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Abstract

We consider the NP-hard problem of finding a minimum norm vector in n-dimensional
real or complex Euclidean space, subject to m concave homogeneous quadratic con-
straints. We show that a semidefinite programming (SDP) relaxation for this noncon-
vex quadratically constrained quadratic program (QP) provides an O(m2) approxima-
tion in the real case, and an O(m) approximation in the complex case. Moreover, we
show that these bounds are tight up to a constant factor. When the Hessian of each
constraint function is of rank 1 (namely, outer products of some given so-called steer-
ing vectors) and the phase spread of the entries of these steering vectors are bounded
away from π/2, we establish a certain “constant factor” approximation (depending
on the phase spread but independent of m and n) for both the SDP relaxation and
a convex QP restriction of the original NP-hard problem. Finally, we consider a re-
lated problem of finding a maximum norm vector subject to m convex homogeneous
quadratic constraints. We show that a SDP relaxation for this nonconvex QP provides
an O(1/ ln(m)) approximation, which is analogous to a result of Nemirovski, Roos and
Terlaky [14] for the real case.
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1 Introduction

Consider the quadratic optimization problem with concave homogeneous quadratic con-
straints:

υqp := min ‖z‖2

s.t.
∑

`∈Ii

|hH
` z|2 ≥ 1, i = 1, ...,m,

z ∈ IFn,

(1)

where IF is either IR or IC, ‖ · ‖ denotes the Euclidean norm in IFn, m ≥ 1, each h` is a
given vector in IFn, and I1, ..., Im are nonempty, mutually disjoint index sets satisfying
I1 ∪ · · · ∪ Im = {1, ..., M}. Throughout, the superscript “H” will denote the complex
Hermitian transpose, i.e., for z = x + iy, where x, y ∈ IRn and i2 = −1, zH = xT − iyT .
Geometrically, the above problem (1) corresponds to finding a least norm vector in a
region defined by the intersection of the exteriors of m co-centered ellipsoids. If the
vectors h1, ..., hM are linearly independent, then M equals the sum of the rank of the
matrices defining these m ellipsoids. Notice that the problem (1) is easily solved for the
case of n = 1, so we assume n ≥ 2.

We assume that
∑

`∈Ii
‖h`‖ 6= 0 for all i, which is clearly a necessary condition for

(1) to be feasible. This is also a sufficient condition (since
⋃m

i=1{z |
∑

`∈Ii
|hH

` z|2 = 0} is
a finite union of proper subspaces of IFn, so its complement is nonempty and any point
in its complement can be scaled to be feasible for (1)). Thus, the above problem (1)
always has an optimal solution (not necessarily unique) since its objective function is
coercive, continuous, and its feasible set is nonempty, closed. Notice, however, that the
feasible set of (1) is typically nonconvex and disconnected, with an exponential number
of connected components exhibiting little symmetry. This is in contrast to the quadratic
problems with convex feasible set but nonconvex objective function considered in [13, 14,
22]. Furthermore, unlike the class of quadratic problems studied in [1, 7, 8, 15, 16, 21, 23,
24, 25, 26], the constraint functions in (1) do not depend on z2

1 , ..., z
2
n only.

Our interest in the nonconvex QP (1) is motivated by the transmit beamforming
problem for multicasting applications [20] and by the wireless sensor network localization
problem [6]. In the transmit beamforming problem, a transmitter utilizes an array of n

transmitting antennas to broadcast information within its service area to m radio receivers,
with receiver i ∈ {1, ..., m} equipped with |Ii| receiving antennas. Let h`, ` ∈ Ii, denote
the n × 1 complex steering vector modelling propagation loss and phase shift from the
transmitting antennas to the `th receiving antenna of receiver i. Assuming that each
receiver performs spatially matched filtering / maximum ratio combining, which is the
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optimal combining strategy under standard mild assumptions, then the constraint
∑

`∈Ii

|hH
` z|2 ≥ 1

models the requirement that the total received signal power at receiver i must be above
a given threshold (normalized to 1). This constraint is also equivalent to a signal-to-noise
ratio (SNR) condition commonly used in data communication. Thus, to minimize the
total transmit power subject to individual SNR requirements (one at each receiver), we
are led to the QP (1). In the special case where each radio receiver is equipped with a
single receiving antenna, the problem reduces to [20]:

min ‖z‖2

s.t. |hH
` z|2 ≥ 1, ` = 1, ..., m,

z ∈ IFn,

(2)

This problem is a special case of (1) whereby each ellipsoid lies in IFn and the corresponding
matrix has rank 1.

In this paper, we first show that the nonconvex QP (2) is NP-hard in either the real
or the complex case, which further implies the NP-hardness of the general problem (1).
Then, we consider a semidefinite programming (SDP) relaxation of (1) and a convex QP
restriction of (2) and study their worst-case performance. In particular, let υsdp, υcqp and
υqp denote the optimal values of the SDP relaxation, the convex QP restriction, and the
original QP (1), respectively. We establish a performance ratio of υqp/υsdp = O(m2) for the
SDP relaxation in the real case, and we give an example showing that this bound is tight
up to a constant factor. Similarly, we establish a performance ratio of υqp/υsdp = O(m) in
the complex case, and we give an example showing the tightness of this bound. We further
show that, in the case when the phase spread of the entries of h1, ..., hM is bounded away
from π/2, the performance ratios υqp/υsdp and υcqp/υqp for the SDP relaxation and the
convex QP restriction, respectively, are independent of m and n.

