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Abstract

Recently Wang, Zheng, Boyd, and Ye [36] proposed a further relaxation of the semidefinite pro-
gramming (SDP) relaxation of the sensor network localization problem, named edge-based SDP
(ESDP). In simulation, the ESDP is solved much faster by interior-point method than SDP relax-
ation, and the solutions found are comparable or better in approximation accuracy. We study some
key properties of the ESDP relaxation, showing that, when distances are exact, zero individual trace
is not only sufficient, but also necessary for a sensor to be correctly positioned by an interior solution.
We also show via an example that, when distances are inexact, zero individual trace is insufficient for
a sensor to be accurately positioned by an interior solution. We then propose a noise-aware robust
version of ESDP relaxation for which small individual trace is necessary and sufficient for a sensor to
be accurately positioned by a certain analytic center solution, assuming the noise level is sufficiently
small. For this analytic center solution, the position error for each sensor is shown to be in the
order of the square root of its trace. Lastly, we propose a log-barrier penalty coordinate gradient
descent method to find such an analytic center solution. In simulation, this method is much faster
than interior-point method for solving ESDP, and the solutions found are comparable in approxi-
mation accuracy. Moreover, the method can distribute its computation over the sensors via local
communication, making it practical for positioning and tracking in real time.

Key words. Sensor network localization, semidefinite programming relaxation, error bound, log-barrier, coordi-
nate gradient descent.

1 Introduction

A problem that has received considerable attention is that of ad hoc wireless sensor network localization
[2,4,6,8-16,18-21,25-28,30-32,37]. In the basic version of this problem, we have n distinct points
in R? (d > 1). We are given the Cartesian coordinates of the last n — m points (called “anchors”)
ZTm+1,--->Tpn, and an estimate d;; > 0 of the Euclidean distance between “neighboring” points ¢ and j
for all (i,j) € A, where A C ({1,...,m}x{1,...,n}) U({1,...,n}x{1,...,m}).* We wish to estimate
the Cartesian coordinates of the first m points (called “sensors”). Typically, d = 2 and two points are
neighbors if the distance between them is below some threshold (e.g., the radio range). In variants of this
problem, the distances may be non-Euclidean [31] or may have measurement errors, and there may be
additional constraints on the unknown points [12]. This problem is closely related to distance geometry
problems arising in the determination of protein structure [7,22] and to graph rigidity [1,13,32].

The sensor network localization problem is NP-hard in general [29]; also see remark in [22]. This can
be proved for d = 1 by reduction from the set partition problem, and the proof readily extends for d > 1;
also see [2,27] for related studies. Thus, efforts have been directed at solving this problem approximately.
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These include heuristics based on Euclidean geometry, shortest path, and local improvement; see [25,27,
28,30,37] and references therein. A different approach involves solving a convex relaxation, and then
refining the resulting solution through local improvement. This has been effective in simulation and,
under appropriate assumptions, the solution is provably exact/accurate. For example, a second-order
cone programming (SOCP) relaxation can be efficiently solved and yields good approximation when the
anchors are “spread out” [12,34]. Here we are interested in semidefinite programming (SDP) relaxations
since they are better approximations than SOCP relaxations [34, Proposition 3.1], [36, Theorem 4.5],
though SDPs are also more difficult to solve than SOCPs.

In the SDP approach of Biswas and Ye [8,9], the original problem is formulated as the following
nonconvex minimization problem:
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where || - || denotes the Euclidean norm. Letting X := (z; --- ) and I, denote the d x d identity

matrix, Biswas and Ye considered the following SDP relaxation of (1):
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where Y = (y;;) “s.t.” is short for “subject to”, and
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with A® := {(i,j) € A| 4,5 < m}. It can be seen that (2) reduces to (1) when we add the constraint
rank Z = d. Properties of (2) and its solutions are studied in [8,32].> In particular, Biswas and Ye [8,
Section 4] introduced the notion of individual traces, defined as

tri(Z) = yu — ||$'z||2, i=1,...,m.

These individual traces are equivalently the diagonals of the Schur complement ¥ — X7 X In [9, Section
2] and [10, Section 3], they were used to evaluate the accuracy of the estimated positions z1, . . ., Z,, with
smaller trace indicating higher accuracy. So and Ye [32, Theorem 2] proved in the case of v ,, = 0 that the
sensors are “uniquely localizable” if and only if, for any interior solution Z (equivalently, Z has maximum
rank), all individual traces of Z are zero, i.e., Y = X7 X. (Throughout, “interior solution” means a point
in the relative interior of the solution set.) Moreover, for any interior solution Z, tr;(Z) = 0 implies x; is
. = 0[34, Proposition
4.1]. Other extensions and refinements of the above SDP approach are described in [3-7,10, 20].

While (2) is a good approximation of the original problem (1), it cannot be solved in reasonable
time for m > 500, and domain decomposition methods have been proposed to solve many small SDP
subproblems and refine the solutions using local improvement heuristics [9,10,20]. These methods tend
to work well if many anchors are uniformly distributed; see [36, Section 5.4]. This contrasts with SOCP
relaxation which can be solved in under 6 minutes for n = 4000 using a smoothing coordinate gradient
descent method [34]. Recently, Wang, Zheng, Boyd, and Ye [36] proposed a further relaxation of the
SDP relaxation (2), called edge-based SDP (ESDP) relaxation. The ESDP relaxation is stronger than

invariant over the solution set and hence equals the true position of sensor ¢ when v_,

5Throughout, “solution” of an optimization problem means a global optimal solution.



the SOCP relaxation and, can be solved in under 11 minutes for n = 4000 using SeDuMi [33] (not
counting problem setup time), and yields solution comparable or better in approximation accuracy to
the SDP relaxation; see [36, Section 5], [37, Section 7]. The ESDP relaxation is obtained by relaxing the
constraint Z > 0 in (2) to require only those principal submatrices of Z associated with 4 to be positive
semidefinite. Specifically, the ESDP relaxation is

Voqp = MiN > |6(2) - di;
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Notice that the objective function and the positive semidefinite constraints in (4) do not depend on y;;,
(i,7) € A. Also, the third constraint in (4) is redundant for those i < m such that (i,j) € A for some
j < m (i.e., sensor i has another sensor as neighbor) since it is implied by the second constraint.

In [11,19], a variant of (1) and (2) is considered whereby | - | is replaced with | - |?, and a primal-
dual interior-point method is applied to solve the SDP and its dual in a certain reduced/projected form.
Simulation results with up to m = 20 sensors are reported. Nie [26] considered the same problem variant
and proposed a sparse sum-of-square (SOS) relaxation which is equivalent to a certain sparse SDP. In
simulation with m = 500 sensors and exact distances, accurate solutions were found in about 1.5 hours
using SeDuMi. Recently, Kim, Kojima, and Waki [18] reformulated this problem variant as a constrained
quadratic optimization problem, and used a positive definite matrix completion technique to reduce the
SOS relaxation of order 1 into an SDP having analogous form as (4), but with each principal submatrix
of Z associated with a maximal clique of a chordal extension of a minimal subgraph. In simulation with
m = 4000 sensors and exact distances, accurate solutions were found in 80-1000 seconds using SeDuMi.

In practice, due to limited transmission power of the sensors, measured distances may be inexact, i.e.,

true

d; = lloi™" =2 "I + 8y V(i,4) € A, (5)
where § = (d55)(;,5yea € R4 denotes the measurement noise, and x;r“e denotes the true position of the
ith point (so that z; = z, ~ for i > m); see [14, Eq. (2)], [15, Eq. (3a)—(3f)], [21, Section 2]. Methods
for sensor network localization can be highly sensitive to such noises. Our aims are three-fold. First,
we study the approximation accuracy of SDP relaxation (2) and ESDP relaxation (4), as measured by
the individual traces of interior solutions. We show that, when distances are exact (i.e., 6 = 0), zero
individual trace is not only sufficient, but also necessary for a sensor to be correctly positioned by an
interior solution of the ESDP relaxation; see Theorem 1. On the other hand, we show via an example that,
when distances are inexact (i.e., § # 0), zero individual trace is insufficient for a sensor to be accurately
positioned by an interior solution of the SDP /ESDP relaxation; see Example 2. This somewhat surprising
result shows that SDP and ESDP relaxations are more noise-sensitive than SOCP relaxation (compare
with [34, Proposition 7.2]). Second, we propose a noise-aware robust version of ESDP relaxation for which
small individual trace is necessary and sufficient for a sensor to be accurately positioned by an analytic
center solution, assuming ||d|| is sufficiently small. Moreover, we show that the position error for each
sensor is in the order of the square root of the individual trace; see Theorems 3 and 4. Third, we propose
a log-barrier penalty coordinate gradient descent method to find such an analytic center solution; see



Section 6. In our simulation, this method is much faster than interior-point method for solving ESDP,
and the solutions found are comparable in approximation accuracy; see Section 7. Moreover, this method
is implementable in a distributed manner, with each sensor updating its position estimate knowing only
the current position estimates of its neighbors, the measured distance between them, and a few other
quantities. This is an important consideration for real-time implementation [16, page 65], [21,25,28]. In
contrast, existing SDP-based methods [5,6,8-11,18-20, 36] require some level of centralization. Thus,
our method is efficient, potentially implementable in real time, and can handle noise and certify which
sensors are accurately positioned. The positions of remaining sensors can be refined using any number
of local improvement heuristics, such as those used in [5,6,10, 18,20, 36], though their accuracy cannot
be certified.

