 2K%6+2KV25\ [y + 5+ 8 — p.

Notice that (i,7) = (J, 1), so the case of i ¢ Mz and j € Mj is covered by case (iii).
Since z¢ = (5, ..., 77,), (¥5;)(,j)ea is a solution of (6) and p > 0, the above analysis
shows that, for § sufficiently small, 1, ..., Tm, (¥§;)@j)ea is an interior solution of
(6). Since z¢ = (%, ...,25,), (¥5)(ij)ea is the analytic center solution of (6), this
implies

Z log (yfj — [lzf — :1:§||2) 2 Z log (?/icj — ||z — jj||2) 5

(4,9)€A\B (i,5)eA\B
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where B satisfies (9) (with x{ = ; = x; for # > m). By Proposition 5(b), we have
B C B for ¢ sufficiently small. For (i,j) € B, since i € Mg and j € Mg, we have
|Z; — Z;||” = ||lz§ — «5/|*. Thus we further have

> log (v —llzf—asl?) > Y log (vg — 17— 3l) -

(4,j)EA\B (i,5)€A\B

Taking § — 0, we have from (27) that y§; — 7;; for all (1, j) € A\B and &; = z{ —
for all + € Mp. Also, z; = z{ for all 1 ¢ Mg. Thus, we obtain in the limit that any
cluster point T = (Z1, ..., T,) of 2° (which exists since z° is uniformly bounded by
Assumption 1) belongs to = (using (17) and Corollary 1) and satisfies

> log (5 — Il —3l?) > Y log (7 — N7 — z?)
(1,)eA\B (i,5)eA\B

(with Z; = z§ = x; for i > m). This shows that Z is an analytic center of =, so that

in fact z = z°. m

It is an open question whether the results of this section extend to the SDP
relaxation (3).

8 Methods for Solving the SOCP Relaxation

We saw in previous sections that the SOCP relaxation (6), though weaker than the
SDP relaxation (3), has the advantage of a smaller problem size and its interior
solutions are useful for identifying sensors that are accurately positioned. What
method would best solve (6) and, in particular, find an interior solution? Primal-
dual interior-point method can find an analytic center solution of SOCP with good
accuracy. However, as we will see in Section 9, applying an interior-point method
directly to (7) can be slow, due to the large size of the SOCP. We tried adapting the
distributed SDP method of Biswas and Ye [11] to the SOCP relaxation. However,
possibly due to the weaker SOCP relaxation, the resulting distributed SOCP method
was not satisfactory. Further studies are needed. Below we describe a third method,
based on smoothing and (block) coordinate gradient descent, which can find an
interior solution faster, as we will see in Section 9. This method has the nice feature
that its computations easily distribute over many processors in parallel.
First, we observe that, for any d € R,

min |y — d*| = [z — d?], Vz € R,
y>z
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where [t]; = max{0,t}. Thus, we can rewrite the SOCP relaxation (6) as the
unconstrained optimization problem:

Vi = I0in > [llzi — a51” — dij] (28)

The objective function is convex, but nonsmooth due to the term max{0,-}. It is
well known in the context of complementarity problems that a smoothing approach
can be effective in handling this type of nonsmoothness; see [14, 18] and references
therein. In particular, for any function A : 8 — R that is smooth, convex, and
satisfying lim; , o, h(t) = lim; , A(t) — t = 0, we have that

lim ph(t/p) = [t

Thus, for ;1 > 0 and small, we have ph(t/p) = [t|+. In our numerical tests, we use
a popular choice of A due to Chen, Harker, Kanzow and Smale:

h(t) = (2 + 42 +1)/2.

Thus, the nonsmooth problem (28) is approximated by the smooth problem, param-
eterized by p > 0:

z; — x||* — d;
miy 3 i (1), (29)

T1yeeesTm (i)eA 7

For each p > 0, the objective function is smooth, convex, and as y — 0, any cluster
point of the solution of (29) is a solution of (28).

Since we wish to find an interior solution, following the interior-point approach,
we add a log-barrier term and consider

min|y — &’ — plog(y — 2) = [z + p — &’} —plog (u+[d—z—ply) VzeR.

