AN IMPLEMENTABLE ACTIVE-SET ALGORITHM FOR
COMPUTING A B-STATIONARY POINT OF A MATHEMATICAL
PROGRAM WITH LINEAR COMPLEMENTARITY CONSTRAINTS:
ERRATUM*

MASAO FUKUSHIMAT AND PAUL TSENGH

Abstract. In [3], an e-active set algorithm was proposed for solving a mathematical program
with a smooth objective function and linear inequality/complementarity constraints. It is asserted
therein that, under a uniform LICQ on the e-feasible set, this algorithm generates iterates whose
cluster points are B-stationary points of the problem. However, the proof has a gap and only shows
that each cluster point is an M-stationary point. We discuss this gap and show that B-stationarity
can be achieved if the algorithm is modified and an additional error bound condition holds.
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1. Introduction. In a recent paper by the authors [3], an e-active set algo-
rithm was proposed for solving the following mathematical program with equilibrium
constraints (MPEC):

subject to G;(z) >0, i=1,...,m,

" H;(z) >0, i=1,...,m,
Gi(2)H;i(z) =0, i=1,...,m,

g9;(2) <0, Jj=1...,p

hi(2) =0, l=1,...,q,

where f is a real-valued continuously differentiable function on " and G, H;, g;, by
are real-valued affine functions on R". In Theorem 4.1(a) of [3], it is asserted that
every cluster point of iterates generated by the algorithm is a B-stationary point of
(1). However, the proof has a gap and only shows that every cluster point is an
M-stationary point. We will discuss this gap and a modified algorithm that achieves
B-stationarity under an additional error bound condition.

The gap occurs on [3, page 734] in the line “If v, — 0, then |K'| = o0, §;, — 0, and
the updating formula for €; would imply €; — 0, so any cluster point z of {2}
would be a KKT point of the relazed problem R(Z), which is a B-stationary point of
MPEC (1) under the uniform LICQ.” In particular, we have for all k¥ € X' that
(2) v >~y and wk > -y, Vie AFnBF,
where A%, B¥ are given by [3, Eq. (7)] and v¥, w* are multipliers associated with z*

%

(see [3, Egs. (5), (6)]).! Thus, if a subsequence {£*}rcxcr (K" C K') converges to
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some Z, then by further passing to a subsequence if necessary, we can assume that
the index sets A* and B* are constant (i.e., A* = A, B¥ = B for some A, B) for all
k € K". Since z satisfies the uniform LICQ, {(vF);c 1, (wF);c5}trexr also converges

to some (0;);c 4, (Wi);e5-> By (2),
;>0 and w; >0 Vi€ ANB.

This together with [3, Egs. (5), (6)] implies that z is an M-stationary point (see [4, 5]
and (5)). If in addition

3) ANB = A(2) N Boy(2),

then z is a B-stationary point of (1). In general, however, we can only assert that
AN B C Ap(2) N By(Z). This is the gap.

2. A modified e-active set algorithm. We now describe a way, based on an
active set identification approach of Facchinei, Fischer, and Kanzow [1], to modify the
e-active set algorithm so that (3) holds under an additional error bound condition.
To simplify the notation, we will consider only the complementarity constraints, i.e.,
we assume p = ¢ = 0 in (1). The general case can be treated analogously. The
Lagrangian associated with (1) is

m

L(z,v,w) == f(2) + Y _(Gi(2)vi + Hi(2)w;).

i=1

We assume that there exists a computable continuous function R : " x £™ x
R™ — [0, 00) providing a local Holder error bound at each M-stationary point Z, i.e.,
there exist scalars 7 > 0, v > 0, and § > 0 (depending on %) such that

) ||(z,v,w) — (z,0,@)|| < TR(z,v,w)" whenever ||(z,v,w) — (Z,7,D)|| <4,

where the multiplier vectors 7, w satisfy

N ’l_Jz'LGz'(Z)ZO NTT (5) v;w; > 0, .
VZL(ZJUJw)_OJ {U_)zJ_HZ(Z)ZO}, GI(Z)HZ(Z)_OJ {,l—}izoor 'U_JZZO} VZ‘
(5)

Here, a L b means ab = 0. Due to uniform LICQ, ¥,w are uniquely determined by Z.
In fact, (5) characterizes M-stationarity for any z € R”. We also assume that

(6) R(z,v,w) =0 <= (z,0,w) satisfies (5).

The “residual” function R(z,v,w) can be constructed analogous to the NLP and
NCP cases [1, 2]. In particular, consider

7 FEvw) = IV-Levwl+ >~ (Imin{Gi(2), [oil}] + | min{ Hi(2), |}
i=1
+ |Gi(2)Hi(2)| + | min{0, v;w; }| + |min{0,v,~}min{0,w,~}|).