Throughout, S™ denotes the space of n x n real symmetric matrices, and 7 denotes transpose. For a
vector z € RP, ||z|| and ||z]| denote the Euclidean norm of z and the oo-norm of z, respectively. For
A € RP*?, q;; denotes the (i, j)th entry of A, and || A||r denotes the Frobenius norm of A. For A, B € S?,
A > B means A — B is positive semidefinite. For A € S? and 7 C {1,...,p}, Az = (ai]‘)i,.ez denotes
the principal submatrix of A comprising the rows and columns of A indexed by Z. We will abbreviate
“m+1,m+2,...,m+d as “m*.” Thus, Zijm+) and Zg; o+ are, respectively, the (2 4+ d) x (2 + d)
and (1 + d) x (1 + d) principal submatrices of Z appearing in the second and third constraint of (4).
For any finite set 7, |J| denotes the cardinality of J. For any Z C {1,...,m}, we denote the set of its
neighbors and the set of edges to its neighbors by

N@Z) = {j¢7T](@j) € AforsomeieTl},
{(,))e AlieZ, j ¢TI}
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2 Trace test for uniquely positioned sensors by SDP and ESDP

Let Sfdp denote the solution set of (2). Let stdp denote the solution set of (4) with y;; set arbitrarily to
zero for all (i,7) & A (see the remark following (4)). The latter simplifies certain compactness arguments
later, e.g., the proof of Proposition 3. Both Sfdp and Si 4 are closed convex, and hence their relative
interior ri(Sfdp) and ri(S° .,) are well defined. As in [32, Proposition 1] and [34, page 162], we make the
reasonable assumption that each sensor is connected, directly or indirectly, to some anchor.

Assumption 1. Each connected component of the graph G := ({1,...,n}, A) contains an anchor index.

Assumption 1 is necessary and sufficient for Sfdp and stdp to be bounded—an important consideration
when solving (2) or (4) by an interior-point method. Assumption 1 is reasonable since if a connected
component of G does not contain an anchor index, then the location of the corresponding sensors can
be determined only up to a common translation factor. In applications such as 3D protein structure
prediction, the unknown points only need to be determined up to common translation and rotation
factors, so Assumption 1 can be made without loss of generality; see [9].

In what follows, we define

5 . o Y XT\ _
I, =i €{l,...,m}| z; is invariant over all Z = x 1.)€ S -
d

We define dep analogously. In the noiseless case (6 = 0), those sensors indexed by Ifs o (respectively,
Ifdp) are correctly positioned by any ESDP solution (respectively, SDP solution). Thus it is of interest
to identify these index sets. The following result from [34, Proposition 4.1] shows that a subset of Ifsdp
is identified by zero individual traces at an interior solution of SDP (2); see [32, Theorem 2] for related
results in the case of § = 0 and all individual traces being zero at interior solutions.



Proposition 1. For any § € R4, Z € ri(8%, ) and i € {1,...,m}, if tri(Z) =0, then i € T, .
An analogous result can be proved for the ESDP relaxation; also see [36, Theorem 2].

Proposition 2. For any § € R4!, Z € 1i(S?

esdp

) andi€ {1,...,m}, iftr;(Z) =0, then i € Iidp'

The proofs of Propositions 1 and 2 are based on the following simple properties of the individual
trace. Let F_ , denote the feasible set of (4) with y;; set to zero for all (i, j) € A. For any Z € F_, , we
have from the third constraint in (4) that

tri(Z) >0, i=1,...,m.

We also note the following key identity for individual traces. For any Z,Z' € F_, and any « € [0, 1], we

esdp
have Z¢ :==aZ +(1-a)Z' € F_, and

esdp
tr;(Z%) = atri(Z) + (1 — a)tri(Z') + a(l — a)||lz; — zi|]?, i=1,...,m. (6)

Thus each individual trace is a concave function on F

wap- Lhe following result follows from the concavity
and nonnegativity of the individual trace on F,

sdp *

Lemma 1. For any § € RA, if tr;(Z) = 0 for some Z € ri(Sidp), then tr;(Z) =0 for all Z € stdp.

3 Trace test for correctly positioned sensors by ESDP: necessity
in the noiseless case

In this section we show that the converse of Proposition 2 holds in the noiseless case (§ = 0). In other
words, in the noiseless case, the condition tr;(Z) = 0 is not only sufficient, but also necessary for x;
to equal x;m for any Z € ri(stdp). The proof is divided into two parts. In the first part, we show
by induction that if a sensor i € Z° 4 18 connected to some anchor through neighboring sensors also in
ISS 4> then tr;i(Z) = 0 for all Z € SSS 45 see Lemma 3. In the second part, we show that if there exists
a sensor ¢ € IS 4, With tri(Z) > 0 for some Z € SSE 40 then z; can be rotated to obtain another ESDP
solution, contradicting the definition of IS & We begin with the following two lemmas relating the traces

of neighboring sensors.

Lemma 2. (a) For any Z € F_,,, we have

(y’ii - ”17'3“2 Yij — sz"L.J2) - 0. (7)
Yij — T, x5 i — |zl

b) Suppose § =0. For any Z € S° . and (i,j) € A®, if ||z; — z;|| = d;;, then tr;(Z) = tr;(Z).
esdp J J J

Proof. (a) Since Z € F,,,
complement yields (7).
(b) Since 6 = 0 so that v

so that it satisfies the second constraint in (4), a basic property of Schur

eqp =0 and Z € stdp, we have £;;(Z) = d3;. Since (i,j) € A°, (3) implies
Yii — 2yij + yj; = di.
This together with ||z; — ;|| = d;; implies that

yii — llzill® + yj5 — i 11° = 2(yi; — 2] ;). (8)



As in the proof of [34, Proposition 3.1], by setting a = y;; — ||zi]|?, b = yj; — ||lz;]|? and ¢ = yi; — z] z;,
we have from (7) that a,b > 0, ab— ¢ > 0. Then (a + b)? = (a — b)? + 4ab > (a — b)? + 4¢*> > 4c2. By
(8), we also have a + b = 2c, so that (a + b)? = 4¢%. Hence a = b, i.e., tr;(Z) =tr;(Z). m

In what follows, we denote

true true true true 0 if (Z,]) € .A, true Yv“ue )(tme T
X = (xl e T, ), Yij = true o true Z = true ( ) :
(x, )Tx; else, X Iy
true (g)
Thus Z € Sgsdp CF.
Lemma 3. Suppose § = 0.
(a) For any (i,§) € A withi,j € I, we have tr;(Z) = tr;(Z) for all Z € S? .
(b) For any (i,§) € A withi € I, and j > m, we have tr;(Z) =0 for all Z€ S, .
Proof. (a) Fix any Z € stdp. Since i,j € Ifsdp and Z™° € stdp, we have x; = a:;me and z; = :E;me
Hence ||z; — 2| = ||lz; " — ;|| = di;. By Lemma 2(b), tr;(Z) = tr;(Z).
(b) Fix any Z € 8%, . Since i € Z°, , j > m and AR S? . we have z; = z;" and z; = x;me
Also v,,,, = 0, so that £;;(Z) = dZ;. Since j > m, (3) implies y;; — 2z] z; + ||z;||* = d};. Hence
tri(2) = yi—llwill® = df + 22 w; — |lol® — il = & = |loi —5l* = & —|lz; —=; |* = 0.
[

Lemma 3 shows that if a sensor i € Ifs ap 18 connected to some anchor by a path in G whose intermediate
nodes are all in Z° , then tr;(Z) = 0 for all Z € S?, . We will show in Theorem 2 that in fact all sensors
1€ IS W have this property. We also need the following matrix identity about Schur complement.

Lemma 4. For any A, A € R™* B, B € R*** and a € [0, 1], we have upon letting X* = aA+(1—a)A
and Y* = aB + (1 — a)B that

Yo —(X*)TX* = a(B-ATA)+(1-a)(B-ATA)+a(l—a)(A-A)" (A-4).

We are now ready to prove the main result of this section, showing that the converse of Proposition
2 holds in the noiseless case. The proof uses Assumption 1, and Lemmas 1, 3 and 4. In particular, we
show that if there exist i € Z2, and Z € 8% with trj(Z) > 0, then we can rotate z; to obtain another
element of stdp, thus contradicting the definition of Zfsdp.

Theorem 1. For anyi € I, , we have tr;(Z) =0 for all Z € S .

Proof. Fix any i € I and Z € S?,,- Let T be the set of all 5 € 77, that are joined to i by a path in
the subgraph of G induced by Ieosdp (i.e., i € T if and only if i is joined to i by a path in G consisting only
of nodes in 72 ). By Assumption 1, N'(Z) # 0. If there exists an i € Z with tr;(Z) =0 or a j € N(Z)
with j > m, then, by Lemma 3, tr;(Z) = 0 for all 4 € Z and, in particular, tr;(Z) = 0. Suppose that no
such i or j exists, so that tr;(Z) > 0 for all i € T and, by the definition of Z,

N@) c{1,....m}\71°

esdp ~

(10)

We will arrive at a contradiction below.



By (10), there exists a Z € ri(S°

esdp
S0 ., IS convex, we have

) such that z; # a:;-me for all j € N(Z). Since Z™ € 8 and

esdp

true

Z%=aZ +(1-a)ZeS8, VO0<a<l.

Fix any (i,j) € A(Z) with i € Z. By (10), j < m so that (i,j) € A®. Applying Lemma 4 with
A= (xt.me xt-me), A= (z; zj),B= Z;‘:;}, B = Z;; ;y and using o; = z; ~ (since i € 7°,.) yield

i J

tr;(Z) Yii — :c,-Ta:) 0 0
ye—xeTxey, o = 1-a ( I ) +a .
( Juay = )< v~ ey () 0 ey — 2" IP

J

Since tr;(Z) > 0, Lemma 1 implies tr;(Z) > 0. Since z; # a:}me and the first matrix on the right-hand
side is positive semidefinite (since Zy; j,+} = 0), the right-hand side is nonsingular or, equivalently,
Z?i,j,m‘*’} is nonsingular for all 0 < a < 1 sufficiently small. Choose a 0 < a < 1 such that Z&j’mﬂ is
nonsingular (and hence positive definite) for all (¢, ) € A(Z). We now construct a feasible perturbation
of Z*. By translating all n points by a common factor if necessary, we can assume that z¥ # 0 for all
i € Z. For each § > 0, let Uy € R¥? be an orthogonal matrix satisfying 0 < ||Uy — I4||r = O(8) (e.g., Uy
corresponds to a rotation by angle #). Then, for § > 0 sufficiently small, we have

ye oy (Ugzd)” )
vy oy x| =0 V(i g) € AD).