This is a convex function of z. Upon smoothing [-]+ by ph(-/u), we obtain the
corresponding smooth barrier problem:

min _ f,(z) dof > uh (tﬂ> — plog (1 +h <_tij>> :
P ) Gnes  \H W) =iz +u-ds,
(30)
Here, for simplicity, we used the same parameter p for the log-barrier and the
smoothing function. Notice that the objective function f, is partially separable,
being a sum of functions each of which depends only on the difference of neighboring
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points. This suggests that a block-coordinate descent approach may be efficient for
solving (30), whereby at each iteration the objective function f, is minimized with
respect to x;, for some i € {1,...,m}, while the other points are held fixed at their
current value. Since exact minimization is expensive, the minimization is done only
inexactly. In particular, we minimize a quadratic approximation of f, with respect
to x; to generate the descent direction d; and then minimize f, inexactly along d;
using an Armijo stepsize rule [6]. We decrease y whenever ||V f,(z)|| is small relative
to pu. The method, which we refer to as the smoothing coordinate gradient descent
(SCGD) method, is described more precisely below.

0. Initialize 4 > 0 and & = (&1, ..., T,,). Choose ™™ > 0 and a continous function
¥ 1 (0,00) = (0,00) satisfying lim, o 1(1) = 0. Choose stepsize parameters
0<ﬁ<1,0<0<%. Go to Step 1.

1. If there exists an ¢ € {1, ..., m} satisfying ||V, fu.(x)|| > ¥ (u), then set
di = _[Hi]_lvmifu(m)a

update

new

Z;

=z; + ad;,

and repeat Step 1, where H; € R¥? is a user-chosen symmetric positive defi-
nite matrix, and « is the largest element of {1, 3, (3)?, ...} satisfying

fulzr, oz + ady, .. xn) < fu(z) — aadiTinfu(x).
Otherwise, go to Step 2.

2. Ifu < ,uﬁ"al, then stop. Otherwise decrease u, and return to Step 1.

The SCGD method is highly parallelizable since updating z; only requires knowl-
edge of neighboring points {z;},cn,(:), S0 non-neighbors can update their positions
simultaneously. Thus the computation can be distributed over the sensors, with
each sensor communicating with its neighbors only.

In our current implementation of the SCGD method, we choose

Hi = V2 fu (37),

ZiT;

which can be verified to be positive definite. Both V. f,(x) and H; can be efficiently
evaluated using network data structure for G.
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9 Numerical Simulation Results

In this section, we present simulation results based on the SOCP relaxations (6)
and (7). Following Biswas and Ye [10, 11], we generate the true positions of the
points actfue, ...,ac:;ue independently according to a uniform distribution on the unit

square [—.5,.5)%, and set m = 0.9n (i.e., 10% of the points are anchors), A = {(1, 7) :
|z, — ;|| < radiorange}, and

true true

dij = |lz;  —x; || - |1 + € - noisyfactor| V(i,j) € A,
where ¢;; is a random variable representing measurement noise, and radiorange €
(0,1), noisy factor € [0,1]. Similar to [10, 11], each ¢; is normally distributed, and
we use the parameter values of noisy factor = 0,.001, .01 and radiorange = .06 for
n = 1000, 2000, radiorange = .035 for n = 4000.°

P | n |noisyfactor | |A| SOCP dim
1] 1000 0 5318 | 21472x28590
2 | 1000 .001 5068 | 20472x27340
3 | 1000 .01 5276 | 21304x28380
4 | 2000 0 21010 | 84440109050
5 | 2000 .001 20859 | 83836x108295
6 | 2000 .01 20859 | 83836x108295
7 | 4000 0 29322 | 118088x154610
8 | 4000 .001 29322 | 118088 x 154610
9 | 4000 .01 29322 | 118088154610

Table 1: Input parameters for the test problems and the corresponding SOCP (7)
dimensions. (radiorange = .06 for n = 1000, 2000, radiorange = .035 for n. = 4000.)