2This follows from [3, Eq. (6)], ||Ir*||1 < 6% — 0 (see [3, Eq. (5)]), and the fact that if b¥ = CkuF
for all k and b* — b € R9, C*¥ — C € RI*P with C having linearly independent columns, then
u* — 4 € RP with u being the unique solution of b = Cu.
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Then, R is continuous and satisfies (6). Arguing as in the proof of Cor. 6.6.4 in [2], we
have that the local error bound (4) holds if the M-stationary point Z is isolated and
f and V[ are continuous and subanalytic (G and H, by being affine, are automati-
cally continuous and subanalytic). A referee suggests that the assumption of z being
isolated is benign when G and H are affine. In particular, it is readily shown that the
M-stationary points of (1) are isolated if f is strictly convex on the null space of the
active constraint gradients. Alternatively, it can be shown that the local error bound
(4) holds with v = 1 if a certain 2nd-order sufficient condition holds at z. This is a
topic for further research.
Using (4), (6) and following [1, 2], the function

O(z,v,w) := —1/log(min{ R(z,v,w),0.9})

has the active set identification property that, for any M-stationary point z and
corresponding multiplier vectors v, w, we have

Gi(z) [0 ifGiz) =0,
(zww)—(z0,0) O(z,0,w) | oo if Gi(2) >0,
and similarly with “G;” replaced by “H;”. Let us define
= . Gi(2*)
Ak = e{l,... "1 <1
(i€ b et <1
H;(2%)

IA

B = {z e{l,...,m}: 1} ,

where the ith component of v* is v¥ if i € A* and is zero otherwise (and w* is
defined analogously). Since (2%, v*, w) satisfies [3, Eqs. (4)-(6)], if (2) holds, then
R(2*,v* w*) would tend to zero as 2¥ — z and e, 0y, vx tend to zero and, for 2%
sufficiently near 2, we would have (v*, w*) sufficiently near (v,w) (due to [3, A2]) and

O(zF, vk, wk)

(8) Ak = A¢(2), B" = By(2),
as well as
9) A (%) 2 Ak 2 A* B.(#%) D B¥ D BF,

where € > 0 is defined as in [3] (see page 727 therein).? Let

(10) € 1= max {ek,maxGi(ﬁk), maxH,-(ék)} .

i€ Ak i€B¥
Since & > €, [3, Eq. (4)] implies that 2% € F¢, [A¥, B¥] for all k. In fact, it can be
seen that 2* remains an approximate KKT point of the subproblem [3, Eq. (3)] (in the
sense of [3, Eqs. (4)-(6)]) when e, is replaced by &, and A*, B* are correspondingly
replaced by Ag, (2%), Bz, (£%). Thus, we can modify Step 2 of the e-active set algorithm
by possibly making this replacement when we are in case (c) and (9) holds.

THE MODIFIED €-ACTIVE SET ALGORITHM FOR MPEC (1).

3The first containment in (9) holds whenever ©(2*,v* w*) < ¢, which in turn holds whenever
R(zF, vk, wk) is sufficiently small. By (8) and [3, Eq. (7)], the second containment in (9) holds
whenever Ag(Z) D Ae, (£%), which in turn holds whenever z* is near Zz and e is sufficiently small.
The other two containments can be argued similarly.
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This is the same as the e-active set algorithm in [3, pp. 730-731], except that
when we are in case (c) in Step 2, we do the following: If

(11) (9) holds, A*NB* £ A*NBk & <e

(€ is a threshold which initially can be any positive scalar below €), then
repeat Step 2 with € replaced by &, (and with A¥ B* redefined accordingly,
i.e., they are replaced by A, (2%), Bz, (2%) in Step 2, (9), (11)), and update
€ < €/2. Otherwise, if €, < €01 and v < vgo1, then terminate; otherwise,
determine vy, and ¥ by [3, Eq. (14)], and proceed to Step 3.

If (11) holds, then €, < &,* which in turn implies A¥ = A, (3%) and B* =
B¢, (2%).5 Thus, when Step 2 is repeated, the second relation in (11) is violated.

THEOREM 2.1. Under assumptions [3, A1-A3], the following results hold for the
sequence {(2F, 2% 2% er,vi)} generated by the modified e-active set algorithm, with
K := {k : at iteration k, Step 2 is repeated}.

(a) Suppose that each M-stationary point zZ of MPEC (1) that is not B-stationary
satisfies (4), where (0,®) satisfies (5) and R satisfies (6). If eg > 0, vo > 0, €1 =
o1 = 0, f is Lipschitz continuous with constant L on a set Z containing {z*} and
{z*}, and |K| < oo (respectively, |K| = o), then € | 0, vy | 0, and every cluster
point of {2¥} (respectively, {2*},cx) is a B-stationary point of MPEC (1).