Ugm? ."L'? Id

Fix any such §. For each (i, j) € A with i,j € Z, we have from Z* € F,_, that

o o o a
(Y5 - Waor e ot o) = (U VE) = (ap ap) et ug) 2o
Yii Y Yij Yii

from which it follows that

v yy Uy
v yss (Up)™ | = 0.
Upzd Ugw? 1,

Thus, replacing z& in Z* by Upz® for all i € T yields a Z* that is feasible for (4). Moreover, Z* is
optimal for (4) (with § = 0) since, by (3) and ZU N(Z) C {1,...,m} (see (10)), the objective function
of (4) does not depend on z; for i € Z. Thus Z* € stdp but its Upz® component differs from the z{
component of Z¢ for all ¢ € Z, contradicting the definition of 7. [

Notice that Lemmas 1, 2, 3 readily extend to the SDP relaxation (2). It is an open question whether
Theorem 1 extends to the SDP relaxation. By using Proposition 2, Lemmas 1 and 2(a), and Theorem 1,
we show below that every sensor i € ISE 4 18 connected to some anchor through neighboring sensors also in
7° 4 This result is analogous to [34, Proposition 5.1(b)] for an SOCP relaxation of (1), though here we
consider only the noiseless case. The proof, like the proof of Theorem 1, involves a feasible perturbation
of z; for all i € Z, where 7 is some subset of 70, . However, we make use of tr;(Z) > 0 for all j € N'(Z)
instead of tr;(Z) > 0 for all 4 € Z, and the perturbation involves a contraction instead of a rotation.

Theorem 2. FEveryi € IS o U joined to some j > m by a path in G whose intermediate nodes are all in

esdp *



Proof. Fix any i € 0 . Let 7 be the set of all ¢ € ° ., that are joined to 7 by a path in the subgraph
of G induced by Z°, . By Assumption 1, N(Z) # 0. If there exists a j € N'(Z) with j > m, then the
conclusion follows. Suppose that no such j exists. Then, by the definition of Z, (10) holds.

Fix any Z € 1"i($3s dp). By translating all n points by a common factor if necessary, we can assume
that x; # 0 for all i € Z. Also, by (10), Proposition 2 and Lemma 1, we have that tr;(Z) > 0 for all
j € N(Z). For each 0 < € < 1, define

i :=(1—-e€z; Viel.

For each (4, j) € A(Z) with i € Z, we have from ¢ € Z° and Theorem 1 that y; = [|z;||*. Since Z € F,__ ,

so that (7) holds, this implies y;; = z;Tx;. Then y;; — ||ar:€||2 = ||z;:]|? — (1 — €)?||z;]|? = (2 — €2)||z;]|> > 0
and

Yii — ||336||2 Yij _xeT%) 2 2 2/, T \2
det( = (2¢ — €°)||z;||°tr; (Z2) — € (z;" x5)
Yij — szm] Yi; — ||-77J||2 ’ ’ L

= € (2l|zill*tr;(Z) — ellzil*tr; (2) — e(z:"2;)?)
which is positive for all e sufficiently small. Hence we can choose 0 < € < 1 so that

Yii  Yij I B .
Yij Yj; xj| =0 Y(i,j) € A(Z) with ¢ € 7.

€ .
x5 xm; I

For each (i,j) € A with i,j € Z, we have from Theorem 1 that y;; = ||z:[|, y;; = ||z;||* and hence (7)
implies y;; = z;7z;. Then

Yii  Yij log]> z¢Tas) o [Nzill? =T
- eT € 2 - (26 — € ) T 2 />
Yii  Yij zi'xs ||z zi x|zl

which is positive semidefinite for 0 < € < 1. Hence

Yii Yij T .
Yij  Yjj .’L'; =0 V(i,j) € Awithi,jeT.

¢ x5 Iy

i Y
Thus, replacing z; in Z by ¢ for all i € Z yields a Z that is feasible for (4). Moreover, Z is optimal for
(4) (with 6 = 0) since, by (3) and (10), the objective function of (4) does not depend on z; for i € Z.
Thus Z € Seosdp but its z$ component differs from the z; component of Z for all i € Z, contradicting the
definition of Z. [

4 Trace test for accurately positioned sensors by SDP and ESDP:
failure in the noisy case

We saw from Proposition 2 and Theorem 1 that, in the noiseless case, tr;(Z) = 0 for any interior ESDP
solution Z implies x; is invariant over all ESDP solutions (and hence z; = :zszm) and conversely. Thus, by
computing an interior ESDP solution (using, say, an interior-point method) and checking the individual
traces, we can determine exactly which sensors are correctly positioned. Can this be extended to the
noisy case? For example, if the noise level is sufficiently low and Z is the analytic center of the ESDP
solution set, does tr;(Z) = 0 imply z; is near mzme? However, the examples below show that this is false



for ESDP and SDP relaxations. Thus, ESDP and SDP relaxations are more sensitive to noises than the
SOCP relaxation.

Our first example shows that Theorem 1 is false when Z° 4, and S 4, are replaced by Ii ., and Si ap
regardless of how small ||0]| is.

true

Example 1. Letm=1,n=4, 2z, = (0,0)T, and z2,73,74 be non-collinear points in R%. Let 61; = €
fori=2,3,4 (€>0). Then d3;, = ||z;||> + € for i = 2,3,4. Here e =0 corresponds to the noiseless case.
The corresponding ESDP relazation (4), which is equivalent to the SDP relaxation (2), is the following
problem:
min i ly11 — 2073y + o] — &

T 11
s.t. z;(y“ xl), y11 > ||zl (1)
X1 I2

Sidf{(f) ?)} Ve > 0.
2

To see this, note that the unique element of the above set is feasible for (11) with zero objective value.
Thus the optimal value of (11) is 0. Hence, for Z to be a solution of (11), it must satisfy

We claim that

0= Y11 — 2‘7‘.1Tz.1 + ”'/1:2”2 - d%z =¥Y11 — 2$T$1 -6 i = 27374' (12)

Since T2,73, 24 are not collinear, the vectors (1,—2xT), i = 2,3,4, are linearly independent, implying that
(12) has a unique solution. Hence Iidp = {1}. However, for e > 0, we have 6 # 0 and tr1(Z) =e—0>0
for all Z € 8°

esdp ‘

In Example 1, as € — 0, we have 1 = a:tlme and try(Z) — 0 for all Z € stdp = Sfdp. In general, if
§ ~ 0, does tr;(Z) = 0 for some Z € ri(S? ) (or Z € ri(S’, ) imply z; ~ z;"°? Our second example
below shows that this is false even when Z is the unique solution of the SDP/ESDP relaxation and
[|6]] is arbitrarily small. This contrasts with an SOCP relaxation of (1), for which such a result does
hold [34, Proposition 7.2].

true true

Example 2. Let m =2, n =6, z; = (2,007, 2, = (0,-1)7T, 23 = (2,-1)T, 24 = (2,1)7, 25 =
(—l,O)T, T = (1,0)T. Let 6150 = /4 + (1 — 6)2 — \/3, 013 =€, 614 = —€, and d25 = 26 =0 (0 <e< %)
Then diy = \/4+ (1 —€)2, diz =1+¢€,diga =1 —¢, dog = dog = /2. Here e = 0 corresponds to the
noiseless case.

The corresponding ESDP relazation (4), which is equivalent to the SDP relazation (2), is the following
problem:

min ly11 — 22T 21 +5— (1 +€)?| + lynn — 22Tz, +5— (1 —€)?]

+y2o — 22T wo — 1| + |y2e — 22T xs — 1| + |y11 — 2012 + Y22 — 4 — (1 — €)?|
Y11 Yi2 33'{ (13)
st. Z= Y12 Y22 IL'%V t 0.
1 x2 Do

We claim that

1
v0<e<§.

o

2

o

kel

nNo
— O = o
O = O N
— O = o



To see this, note that the unique element of the above set has zero objective value and it is feasible for

(13) because ,
(-6 DC D=6 o)

Thus the optimal value of (13) is 0. We show below that (13) has a unique solution.

X
Lix Xy 22 %y
2 | S EAN 3
3 X
S S ol & 5 ol
-1X, Xq1 2 -1X, Xg1 2
1 Xy -1 X

Figure 1: An example showing that, when distance measurements have noise, zero individual trace is
uninformative of sensor position accuracy in ESDP and SDP solutions.

Since the optimal value of (13) is zero, the expressions inside the absolute values in the objective
function must be zero when evaluated at any Z € stdp. Then we have from y11 —2ziz; +5— (1+¢€)? =
Y11 — 22121 +5— (1 — €)2 = 0 and the constraint y;; > ||z1]|? that z1 = (2,€)T, y11 = 4 + €2, from
Yoo — 22T @y — 1 = yoo — 2afzy — 1 = 0 that 25 = (0,t)T for some t € R and y2 = 1, and from
Cyntyn-—4—(1-¢?

Y11 — 2y12 + y22 — 4 — (1 — €)% = 0 that y12 = €. Hence each Z € Sidp must

2
have the form
44€ € 2 €
€ 1 0 ¢t
7 =
2 010
€ t 0 1

Since Z = 0 and tr1(Z) = 0, we must have y1o — z¥zs = € — (2 €) <(t)) =0, i.e, t = 1. Thus, for
e € (0, %), Sf

sdp

is a singleton and Ifsdp = {1,2}. Moreover, tri(Z) = tra(Z) = 0 for all Z € S°

esdp
However, while 1 = (2,€)T approaches xtlm = (2,007 as € = 0, 22 = (0,1)T does not approach

true

z, =(0,-1)T ase— 0.
By using the observation that

-GG D0 wernn

it is straightforward to verify that

4 0 2 0
01 0 ¢
0o _ _
Soap = 9 0 1 0 te[-1,1]
0t 0 1
Hence I° = {1}, i.e., only z1 is invariant over S°

esdp esdp *

10



Example 2 shows that individual traces are uninformative of the accuracy of the ESDP solution in the
presence of noise. In fact, we know of no easy way to judge which computed sensor positions are accurate
in this case. In the next section, we propose a robust version of ESDP that overcomes this difficulty. We
close this section with some compactness and semicontinuity properties of Si W with respect to . These
properties will be used to prove Lemma, 5.