We wrote two codes to compute an interior solution of the SOCP relaxation (6).
The first code is written in Matlab and calls SeDuMi (Version 1.05) by Jos Sturm
[32], a C implementation of a predictor-corrector primal-dual interior-point method
for solving SDP/SOCP, to find an interior solution of (7).'® The second code is
written in Fortran-77 and implements the SCGD method described in Section 8,

90Other noise models can also be used. We use the model from [10, 11] to facilitate comparison
with previous work.

10We also tried a new version 1.1 of SeDuMi, maintained by the Advanced Optimization Labo-
ratory at McMaster University, but it gave wrong answers on our SOCP problems.
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true

whereby we initialize 4 = 107°, and z; = z; + A;, with the components of A;
randomly generated from the square [—.2,.2]2. We choose

final

po =10"°  (u) = max{10p, 107}, B=0.5, o=0.1.

We choose 7 in Step 1 in a cyclic order, and we decrease p by a factor of 10 in Step 2.
These choices were made with little experimentation. Conceivably the performance
can be improved with more judicious choices (e.g., replacing the cyclic order by a
queue, as in the Bellman-Ford method for shortest path [5, Section 2.4]).

For the interior solution 1, ..., Zm, (¥ij)(i,j)e.4 found, the position of the ith sensor
is judged to be uniquely positioned (using Propositions 5 and 6) if there exists a
J € N4(i) satistying

i — 251> — yij| < 1077dyy

(with z; = 2" for i > m). In what follows, m,, is the number of sensors that
are judged to be uniquely positioned by this test. To check the accuracy of these
sensors, we compute the maximum error between their computed positions and their
true positions: t

rue ||

erryy = max ||z; — z;
¢ is uniquely positioned

For comparison, we also compute the maximum error between computed positions
and true positions of all sensors:

err = max ||z; — x;weH
i=1,....m

Table 2 reports the iteration count, cpu time, the final SOCP objective value,
Myp, €7Typ, €rr for the two codes. We see from Table 2 that SCGD is consistently
faster than SeDuMi, though it uses more iterations. SCGD is more sensitive to
noisy factor than SeDuMi. We do not have a good explanation for this yet. On the
other hand, the cpu times for SCGD are still high on problems with higher distance
errors. These times can conceivably be further reduced by fine tuning the algorithm
parameters and/or distributing the computations over multiple processors. This is
a topic for future research. One idea would be to adapt the approach in [22] by
terminating the SOCP method early and then applying a local descent method to
the original problem (1) to refine the solution. Or we can find new methods to solve
the SOCP (6), as is discussed in Section 12.

We also see from Table 2 that erry, is much smaller than err and decreases with
noisy factor, which corroborates Propositions 5 and 6. For the larger problems 4-9,
myp is large (80-90% of m), showing that a large number of sensors are accurately
positioned (with error erry,) by the interior solutions found. Of course, my, depends
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SeDuMi SCGD

iter/cpu/obj/my,/erry,/err iter/cpu/obj/my,/erry,/err
99/3.6/7.80-6/402/7.2e-4/ .11 | 1803189/.2/2.16-06/357/3.8¢-5/.11
92/3.2/9.16-4/473/1.8-3/.17 3523150/.4/9.1e-4/442/1.56-3/ 17

22/3.9/1.0e-2/554/1.5e-2/.17 | 14381707/1.6/1.0e-2/518/1.1e-2/.17
25/176.7/6.0e-6/1534/4.3¢-4/.058 | 3482697/0.8/1.5¢-5/1541/3.3e-4/.077
25/208.6/1.1e-2/1464/3.6e-3/.083 | 7894112/1.8/1.1e-2/1466/3.6¢-3/.090
17/161.8/1.30/1710/5.1e-2/.093 | 12113931/2.9/1.30/1707/5.1e-2/.094
27/202.5/4.5¢-5/2851/4.0e-4/.099 | 9345127/1.6/2.1e-5/2844/3.2¢-4/.099
25/193.8/4.7¢-3/2938,/3.2¢-3/.099 | 29304035,/5.1/4.7¢-3/2894/3.0e-3/.099
25/196.3/4.9¢-2/3073/1.0e-2/.099 | 34650852/6.1/4.9¢-2/3020/9.1e-3/.099

©| o] ~1| o] | | wo| ro| —| T

Table 2: Times to solve SOCP relaxation and accuracy of sensors judged to be
uniquely positioned. cpu times are in minutes on an HP DL360 workstation, running
Matlab (Version 7.0) and Gnu F-77 compiler (Version 3.2.57) under Red Hat Linux
3.5.

on radiorange also. If radiorange is small, so the graph G has low connectivity,
then my, would be small.