_ (b) Ifeo =9 =0 and f is quadratic, then there exists a k € {0,1,...} such that
2k is a B-stationary point of MPEC (1).

Proof. The first paragraph of the proof is identical to the proof of [3, Thm. 4.1], ex-
cept we define K := {k : We enter Step 3 from case (a) or (b) in Step 2 at iteration k}
and K' := {k : We enter Step 3 from case (c) in Step 2 at iteration k}. The proof of
(b) is identical to the proof of [3, Thm. 4.1(b)]. We prove (a) below.

(a) Suppose vy — 0. Then |K'| = oo, d; — 0, and the updating formula for €
and € imply €; — 0, so any cluster point z of {#*};cx: is an M-stationary point of
MPEC (1). First, suppose |[K| < oo, so that € > 0 is constant after a while. Let
{8¥} ke (K" C K') be any subsequence converging to 2. Since [3, Eqs. (4)-(6)] and
(2) hold for all £ € K", we have from [3, A2] and the same argument as in Section
1 that {(v*,w*)}rexr — (0,w) satisfying (5). By (6), R(z,9,w) = 0. Since R is
continuous, {R(2*,v* w¥)}rexr — 0. If Z is not B-stationary for (1), then the error
bound (4) would hold and this would imply that (8) and (9) hold for all ¥ € K"
sufficiently large. Moreover, {€;}rex» — 0, so that &, < € for all k € K" sufficiently
large. Thus, at each such iteration k¥ € K", we would have upon entering Step 3 that
Ak N B* = A* N B* (since (11) must be violated). Then it would follow from (2) and
(8) that z is a B-stationary point of (1), a contraction. Second, suppose |K| = oo.
Then, as we discussed earlier, for each iteration k € ICA, the second relation in (11) is
violated upon entering Step 3, i.e., A¥ N B¥ = A¥ N B*. Then, an argument similar
to the one above shows that every cluster point z of {2¥},.x is a B-stationary point
of (1).

4If ¢ = &, then (10) and [3, Eq. (7)] would imply A* C A* and B* C B*, so (9) would yield
Ak = Ak and B* = B*, contradicting (11).
5Why? Since €5 < &, we have from (10) and the definition of A* and B* that

€, = max { max G;(2"), max H;(3%) b < ©(2",v", w").
icAk i€ Bk

Thus, if ¢ ¢ Ak then G;(2%) > ©(3%,v* w*) > &,. By (10),if i € AF then G;(2*) < &,. This shows
that A*¥ = A, (2%). An analogous argument shows that B* = Bg, (2%).
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Suppose instead v, /4 0, so that |[K'| < oo, |K| = 00, and v = limp_,00 v, > 0.
The remainder of the proof is identical to the proof of [3, Thm. 4.1(a)], except that,
due to ¢, being replaced by & in Step 2 for all iterations k € K, instead of [3, Eq.
(22)] we have

FFY) < f(Z%) + 2Ltm(er — exq1 + Ak) VK,

where Ay, := &, if k € K and Ay := 0 otherwise. Since (11) holds at each iteration
k € K and €is halved at each such iteration, it follows that Yoo Ak = Y ke € < 0.
Then it can be argued similarly as in the proof of [3, Thm. 4.1(a)] that {f(z*)}
converges and so on. O

We illustrate the assumptions of Theorem 2.1 with the following example of (1):

minimize f(z) subjectto 21 >0, 22 >0, 2122 =0.

This example satisfies assumption [3, A2] for any € > 0. If f(2) = (22)? (p > 1),
then assumption [3, A1] also holds and each M-stationary point, which is of the form
(21,0) with z; > 0, is B-stationary. If f(2) = 2{ + 22 — 22, then assumptions [3, A1,
A3] also hold and the M-stationary points, (0,0) and (0,1), are isolated with (0, %)
B-stationary. For R given by (7), the error bound (4) holds at (0,0). However, if
f(z) = 22 — 25, then the M-stationary point z = (0,0), with multipliers v = 0,w = —1,
is not B-stationary and is not isolated. Moreover, for any continuous R satisfying (6),
the error bound (4) does not hold at (0,0). This is because, for any fixed § > 0, (9, 0) is
M-stationary with multipliers v = 0,w = —1, so R((d, z2),0,—1) — R(4,0),0,—1) =0
as o — 0. But ||((d,22),0,—1) — ((0,0),0,—1)|| =  as z2 — 0.
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