Proposition 3.

(a) limsup Sidp cs?

— Tesdp’
§—0 °

(b) For any bounded set A C RAI U Sidp is a bounded set.
dEA

(c) For each € > 0 there exists a scalar § > 0 such that

min |Z-Zo||lr<e VZeS°

?
ZO cS esdp
esdp

V0 <|6]|oe < 0. (14)

Proof. (a) Let f°(Z) denote the objective function of (4) with d3; given by (5). Fix any Z € limsups_,, S’ .
Then there exist sequences 6 € R4 and Z € Si’jip, k=1,2,...,such that limyg_,, 6 = 0, limy_, o Z} =
Z. Since Zj, € F,,,, and F,,,, is closed, Z € F,,,,. Fixany Z € 8%, . Since Z € 8% and Z € F,,,
we have

oz < % 2Z), k=1,2,...

Taking limit yields

0 < f%2) = lim f*(Z) < lim f*(2) = f%(Z) = 0.
k—oo k—o0
Hence Z € S .

(b) Owing to the positive semidefinite constraints in (4) and y;; = 0 for (i,j) ¢ A and Z € S 4o 1t
suffices to show that y;; is uniformly bounded over § € A and Z € Si " fori=1,...,m. Fixany p >0
such that A C [—p, g]'A‘.

Since Z™ € F. we have for any § € A and Z € st . that

esdp?

Z |€ij(Z) - d§j| < Z ‘Kij(z me) - dzgj
(i,j)eA (i,5)€A
— Z ‘”xirue . z.jrue||2 _ d?]
(i,j)€A
= 3 18l < e,
(i,j)eA

where the equalities use (3), (9), and (5). Thus (3) yields

Yii — 2211; +y]] S dzZ] + ‘A|Q V(%J) € As,

A : e . VZeS8 ,VieA. 15
yi — 2eTa; + lz;)> <2 +|Ale V(i,j) € Awithi <m < j, (15)

Fix any 6 € A and Z € stdp. We first consider those ¢ < m such that (i, j) € A for some j > m (i.e.,
i is a neighbor of some anchor). We have from tr;(Z) > 0 and (15) that

true

ll2ill® = 2llzillllz; | + llz;11* < yis — 223w + [|lz;1* < d; + [Ale < (di; )* + o,

11



true true

where we let d;;-“e = |lz;  —x; | and g:= (14 |A|)e. By writing the left-hand side as (||z;| — [|z;|])?,
we obtain ||z;|| < (d;;"e)2 + 0 + ||z;||, which together with the second inequality above yields

true _ true —
yii < (dig )* + o+ 20l /(d5")? + 2 + llas 1.

We next consider those i < m such that (i,j) € A for some j < m. We have from Z; ;; > 0 and (15)
that

true

(VWi = VU533)° = i — 2/¥i¥55 + ¥jii < yii — 2955 + y55 < di; + [Ale < (dy; )* + o,

2
from which it follows that 0 < y; < (\/(d;}"e)z +o+ ,/yjj) . It then follows from induction and
Assumption 1 that each y;; is uniformly bounded, independent of 4.
(c) If the statement were false, then there would exist an € > 0 such that, for each integer k > 0 there
exist 8 € RAI with ||6x]|e0 < + and Z, € 35;3,, satisfying
min || Z, — Zollr > €. (16)
P

ZO eSesd

By part (b), {Zx} is bounded. Since {dx} — 0, part (a) implies that every cluster point of {Z;} lies in
8%, so that

min |Zk — ZollFr = 0 as k— oo.

Zo Esesdp

This contradicts (16). m

Proposition 3(c) implies that, when the noise level ||§]| is low, the computed position z; from Z € S°

esdp

is near its true position x;rue for all 7 € ISS 4o However, in practice we are unlikely to know Ifs i and, as
Example 2 shows, there is no easy way to estimate Z° o from Z € st 4> however small [|6]] is.

5 A robust ESDP relaxation

We saw from Example 2 that SDP and ESDP relaxations have the defect that individual traces are
uninformative of sensor position accuracy in the presence of noise. In this section we propose a noise-
aware robust version of the ESDP relaxation that dampens sensitivity to noise by expanding the solution
set to include the noiseless solutions. In particular, let S::dp denote the set of Z satisfying

Z e F

esdp

and |0;;(Z) — d3;| < pi; V(,j) € A (17)

with p = (pij)(i,j)ea > 0. Notice that each Z satisfying (17) belongs to S2_ , where u;; = {;;(Z) —dfj +0;;

es

for all (i,7) € A. Since |u| < p+ |d], where | - | is taken componentwise, this implies

stoc |y s (18)

resdp — esdp ~

lu|<p+]d]|

By Proposition 3(b), the right-hand side is bounded. Hence (18) implies that S::dp is bounded. Moreover,
if p > 16| (i-e., pi; > |0s5] for all (¢,j) € A), then

.8
S(?sdp g Sresdp' (19)
(since Z € Sgsdp implies 4;;(Z) = ||;c;.me — :L’;-rue”Q and hence |¢;;(Z) — dz21| = |d;;| for all (i,5) € A). Then

. . . . . P58 . .
any x; that is not invariant over stdp would also not be invariant over Smdp. In applications, each |d;;]

12



may be estimated by d;/0;;, where oy; is the signal-to-noise ratio for communication between sensors i
and j.

The following lemma shows that the robust ESDP generalizes two key properties of ESDP in the
noiseless case (i.e., Proposition 2 and Theorem 1) to the noisy case. Its proof uses Theorem 1, Propositions
2 and 3, as well as (18) and (19).

Lemma 5.

. p,8
(@) lm 8§ =8 .
6| <pas0 Cresdp esdp

(b) For eachi€ {1,...,m}, i€ Igsdp if and only if for every n > 0, there exists a p > 0 such that

tri(Z)<n VZe€ s

resdp ’

V|o] < p < pe, (20)
where e == (1,...,1)T € R4/,

Proof. Part (a) follows readily from (18), (19), and Proposition 3(a). We prove part (b) below.

Fix any ¢ € {1,...,m}. Suppose that for every n > 0 there exists a p > 0 such that (20) holds. Fix
any Zo € ri(S° 4, ) For any n > 0, by taking || < p sufficiently small, we have from (19) that Zo € S:::dp
and from (20) that tr;(Zy) < n. Hence tr;(Zy) = 0, so that Proposition 2 yields i € Ifsdp

Conversely, suppose that i € IS 4+ We have from (18) that

s.., < Us, cFr= s, Vihl<p<e (21)

lul<2p lu[<2e

By Proposition 3(b), F is bounded. Since tr;(Z) is continuous in Z, this implies that tr;(Z) is uniformly
continuous over Z € F, i.e., for any n > 0, there exists an € > 0 such that

ltrs(Z) —tr:(Z')| < VZ,Z' € F with ||Z = Z'||p < e. (22)

By Proposition 3(c), there exists a § > 0 satisfying (14). Take p = min{1,0}/2. Then (21), (14), (22),
together with tr;(Zo) = 0 for all Zy € 8% (see Theorem 1), yield (20). m

Lemma 5(c) says that we can determine whether i € 7° 4, by checking tr;(Z) for all Z € Sres ., and
all |§] < p near 0. This is clearly an impractical way to find Z° 4+ Below we consider a more practical
way based on computing, for a single |6] < p near 0, a Z € S::dp that is “most interior” and hence
least sensitive to noise. In particular, for each |§| < p, let Z"’ be the unique solution of the following

log-barrier problem:

m}g B(Z) = - Z Indet(Zy; j,m+y) Zln tr;(Z (23)
zes ., (6,j) €A

Since |0] < p, there exists a Z € S:::dp satisfying B(Z) < oo (e.g., take any Z € Seosdp and increase y;;,

i1=1,...,m, by a sufficiently small amount). Moreover, the objective function of (23) is a strictly convex
8 . . . .

functlon and S”” is compact. Hence Z", which may be viewed as a variant of the analytic center of

resdp
s
resdp ’

is well defined, unique, and B(Zp’a) < 00. The following result justifies the term of robust ESDP,

showing that tri(Zp’J) ~ 0 and a::’a ~ a:;.me whenever || < p= 0, for all i € Ifsdp. Its proof uses Theorem
1 and Lemma 5(a).

Theorem 3.

13



(a) Every cluster point of {Zp’s}, as |6| < p = 0, belongs to ri(SeOSdp).
(b) ForeachieT?, ,

im tr;(Z”°)=0 and lim 2, =z "

24
|6]<p—0 |6]<p—0 ¢ (24)

Proof. (a) Since B > 0 and B > 0 imply that Null(B + B) = Null(B) N Null(B), we see that, for each
(i,§) € A® and [ € {1,...,m}, rank(Zy; ; ,+}) and rank(Zyg ,,+}) are constant over all Z € ri(stdp),
which we denote by r;; and ry, respectively. Then, rank(Z(; ; m+y) < rij and rank(Zg ,,+3) < ry for all
(i,j) € A%, 1€ {1,...,m},and Z € 82 . Moreover,

Zeni(S8),) = ZeS8,, rank(Zg jm+y) =rij V(i,j) € A%, rank(Zg; mey) =1 Vi (25)

esdp

For any Z € F,_,, and i € {1,...,m}, since tr;(Z) is the Schur complement of I; in Z; n+}, we have
rank(Zy; ;m+3) = d + rank(tr;(Z)). Then (25), together with Proposition 2 and Theorem 1, implies that

_]d ifiel?, ;
S ld+1 ifigZ, .