The true sensor positions and the computed positions for problems 1 and 3 are
shown in Figure 7. Notice the close match of sensors whose true positions lie in the
convex hull of “nearby” anchors. The positions are least accurate on the boundary,
as we expect. The computed position of each sensor lies in the convex hull of its
neighbors, corroborating Proposition 4.

At the suggestion of a referee, we also compare the SOCP solutions with solutions
of the SDP (3) when n,m are small, noisyfactor is large, and ¢;;s have different

y X7

X Iy ]
of the SDP (4), which is likely to be the analytic center solution, and extract the
sensor positions X = [z --- z,,,]. To compare with existing work, we follow a recent
study by Biswas et al. [9] of SDP solution under noisy distance measurements and
choose n = 64, m = 60, radiorange = 0.3, with 4 anchors at (+.45,+.45). We also
choose nois fy factor € {0.1,0.2} and choose €;;s to be either (i) normally distributed
or (i) uniformly distributed on [—+/3, /3] or (iii) distributed as an additive-Gaussian
where, with probability %, is normally distributed with mean 1 (otherwise with mean
—1). Thus €;; has mean 0 and variance 1. Table 3 reports the final objective value
for SDP and SOCP, as well as

distributions. In particular, we apply SeDuMi to compute a solution Z = [

m
erToms = Z ||z; — :L';me I?
i=1
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Figure 7: The left figure shows the anchors (“o”) and the analytic center solution
found by SCGD for problem 1 (n = 1000). Each sensor position found (“-”) is joined
to its true position (“¢”) by a line. The right figure shows the same information for
problem 3.

and my,y, erry, for SOCP.

We see from Table 3 that objective value is higher and err,,s is lower for SDP
solution than for SOCP solution, corroborating Proposition 1. The err.,s is higher
for both SDP and SOCP solutions under additive Gaussian noise. We do not yet
have a good explanation for this. Figures 8-10 display the SDP solutions and SOCP
solutions for the case of noisyfactor = .2. These results suggest that, for small
randomly generated problems where the points are irregularly spaced, SDP (3) is
much preferrable over SOCP (6). This situation could change with alternative prob-
lem formulations (see Section 11), so further studies would be needed. In general,
SOCP relaxation and mixed SDP-SOCP relaxation (see next section) seem most
useful for larger problems where SDP relaxation is expensive to solve. Also, the
SCGD method for solving (6) can be implemented in a highly distributed manner,
with each sensor communicating with its neighbors only; see discussions at the end
of Section 8. This may help to reduce communication and synchronization delays
among sensors in practice.
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SOCP SDP

Noise Pdf | noisyfactor | obj/errims/Mup/errup | 0bj/errmms
Normal 1 28/.24/52/.10 | 1.78/.06

2 43/48/48/17 | 2.82/.23

Uniform 1 109/.41/30/.07 88/13
2 24/29/41/11 | 2.26/.16

Additive- 1 34/.63/42/17 |  2.30/.41
Gaussian 2 .82/.71/52/.22 3.86/.50

Table 3: Comparing analytic center solutions of SDP and SOCP for smaller problems
and more noisy distance measurements.

10 A Mixed SDP-SOCP Relaxation

Instead of an SDP or an SOCP relaxation, we can more generally consider a mixed
SDP-SOCP relaxation of (1). Let N be any subset of {1,...,m}. By renumbering
the points if necessary, we assume that

N={m+1,..,m},
with 0 < m < m. Let
A¥ (G, ))eA: ieNorjeNY)
Then the mixed SDP-SOCP relaxation associated with N is

. T 9 o
1 iis 7 > AKbiJ'bij’ Z>F —di|+ ) 1yis — di]
(4,5)eA\A (4.4)€A
s.t. [Zij]i,jgn_d = 1y, Z = 0,
[Zij]izn—d,jgm = [xl $m],

yij > ||lvi — 24> V(. 5) € 4,

where 61 j = 0 0 A

to the SDP relaxation (3) if A = () and reduces to the SOCP relaxation (6) if A = A.