Hence (25) is equivalent to
Zeni(S,) = ZeS., , rank(Zjmey) =1y V(0,5) € A ti(Z) >0Vig ), . (26)

For any W € §P (p > 1), let Ax(W) denote the kth eigenvalue of W, arranged in decreasing order. Let

)\’;;;’J(Z) = /\k (Z{i,j,m+}) ) k= 1," 7d+ 2, (ZJJ) € As’
T = {5k) | 6,5) € A%, 1<k <ry},
B"(Z) = - Z In\od(Z) - Z Intr;(Z).
(irj,k)eT i¢T0

esdp

Then, by (26), ri(S° ) =8° NdomB".
g esdp esdp s _
Let Z be any cluster point of {Z”"} as |§] < p = 0. By Lemma 5(a), Z € stdp. Suppose to
the contrary that Z ¢ ri(S?, ), so that Z ¢ domB®. Consider any sequence |0:] < pe, t = 1,2,...,
such that {p;} — 0 and {Z"*"} = Z. Fix any Z° € ri(8?, ). Hence eSS ri(8?%, ). Since Z ¢

domB?, we have {B*(Z"""")} = oo. Since Z£Z° € domB® so that B* is continuous there, we also have

{Be (£542°)} » Bo (Z42°) < 0o, Thus

P,
VA A 8¢
Be <+> _BYZ™) 5 —c0 as t— oo (27)

On the other hand, for (i,j,k) ¢ J%, since Z% jm+y = 0 and )\fc’j(-) is operator monotone (see [17,
Corollary 4.3.3]), we have
y 1) e 470 1 S
(52 (o)

for all ¢. Since — In(+) is nonincreasing, this implies that

1.1 Zpt’st Za .7 ]- Pt,0t 1.7 Pt,ot
—In AW (%) < —InAbd (52 ’ ) =—In A (Z"") + n2. (28)

14



For i =1,...,m, we have from (6) that

Zpt’(;t + Za 1 1,0t 1 1 t:0¢ 1 0t
tr; (f = 5tni(Z77) + Stri(Z2%) + fll2y T — 2P 2 Stna(27)
for all ¢. Since — In(+) is nonincreasing, this implies that
7" 4z 1 o o
—Intr; <+> <-—In §tri (Zp ’ ) = —lntri(ZP )+ 1In2. (29)

Combining (28) and (29) yields that

ZPtrst + Zo
Bl— =

Zﬂt,5t Zea o Pt a ZPt,5t Zea
B2 ) Y ma Z  +Z%) _ S ey (22
2 2 2

(i’j’k) ¢Ja

S mA @) - Y (2™ + (1A4°|2 + d) + m) In2

(3.4, k)¢ T* i€Z0 | &

IN
Sy
e
/N
N‘b
o &
+
N
Q
N———
|

Ay
B¢ (%) ~BY(Z"") + B(Z"™") + (|A°|(2 + d) + m) In2.

By (27), the right-hand side is less than B(Z"*™) for all ¢ sufficiently large. Since Z% € §° C &

esdp — resdp

(see (19)) so that Zi € 8’ this contradicts the definition of Z**** as the solution of (23). Thus,

resdp ’

B%(Z) < 00 and hence Z €ri(S° ).

esdp

(b) By (21), {Z” }|5|<p56 lies in the bounded set F. By Lemma 5(a), as |§] < p — 0, all cluster

true

- p,8 . . . .. .
points of {Z""} are in S . For each i € I, , since z; is invariant over %, we have z; = z; for

every cluster point Z; of {mfs} as |[d] < p — 0. Since {xfa} lies in a bounded set, this implies that

0.8 true

=X,

lim z, i

[6|<p—0 ¢

Similarly, Theorem 1 implies that tr;(Z) = 0 for all Z € 8%, . Since {xfs} and {y:zs} lie in a bounded
set, this implies that

. P8
lim tr;(Z
[6]<p—0

) =0.

It is an open question whether {Zp’s} converges as |d| < p = 0 and, if yes, what the limit is; see [24]
and references therein for related results. The following result shows that ISS o 18 identified by those i

with tr,-(ZM) ~ 0 for any || < p ~ 0. It also shows that the distance from x:’s to its true position z; -
is O ( tri(Z”’s)). Its proof uses Proposition 2, Lemma 4, and Theorem 3.

Theorem 4.
(a) There exists j > 0, p > 0 such that

tr,-(ZM) <7 for some |0 <p<pe = i GIfsdp,
tri(ZM) >0.17 forsome |§|<p<pe = 1 ¢Zfsdp,

where e := (1,...,1)7 € RA

15



(b) Forie {1,...,m},

1

g =™l < VAT +m (:(27%) " Wl < p. (30)

Proof. (a) Let C denote the set of all cluster points of 7" as |0] < p — 0. By Theorem 3, C C ri(SSsdp).
Then C, being a closed subset of stdp, is compact. Define

I
7= 51&12)1; éréfctri(Z). (31)

Since tr;(Z) is continuous in Z and C is compact, for each i € {1,...,m} \I?sdp, there exists Z* € C such
that inf zec tr;(Z) = tr;(Z%) and, by Proposition 2, tr;(Z?) > 0. Hence 77 > 0.
We claim that there exists a p > 0 such that

ti(27) > 7 Vig Tl , I8l < p < e

If this claim were false, then there would exist some i ¢ IO , and sequence |0¢] < pt, t =1,2,..., such
that {p;} = 0 and tr;(Z""*) < 7 for all t. Then taking the hmlt would yield tr;(Z) < 7, where Z is any
cluster point of {Z""*}. Since Z € C, (31) would imply 7 < 1+tr;(Z), a contradiction of 7j > 0.

By Theorem 3(b), for each i € Ifsdp, we have that lim|s<,0 tri(ZM) = 0. Combining this with the
preceding claim, we conclude that there exists p > 0 such that

tri(ZM)<0.1ﬁ ViGIeOsdp and try(Z” )>n VZQEIOS , Y] < p < pe.

(b) Fix any |8| < p. Let a € (0,1). For any i € {1,...,m}, we have from (6) and tr;(Z""") = 0 (see
(9)) that

tri(@Z2” + (1—a)Z™) = atry(Z”") + a(1 — o) ||z} — ;| (32)
For any (i,j) € A*, letting A = ( e ;1:;-'6), A= (x:.me ;me) B= ZE:J}, B= ZE“;}, we have
0.8 true
det (O‘Z{i,j,mﬂ +(1- O‘)Z{i,j,mﬂ)
—  det aB+(1-a)B (ad+(1-a)A)T
- ad + (1 - a)A I
= det((aB+(1-a)B) = (ad+ (1 -a)d) (a4 + (1-a)4))
—  det (a(B —ATA) +(1-a)(B-ATA) +a(l—a) (A-A)" (A- A))
> det (a(B - ATA)
= « det(Z{,L 7, m+}), (33)
. . . B AT = T
where the third equality uses Lemma 4; the fourth equality uses det i 5= det(B — A" A) and the
d

second equality uses an analogous identity; the inequality uses B — ATA > 0, (A — A)T(A— A) = 0, and
the monotonicity of det(-) with respect to > over positive semidefinite matrices. Note that the solution
Z"° of (23) equivalently solves

m%}g G(Z) = H detZ{l]m+}HtI‘z
Zesresdp (i,j)€A®
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true

Since Z™ € S°

" € 8™’ . Hence, for any i € {1,...,m}, we have

resdp

(19) implies that aZ”’ + (1—a)Z

true

G(Z™Y > Gz” +1-a)zZ™)

P8 p,d P8 p,8 true
> H a2det,(Z{i7j’m+}) Hatr,-(Z ) (atr;(Z )+ a(l—a)llz; —; ”2)
(i,5)€ A i#1
p,8
_ 2| A% |+m p>8 2| A% |+m G(Z ) .8 true, o
= HHmGZ"™) + A (1—a)m||$; —z; |5

where the inequality uses (32) and (33). It follows that

tme”2 1— a2|_AS|+m

p,8 P,
| —x; Smtfi(z ) Vae€(0,1).

Letting & — 1 and using lim,—,1 =% =r (r > 1) yields (30). =
Remark 5.1. It can be seen that (32) and (33) hold for any Z € S::dp in place of Z™°. Hence, following
the proof of Theorem 4(b), we have for each i =1,...,m that,

sup ||z — 2| < 24/2|A%| + m(tri(Zp’J))%.

Z,Z’ESP’J

resdp

This suggests that tr; Z"") will likely increase as p increases since the set S™" will be enlarged.
p resdp

6 An LPCGD method for solving the robust ESDP relaxation

The results of Section 5 suggest solving (23), with p small but above the noise level, and then checking the
individual traces of the solution to determine which sensors are accurately positioned. How can (23) be
efficiently solved? An interior-point method can be used, but it cannot easily exploit the problem structure
and distribute the computation over sensors—an important consideration for practical implementation.
In this section, we propose a method for solving (23) that can distribute the computation over sensors by
exploiting the partially separable structure of the problem. This method is a block-coordinate gradient
descent method [35], similar to the one used in [34, Section 8] for an SOCP relaxation, applied to an
unconstrained reformulation of (23) using quadratic penalization. In our simulation (see Section 7), this
method is significantly faster than solving the ESDP relaxation (4) by an interior-point method.

We first reformulate (17) as a smooth convex optimization problem over F_, by introducing a smooth

esdp
convex penalty function for its second set of constraints. For any scalar r > 0, let

1 1 1
hr(t) = 5 max{O,t - 7'}2 + 5 maX{O, —t— ,,,}2 = 5 max{O, |t| - 7‘}2-

Then h, is smooth (i.e., continuously differentiable), convex, nonnegative-valued, and h,(t) = 0 if and
only if [t| < r. For any p = (pij)(i,j)ea > 0, define the smooth convex penalty function

Fo(2) = Yl (65(2) = ). (34)
(i,5)€A

Then when p > |4], Z € Sje’:dp if and only if Z € F_, and f,(Z) =0 (i.e., Z is a minimizer of f, over
a

..ap With zero objective function value). We augment f, by a scalar x4 > 0 multiple of the log-barrier
function B from (23) to obtain the following log-barrier penalty function:

F4(Z) = [,(Z) + uB(2). (35)
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Then f}! is convex, twice differentiable on domB, partially separable (i-e., a sum of functions, each of few
variables), and f4(Z) — oo as Z approaches any boundary point of domB. A standard argument shows
that argmin, f5(Z) — ZP9 as p — 0, assuming p > |§|. If p ¥ |§], then it can still be shown that every
cluster point of argmin, f4(Z) as p — 0 is a solution of

min f,(Z). (36)

ZEF 4,

Since ho(t) = 12, we see that, in the special case of p = 0, (36) is equivalent to the variant of (4) whereby
| - | is replaced with |- |?. Thus (36) may be viewed as a noise-aware generalization of this variant.

By a slight abuse of notation, we denote by Z; the subvector of variables x;, ys, {ys; | (¢,7) € A°} and
by Vz, f}' the gradient of f}' with respect to Z;, i = 1,...,m. Notice that B is twice differentiable on
domB. We denote its Hessian with respect to Z; by szi B. Although the quadratic penalty function h,. is
not twice differentiable, Vh, is Lipschitz continuous and piecewise-linear. Thus the generalized Hessian
0?%h, is well defined and given by

1 if |t > r;
Oh,(t) =< [0,1] if |t| =r;
0 else.

For our method, we make the (somewhat arbitrary) selection of 1 if |¢| >  and 0 else. This yields, via
(34) and the chain rule, a selection of 8%, f,(Z), which we denote by H; ,(Z). The corresponding selection
of 9% f*(Z) is

H! (Z) := H;,(Z)+ pVy,B(Z).

Since H;,,(Z) = 0 and V% B(Z) » 0, we have H' (Z) - 0 for Z € domB. Moreover, H/' (Z) has an
“arrow” sparsity structure:

Yijr - Yig w;.r Yii
yijl X X %
yijk k3 X £ I
T; * e * * *
Yii * - * * *
where N (i) = {j1,-.-,Jk}, S0 its Cholesky factorization can be efficiently computed in linear time.

Our method, which we call the log-barrier penalty coordinate gradient descent (LPCGD) method, is
based on applying a block-coordinate gradient descent method [35] to minimize [} inexactly, with Z; as
coordinate block and with p decreased periodically; see [34, Section 8] for a related method for an SOCP
relaxation of (1). We describe this method below.

0. Choose initial 4 > 0 and Z € domB with Z,,,+; = I4. Choose ,uﬁnal > (0 and a continuous function
¥ 1 (0,00) = (0,00) such that lim,o¢(p) = 0. Choose stepsize parameters 0 < f < 1 and
0<w< 1. Goto step 1.

L. If there exists i € {1,...,m} such that ||V z f*(Z)|| > v (u), then construct the block-coordinate
generalized Newton direction:

Di = —(H (2))7'V 2, f2(2),

and repeat step 1 with

7" = 7],
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where Z[a] is obtained from Z by replacing Z; with Z; + aD; and « is the largest element of
{1,8,8%,---} satisfying
i (Zla)) < f4(2) + awD{ V 7, f}(Z).

Otherwise, go to step 2.

2. If p < uﬁm, then stop. Otherwise, decrease p and return to step 1.

The LPCGD method is highly parallelizable since, for any i,j € {1,...,m} that share no neighbor, Z;
and Z; share no variable and can be updated simultaneously. Moreover, the computation distributes over
the sensors since each sensor ¢ needs to communicate only with its neighbors in order to update Z;. This
is an important practical consideration, especially when tracking the position of moving sensors in real
time, since the coordination of communication/computation over all sensors is expensive and the graph
topology may change; see [16,21,25,28]. Ounly the changing of  needs centralized coordination among
all sensors, but this needs to be done only infrequently. For tracking, p can conceivably be held fixed at
a small value, especially when sensors are moving slowly relative to the frequency of computation and
one-hop communication.

In the noiseless case (0 = 0), the LPCGD method with p = 0 computes an interior solution of the
ESDP relaxation (4) within a desired accuracy.

7 Implementation and simulation results

In this section, we describe an implementation of the LPCGD method of Section 6 and present simulation
results for the p-ESDP relaxation (23), as solved by the LPCGD method, and compare them with those
for the ESDP relaxation (4), as solved by an interior-point method [33], and for the SOCP relaxation, as
solved by the SCGD method in [34, Section 8].

7.1 Problem generation

To facilitate comparison with existing work, we follow [8,9,34,36] and generate xtlme, - ,a::;ue indepen-
dently according to a uniform distribution on the unit square [—.5,.5]?, and set m = 0.9n (i.e., 10% of

the points are anchors), A = {(i,j) : ||a:;me || < rr}, and

true
— .

J
true true

dig =llz;  —x; |l-[1+e5 -0l V(i,j) €A,

where €;; is a random variable, rr € (0,1) is the radio range, and o € [0,1] is the noisy factor. As
in [8,9,34,36], each ¢;; is normally distributed with mean 0 and variance 1, and we use the parameter
values of ¢ = 0,.001,.01 and rr = .06 for n = 1000, 2000, rr = .035 for n = 4000, rr = .02 for n = 10000;
see Table 1. While an additive Gaussian noise model is standard, the standard deviation is often assumed
to be independent of the distances [15, Eq. (3a)—-(3d)], [21, Section 6]. Still, for radio signal, the standard
deviation increases with distance and the above noise model seems reasonable [38].

7.2 Implementation of the LPCGD method
We coded in Fortran-77 the LPCGD method of Section 6, with initial g = 10 and

final _ 7 if n > 10_7;
=101, = . =0.5, w=0.1. 37
Iz Y(w) {10_7 i < < 107, B (37)
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P n o [ Al
1 | 1000 0 5063
2 | 1000 .001 5288
3 | 1000 .01 5212
4 | 2000 0 21122
5 | 2000 .001 | 21070
6 | 2000 .01 | 20897
7 | 4000 0 29547
8 | 4000 .001 | 29342
9 | 4000 .01 | 29892

10 | 10000 0 61124

11 | 10000 | .001 | 61038

12 | 10000 | .01 | 61124

Table 1: Input parameters for the test problems. (rr = .06 for n = 1000, 2000, rr = .035 for n = 4000, rr = .02
for n = 10000.)

We choose i in Step 1 in a cyclic order, compute D; using a Cholesky factorization of HZP(Z), and
decrease pu by a factor of 10 in Step 2. These choices were made with little experimentation and can
conceivably be improved. As in [34], initially z; = xzm + A;, with the components of A; randomly
generated from the square [—.2,.2]%. We then set y;; = ||z;||> + 1 and y;; = =] z;.

Since the Gaussian distribution has unbounded support, the condition p > |§] for p-ESDP is not
guaranteed to hold for a fixed p > 0. On the other hand, the tail of the Gaussian beyond 2 standard
deviations is below 5% and, in particular, Prob(le;;| < 2) = .9545.. Thus we will estimate |d;;| under the
assumption that |e;;| < 2. We have

true true

|5ij| = |dz2j_||$i — T ||2|
1
= 421 -
e (1+€z’j'0)2‘
1
< d}max|l - ——
ulrﬂsz 1+1-0)2

- & (@)

where the last equality is obtained by dividing into two cases ¢ € [0, 2] and ¢ € [-2, 0] and comparing the

respective maximum found (at ¢ = 2 and ¢t = —2). Accordingly, we set
=d? L 1 i,7) € A
Pii =i \ A= a5) ~ V(i,j) € A, (38)

where 0 < 6 < % is our estimate of 0. If & > o > 0, then p;; > |J;;| for over 95% of the edges on average.
For each Z found by our LPCGD code, we judge a sensor i to be accurately positioned if

tri(Z) < (ao + a16) di’, (39)

where d; := Ile > jen(s dij and ag, ay are positive constants. This is patterned after the trace test used
for SOCP relaxation [34, Section 9]; see also (40). Here, the distance is squared so that (39) is invariant
under scaling of the points and distances. The test (39) is justified by Proposition 2, Theorems 1 and 4,
and the remark following (36). Specifically, when 6 = 0 and we set 6 = 0, we have Z approximately equal
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to some Zo € ri(S?, ) and, by Proposition 2 and Theorem 1, i € Z°  if and only if tr;(Zo) = 0, implying
tr;(Z) =~ 0. When ¢ # 0 is sufficiently small and we set 6 such that |§| < p and p is sufficiently small,
we have from Theorem 4(a) that i € Z° o, if and only if tr;(ZP9) is sufficiently small, implying tr;(Z) is
sufficiently small. We settled on the constants of ag = 0.01 and a; = 30 after some experimentation.