Such a mixed SDP-SOCP relaxation mediates between approximation accuracy
and solution efficiency. In particular, Propositions 3 and 4 suggest putting into A
those pairs (i, ) € A of sensors that are estimated to lie in the convex hull of their
neighbors. Can the results in Sections 4-7 be extended to the mixed SDP-SOCP
relaxation? Can we design efficient methods to find interior solutions? These are
topics for future research.

o [Im 00 ] (e; — ;). Notice that Z € §%™. This relaxation reduces
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Figure 8: The left figure shows the anchors (“o”) and the analytic center solution of
SDP found by SeDuMi for normally distributed noise and noisy factor = .2 (row 2
of Table 3). Each sensor position found (“”) is joined to its true position (“x”) by
a line. The right figure shows the same information for the analytic center solution
of SOCP found by SCGD.

11 Variants of the Basic Problem

If ‘sum’ is replaced by ‘max’, then (1) becomes

- dzgj|a (31)

. L ) 2
R L
and the SDP relaxation (3) and SOCP relaxation (6) change accordingly. In general,
if the objective function is a convex piecewise linear/quadratic function of ||z; —z;||?,
(1,7) € A, then both an SDP relaxation and an SOCP relaxation can be analogously
formulated. If the distances are not squared, then (1) becomes

2 s — =l

(i,)eA

min
ZL1y.eesTm

If the distances d;; are exact (i.e., v, , = 0), then (32) is equivalent to (1). In general,
(32) puts a smaller penalty on large deviation from d;; and has different solutions
than (1). We leave the choice of the objective function to the modeler.

For (32), an SOCP relaxation, which seems more natural than an SDP relaxation,
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Figure 9: This figure is analogous to Figure 8, but for uniformly distributed noise
and noisy factor = .2 (row 4 of Table 3).

1s
zlmzl,rjy] Z Yij — dij|
(i,5)eA
Y (i,5) € A.

s-b. i > [z — |
By noting that y;; > d;; in any solution of (33), we can write this in the standard
conic form:

(33)

min Z Uiy
(ij)eA
s.t. Ty — X5 — Wiy = 0 V(Z,]) € ./4, (34)

V(i,j) € A,

d+1

Yij — Uy = dz’j
wij > 0, (yi5, wij) € Qcone V(i,j) € A,
where Qconedt! & {(y,w) € R x R :y > ||w]||} [32]. This SOCP has a smaller size
than (7). In general, if the objective function is a convex piecewise linear/quadratic
function of ||z; — z;||, (¢,7) € A, then an SOCP relaxation can be analogously
formulated. Other variants of (1) involve replacing the Euclidean (¢3) distance by,
say, rectilinear (¢1) distance or /., distance.

When v,,, = 0, (33) is equivalent to (6) and, moreover, they have the same
analytic center solution.
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Figure 10: This figure is analogous to Figure 8, but for additive Gaussian noise and
noisy factor = .2 (row 6 of Table 3).

12 Future Directions

There are many directions for future research. For example, can our results for (1) be
extended to other variants such as (31) and (32)? How do these variants compare
under different distance noise distributions? What about additional constraints
as discussed in [16] or replacing the 2-norm by a p-norm (1 < p < c0)? Can our
analysis of the SOCP relaxation (6) be extended to the mixed SDP-SOCP relaxation
of Section 10?7 Can finite termination of the SCGD method be proved? Finally, the
SOCP relaxation (28) may be interpreted as the Lagrangian dual of a d-commodity
convex network flow problem. For d = 1, this can be solved very efficiently using an
e-relaxation method [5, 7, 19]. Can this method be extended to d > 2, thus speeding
up the solution time of the SOCP relaxation?

Acknowledgement. The author thanks Yinyu Ye for motivating the topic of this

paper. He also thanks two anonymous referees for their helpful comments and
suggestions.
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