7.3 Simulation results

In Table 2, we compare the p-ESDP relaxation (23), as solved by LPCGD method, with an SOCP
relaxation, as solved by the SCGD method [34, Section 8] and the ESDP relaxation (4), as solved by a
primal-dual interior-point method, namely, SeDuMi (Version 1.05) by Jos Sturm [33]. In the LPCGD
method, we assume knowledge of o and set 6 = o. As in [34, Section 9], for each interior SOCP solution
T1,. .., %m, (Yij),j)eA found, a sensor i is judged to be accurately positioned if there exists a j € N (i)
satisfying

[l — 25112 — g5 | < 10-7dy, (40)

(with z; = x:-me for ¢ > m). For each interior ESDP solution Z found, a sensor ¢ is judged to be accurately
positioned if (39) is satisfied. Although Example 2 shows that (39) may wrongly judge a sensor to be
accurately positioned when there is noise, in our simulation this test showed good predictive power.
Analogous to [34, Section 9], we denote by ma,p, the number of sensors that are judged to be accurately
positioned. We check the accuracy of these computed positions by computing the maximum error between
them and the true positions:
errap =  max ||z — x;m []-

i accurately
positioned

For comparison, we also compute the maximum error and the root-mean-square deviation between com-
puted positions and true positions of all sensors:

true
err = max |lz;—z; |,
i=1,...,m
1

1 m 2
true
RMSD = (E E ||;L'z—£L'z ||2> .
=1

In Table 2, we report the number of iterations and the cpu time (in seconds) for LPCGD, SCGD,
and SeDuMi on the test problems from Table 1. For each solution found, we report may, erryp, err, and
rusp. For LPCGD and SCGD, the number of iterations is shown in ten thousands. Like LPCGD, SCGD
is coded in Fortran, while SeDuMi is coded in C. SeDuMi is interfaced with a Matlab code, written by
Wang et al. [36], that constructs the SDP data in SeDuMi format from the anchor positions and distance
measurements. The code further drops some edges (7, j) € A® to keep the number of neighboring sensors
below a user-specified threshold, suggested to be between 5 and 10. We set the threshold to 5 for faster
solution time; also see [18, Section 5]. The total time cpu shown includes the time to run the interface,
as well as the SeDuMi run time (which is indicated by cpug). The results in Table 2 are obtained using a
2006 version of the Matlab interface, sent to the second author by Yinyu Ye in a private communication,
instead of the current public-domain version available from http://www.stanford.edu/ yyye/. This is
because the 2006 version does not postprocess the ESDP solution using local improvement and includes
yi; in its output, thus allowing for a direct comparison of p-ESDP solution with ESDP solution and a
test of solution accuracy using trace. We distinguish the two versions by the suffixes “I06” and “I08”. A
comparison of LPCGD with SeDuMi-I08 is given in the next subsection on refining solutions using local
improvement. The Fortran codes were compiled by Gnu F-77 compiler (Version 3.2.57). All codes were
run on an HP DL360 workstation, under Red Hat Linux 3.5 and installed with Matlab Version 7.2.
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p-ESDP (LPCGD)

SOCP (SCGD)

ESDP (SeDuMi-106)

P | iter*/cpu/map /errap/err/rusp | iter* /cpu/mag [errap/err/rusp | iter/cpu(cpug)/map/erray /err /rRmsp
1 66/7/662/1.70-3/ 13/1.7e-2 207/13/385/4.1e-4/.14/2.60-2 23/182(104)/669/2.1e-3/.12/1.70-2
2 52/6/667/4.1e-3/.18/2.4e-2 500/34/443/2.2¢-3/.19/3.3¢-2 22/177(93)/736/3.4¢-3/.18/2.2¢-2
3 43/5/660/2.2¢-2/.10/1.7¢-2 603/40/438/6.3¢-3/.12/2.2¢-2 19/119(42)/720/3.1e-2/ 11/1.7e-2
4| 110/26/1762/3.1e-4/.04/1.7¢-3 547/83/1463/8.8¢-5/.10/9.6e-3 21/1145(397)/1742/3.9¢-4/.03/1.4e-3
5| 81/19/1729/1.7¢-3/.05/2.6¢-3 843/122/1500/2.70-3/.11/9.9e-3 | 21/1196(457)/1758/1.8¢-3/.05/2.2¢-3
6 | 89/20/1699/1.46-2/.05/5.56-3 | 2307/324/1556/2.2¢-2/.07/9.0e-3 |  21/966(233)/1746/2.4e-2/.05/4.50-3
7 | 192/36/3440/2.8¢-4/.03/8.1c-4 | 1003/110/2913/3.9e-4/.04/4.2¢-3 | 21/3296(660)/3250/8.10-4/.03/1.4¢-3
8 | 158/29/3340/1.16-3/.11/5.8¢-3 | 1271/136/2859/2.2¢-3/.11/8.2¢-3 | 19/3057(496)/3313/2.2¢-3/.09/5.1¢-3
9 | 144/27/3396/1.9¢-2/.08/5.80-3 | 3156/337/3046/7.4¢-3/.08/8.4¢-3 | 21/3157(529)/3458/2.2¢-2/.08/4.9¢-3
10 | 435/77/7844/2.3¢-3/.05/3.00-3 | 2016/278/6397/4.9e-4/.05/4.40-3 | 20/16411(1297)/6481/2.5¢-3/.04/2.6¢-3
11 | 389/69/8117/2.5¢-3/.04/2.2¢-3 | 3658/373/6569/1.5¢-3/.04/3.8¢-3 | 19/16317(1096)/7960/1.7¢-3/.04/2.4¢-3
12 | 354/63/8336/1.0e-2/.05/3.7e-3 | 5706/584/7176/5.7e-3/.05/4.4-3 | 20/16368(1264)/8593/8.7¢-3/.04/3.0¢-3

Table 2: Comparing p-ESDP, SOCP, and ESDP as solved by LPCGD, SCGD, and SeDuMi-106, respectively.
cpu times are in seconds. In the LPCGD and SCGD columns, iter* represents iterations in ten thousands. In the
SeDuMi-I106 column, cpu and cpug denote the total time to solve ESDP and the time to run SeDuMi, respectively.

We see from Table 2 that LPCGD is generally faster than SCGD and much faster than SeDuMi-106.
The accuracy of the solutions found by LPCGD is generally better than solutions found by SCGD (i.e.,
Map is larger, erry, is comparable, err and ruso are lower) and almost comparable to solutions found
by SeDuMi-106, though the later tends to have lower RMSD. This is also illustrated in Figure 2. Notice
that the cpu time for LPCGD increases about linearly with n.

p-ESDP (LPCGD)

G | iter*/cpu/map/errap/err/rmsp
005 | 44/4.7/637/1.4-2/.14/2.0e-2
01 39/4.3/660/1.9e-2/.14/2.2¢-2
02 35/3.9/686/2.8¢-2/.14/2.3¢-2

005 | 41/4.8/674/1.1e-2/.19/2.7¢-2
01 37/4.4/704/2.0e-2/.19/2.8¢-2
.02 34/4.0/733/3.1e-2/.19/3.0e-2
015 | 40/4.6/674/2.4¢-2/.11/1.8¢-2
.02 37/4.3/686/2.9e-2/.11/1.9¢-2

wlw|w| |||~~~

.03 34/3.9/703/3.7e-2/.11/2.1e-2

Table 3: Comparing p-ESDP, as solved by LPCGD, for varying &. cpu times are in seconds. iter* represents
iterations in ten thousands.

In Table 2, we set 6 = o, which may be restrictive since it assumes an accurate knowledge of ¢. In
Table 3, we report the performance of p-ESDP on the first three problems from Table 1 with varying 6.
Not too surprisingly, when ¢ is larger than o, err and err,; are larger. Intuitively, as ¢ increases, each
pij increases according to (38), and S::dp expands. Then, the Z found by LPCGD, a sort of “center”
of this set, would tend to be further away from Z"“e, and err would increase. On the other hand, the
number of iterations and the cpu time for LPCGD decreases with increasing &.

We next compare p-ESDP, SOCP, and ESDP in the presence of high noise. We consider an example
used in [5,34] of 60 sensors, 4 anchors (at (+.45,+.45)), rr = 0.3, and o = 0.1, 0.2. For LPCGD, we
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Figure 2: The left figure shows the anchor (“o”) and the solution found by LPCGD for problem 3 in Table 1
(n = 1000, ¢ = .01). Each sensor position (“”) found is joined to its true position (“#”) by a line. The right
figure shows the same information for the solution of ESDP found by SeDuMi-I06 for the same problem.

choose p;; as in (38) with 6 = o. The results are reported in Table 4. We see from Table 4 that the
solution accuracy is comparable for all three convex relaxations.

p-ESDP (LPCGD)

SOCP (SCGD)

ESDP (SeDuMi-106)

o | iter/cpu/map/errap/ err/rmsp | iter/cpu/map/errap/ err/rmsp | iter/cpu(cpug)/map/errap/ err/rmsp
0.1 | 24240/0.3/58/2.1e-1/.32/7.9e-2 | 995811/7.7/51/1.1e-1/.28/7.4e-2 12/2.9(1.9)/60/3.1e-1/.31/8.7e-2
0.2 | 24910/0.3/51/2.5e-1/.35/1.1e-1 | 1180512/8.3/47/1.7e-1/.35/1.1e-1 12/1.9(1.4)/60/3.4e-1/.34/1.0e-1

Table 4: Comparing p-ESDP, SOCP, and ESDP as solved by LPCGD, SCGD, and SeDuMi-106, respectively, on
small problems with high distance measurement noise.

Lastly, we solved the ESDP relaxation from Example 2 (with noise € = 0.01) using SeDuMi-I06.
When the termination tolerance par.eps in SeDuMi is set to le-3, it outputs a Z with tra(Z) = 0.232 and
x2 = (0,0.876). When par.eps is decreased to le-7, it outputs a Z with tro(Z) = 0.011 and x5 = (0, 0.994).
When par.eps is further decreased below le-7, SeDuMi encounters numerical difficulty. Thus, in the
presence of distance measurement noise, the solution obtained by solving SDP /ESDP to a higher accuracy
can be more misleading of the true sensor position (when proximity to the true position is measured by

individual trace)!

7.4 Refinements

When the graph G is dense, Wang et al. [36] proposed removing some of the edges joining sensors so
as to keep the number of neighboring sensors below a user-specified bound degy4, say, 5 or 10. This
can significantly speed up the ESDP solution time without significantly compromising solution accuracy.
Such preprocessing was also used by Nie [26] and Kim, Kojima, Waki [18] in solving sparse SOS relax-
ations. We have implemented this preprocessing for LPCGD. In fact, since LPCGD updates each sensor
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position using only information from its neighbors, removed edges can be added back dynamically. We
experimented with two versions: Version I does not add back edges. Version II in Step 2 of LPCGD
(when p is decreased) adds back those edges (i,7) € A* with [€;;(Z) — di;| > 0, where y;; is chosen to
minimize this quantity subject to Zy; j m+} = 0. We denote these two versions by LPCGD(degy,4,I) and
LPCGD(degyq,1I), respectively. In our tests, we set deg, 4 to be either 5 or m.

As in [5,10,18,20], local improvement heuristics can be used to refine the solution found by LPCGD
and improve its RMSD. In [5], a steepest descent method is applied to locally minimize the error function

FX) =Y (e — a5l - dig)*.

(i,j)eA

To maintain the distributed nature of our method, we apply a block-coordinate steepest descent method
to locally minimize f. At each iteration, the method chooses an i € {1,...,m} with ||V,, f(X)| > 1073
and updates x; by

i + o — aVe, f(X),

and the stepsize « is chosen by an Armijo rule analogously as in Step 1 of LPCGD. We experimented
with two versions: Version A omits updating z; if x; is judged to be accurately positioned by the trace
test (39). Version B makes no such omission.

LPCGD(5,]) LPCGD(5,II) LPCGD(m,I)
P | cpu/rmsp/cpu,/ruspa/cpup/rRMspp | cpu/rmsp/cpu 4 /rMspa/cpug/rMspp | cpu/rMsp/cpu 4 /rMsp4/cpug/rRMsDRB
1 2/2.60-2/2/2.1e-2/2/2.1e-2 7/1.8e-2/7/1.9¢-2/7/1.8e-2 7/1.7e-2/7/2.1e-2/7/2.0e-2
2 2/3.46-2/2/2.5e-2/2/2.6e-2 6/2.4¢-2/6/2.8¢-2/6/2.8¢-2 6/2.46-2/6/2.8¢-2/6/2.8e-2
3 1/3.1e-2/1/1.9¢-2/1/1.8¢-2 4/1.7e-2/4/1.1e-2/4/9.0e-3 4/1.7e-2/4/1.1e-2/5/9.1e-3
4 4/9.4¢ 3/4/4.6-3/4/4.9¢ 3 24/1.8¢-3/24/4.0e-5/24/6 9¢ 5 25/1.7¢-3/25/4.5¢ 5/25/5.4e 5
5 3/7.36-3/3/4.4¢-3/3/4.3¢-3 18/2.6e-3/18/2.46-3/18/2.4e-3 10/2.60-3/19/2.4¢-3/19/2.4e-3
6 2/1.36-2/2/5.5¢-3/2/3.9e-3 19/5.5¢-3/19/2.46-3/19/1.0e-3 20/5.56-3/20/2.4¢-3/20/1.0¢-3
7 10/7.8¢-3/10/3.2¢-3/10/3.3¢-3 35/7.8e-4/35/8.2e-4/35/8.3e-4 36/8.1e-4/36/9.9¢-4/36/8.3e-4
8 7/1.1e-2/7/7.0e-3/8/7.3¢-3 28/5.8¢-3/28/5.9¢-3/28/5.9e-3 28/5.8¢-3/28/5.9¢-3/28/5.9¢-3
9 6/1.0e-2/6/4.9¢-3/6/5.9¢-3 24/5.8¢-3/24/5.0e-3/24/4.7e-3 27/5.8¢-3/27/5.0e-3/27/4.7e-3
10 24/6.6¢-3/24/3.8¢-3/25/3.5¢-3 71/3.0e-3/71/3.5¢-3/71/3.5¢-3 77/3.0e-3/77/3.5e-3/77/3.5¢-3
11 23/7.5¢-3/23/3.1e-3/24/3.1e-3 67/2.2¢-3/67/1.7¢-3/67/1.8¢-3 69/2.2¢-3/69/1.8¢-3/69/1.8¢-3
12 17/6.6e-3/17/4.0e-3/18/3.9¢-3 59/3.7¢-3/59/3.7¢-3/60/3.7¢-3 63/3.7¢-3/63/3.7¢-3/63/3.7¢-3

Table 5: Comparing the time and solution RMSD for LPCGD with refinements on the problems from Table 1.

We applied LPCGD with the preceding two refinements to the problems in Tables 1 and 4. For
LPCGD, we choose p;; as in (38) with 6 = 0. The cpu times (in seconds) and the solution RMSD are
reported in Tables 5 and 6. Here, cpu denotes the time to run LPCGD and rumsp denotes the RMSD of
the resulting solution; cpu, denotes the time to run LPCGD with version A of local improvement, and
ruspy denotes the RMSD of the resulting solution; cpug and srmspp have analogous meanings. We see
from Tables 5 and 6 that LPCGD(5,]) is signficantly faster than LPCGD(5,IT) and LPCGD(m,I), but
its solution RMSD is generally higher. Thus, if speed is more important than solution accuracy, then
LPCGD(5,I) would be preferrable. Otherwise, either LPCGD(5,II) or LPCGD(m,I) should be used. Not
surprisingly, version A of local improvement is faster than version B. In the presence of low noise or no
noise, the improvements in RMSD obtained by the two versions are comparable and somewhat marginal;
see Table 5. However, in the presence of high noise, version B tends to yield a significantly lower RMSD;
see Table 6. These improvements in the RMSD are also illustrated in Figures 3 and 4.
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LPCGD(5,I) LPCGD(5,11) LPCGD (m,])
o | cpu/rmsp/cpu, /rmsp4/cpug/ruspp | cpu/rmsp/cpu, /rmspa/cpug /ruspp | cpu/rmsp/cpu, /rMspa/cpug /rRMsDR
01| .06/16e-1/.06/1.4e-1/.09/2.1e-2 26/7.9¢-2/.27/7.56-2] 27/2.1e-2 33/7.9¢-2/.33/6.5e-2/.33/2.1e-2
02 | .06/15e-1/.07/1.3e-1/.08/8 1e-2 27/1.1e-1/.27/9.4e-2/.28/9.3¢-2 33/1.1e-1/.33/9.5e-2/.34/9.3¢-2

Table 6: Comparing the time and solution RMSD for LPCGD with refinements on the problems from Table 4.

Lastly, we compare LPCGD(5,IT) with SeDuMi-I08, which also has a local improvement heuristic for
refining the ESDP solution, as well as SeDuMi-I06, which does not have such a heuristic. We generate
six problem instances using the same input parameters as problems 1-3 and 7-9 in Table 1. We set
degree bound to 5 for SeDuMi-106 and SeDuMi-I08. The results are reported in Table 7. For SeDuMi, we
also report the SDP objective value (“obj”) for comparison. We see that SeDuMi-I08 is roughly 1.1-2.2
times faster than SeDuMi-106 while LPCGD(5,IT) is much faster than both. The solution RMSD found
by SeDuMi-I08 tends to be lower, however. The SeDuMi-08 run times are higher than those reported
in [36, Table 5.3], which may be explained by the older server we use. The objective values and RMSD
found by SeDuMi-I08 are consistently higher than those reported in [36, Table 5.3]. We do not yet have
an explanation for this.

p-ESDP (LPCGD(5,II)) ESDP (SeDuMi-106) | ESDP (SeDuMi-I08)

n g cpu/rmsp/cpuy /rmspa /cpup/rMspp | cpu(cpug)/obj/rusp cpu(cpug)/obj/rmsp
1000 0 8/2.2e-2/8/2.3e-2/8/2.3e-2 169(87)/4.6e-2/2.0e-2 102(38)/4.7e-2/1.5e-2
1000 | .001 5/3.6e-2/5/4.1e-2/5/4.1e-2 158(76)/3.9e-2/3.4e-2 100(38)/3.9¢e-2/3.4e-2
1000 | .01 4/2.00-2/4/1.66-2/4/1.56-2 128(48)/6.0e-2/1.7-2 | 97(35)/5.50-2/1.1e-2

4000 0 34/5.7e-3/34/5.5e-3/34/5.5e-3 3118(482)/5.1e-2/6.1e-3 | 2419(348)/5.1e-2/5.1e-3

4000 | .001 30/3.2e-3/30/3.2e-3/30/3.3e-3 3166(589)/5.7e-2/3.3e-3 | 2566(509)/5.5e-2/3.3e-3

4000 | .01 29/6.5e-3/29/6.9e-3/29/6.9¢-3 3177(527)/1.3e-1/5.8e-3 | 2318(285)/1.1e-1/8.0e-3

Table 7: Comparing the time and solution RMSD for LPCGD(5,IT) and SeDuMi on randomly generated problems
with n = 1000, rr = .06 and n = 4000, rr = .035, with varying noisy factor o.

8 Extensions and open questions

Instead of absolute error in (1), squared error can also be used, as in [5,10,11,19,26]. Our results can be
extended accordingly.

Can our analysis and method be extended to the sparse SOS relaxations studied in [18,26]7 Can
they be extended to incorporate upper and lower bounds on the distances [10,19], and angle of arrival
(AoA) information [4,23,25]? It has been shown in [4] and [3, Chapter 5] that the SDP relaxation (2)
can be extended to incorporate AoA information, but the resulting SDP appears more difficult to solve;
see [4, Section 5] and [3, Section 5.3.2].

Can Theorem 1 be extended to the SDP relaxation (2)? Does {Zp’a} converge as |§| < p = 0 and,
if yes, what is the limit? Despite Example 2, can the zero trace test for SDP/ESDP solutions, as used
in [9, Section 2] and [10, Section 3] (also see the ESDP column in Table 2), be justified theoretically when
there is noise?
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Figure 3: The left figure shows the anchor (“o”) and the solution found by LPCGD for problem 1 in Table 6
(m = 60, o = 0.1). Each sensor position (“”) found is joined to its true position (“+”) by a line. The right figure

shows the same information for the solution found by LPCGD(m,I) using Version B of local improvement.
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