In recent years, there have been extensive studies of the performance of SDP relaxations
for nonconvex QP. However, to our knowledge, this is the first performance analysis of SDP
relaxation for QP with concave quadratic constraints. Our proof techniques also extend
to a maximization version of the QP (1) with convex homogeneous quadratic constraints.
In particular, we give a simple proof of a result analogous to one of Nemirovski, Roos and
Terlaky [14] (also see [13, Theorem 4.7]) for the real case, namely, the SDP relaxation for
this nonconvex QP has a performance ratio of O(1/ ln(m)).
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2 NP-hardness

In this section, we show that the nonconvex QP (1) is NP-hard in general. First, we notice
that, by a linear transformation if necessary, the following problem

minimize zHQz

subject to |z`| ≥ 1, ` = 1, ..., n,

z ∈ IFn,

(3)

is a special case of (1), where Q ∈ IFn×n is a Hermitian positive definite matrix (i.e.,
Q Â 0), and z` denotes the `th component of z. Hence, it suffices to establish the NP-
hardness of (3). To this end, we consider a reduction from the NP-complete partition
problem: Given positive integers a1, a2, ..., aN , decide whether there exists a subset I of
{1, ..., N} satisfying

∑

`∈I
a` =

1
2

N∑

`=1

a`. (4)

Our reductions differ for the real and complex cases. As will be seen, the NP-hardness
proof in the complex case1 is more intricate than in the real case.

2.1 The Real Case

We consider the real case of IF = IR. Let n := N and

a := (a1, . . . , aN )T ,

Q := aaT + In Â 0,

where In denotes the n× n identity matrix.

We show that a subset I satisfying (4) exists if and only if the optimization problem
(3) has a minimum value of n. Since

zT Qz = |aT z|2 +
n∑

`=1

|z`|2 ≥ n whenever |z`| ≥ 1 ∀ `, z ∈ IRn,

we see that (3) has a minimum value of n if and only if there exists a z ∈ IRn satisfying

aT z = 0, |z`| = 1 ∀ `.

The above condition is equivalent to the existence of a subset I satisfying (4), with the
correspondence I = {` | z` = 1}. This completes the proof.

1This NP-hardness proof was first presented in an appendix of [20] and is included here for completeness;

also see [26, Proposition 3.5] for a related proof.
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2.2 The Complex Case

We consider the complex case of IF = IC. Let n := 2N + 1 and

a := (a1, . . . , aN )T ,

A :=

(
IN IN −eN

aT 0T
N −1

2aT eN

)
,

Q := AT A + In Â 0,

where eN denotes the N -dimensional vector of ones, 0N denotes the N -dimensional vector
of zeros, and In and IN are identity matrices of sizes n× n and N ×N , respectively.

We show that a subset I satisfying (4) exists if and only if the optimization problem
(3) has a minimum value of n. Since

zHQz = ‖Az‖2 +
n∑

`=1

|z`|2 ≥ n whenever |z`| ≥ 1 ∀ `, z ∈ ICn,

we see that (3) has a minimum value of n if and only if there exists a z ∈ ICn satisfying

Az = 0, |z`| = 1 ∀ `.

Expanding Az = 0 gives the following set of linear equations:

0 = z` + zN+` − zn, ` = 1, ..., N, (5)

0 =
N∑

`=1

a`z` − 1
2

(
N∑

`=1

a`

)
zn. (6)

For ` = 1, ..., 2N , since |z`| = |zn| = 1 so that z`/zn = eiθ` for some θ` ∈ [0, 2π), we can
rewrite (5) as

cos θ` + cos θN+` = 1,

sin θ` + sin θN+` = 0,
` = 1, ..., N.

These equations imply that θ` ∈ {−π/3, π/3} for all ` 6= n. In fact, these equations further
imply that cos θ` = cos θN+` = 1/2 for ` = 1, ..., N , so that

Re

(
N∑

`=1

a`
z`

zn
− 1

2

(
N∑

`=1

a`

))
= 0.

Therefore, (6) is satisfied if and only if

Im

(
N∑

`=1

a`
z`

zn
− 1

2

(
N∑

`=1

a`

))
= Im

(
N∑

`=1

a`
z`

zn

)
= 0,

which is further equivalent to the existence of a subset I satisfying (4), with the corre-
spondence I = {` | θ` = π/3}. This completes the proof.
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3 Performance analysis of SDP relaxation

In this section, we study the performance of an SDP relaxation of (2). Let

Hi :=
∑

`∈Ii

h`h
H
` , i = 1, ...,m.

The well-known SDP relaxation of (1) [11, 19] is

υ
sdp

:= min Tr(Z)

s.t. Tr(HiZ) ≥ 1, i = 1, ..., m,

Z º 0, Z ∈ IFn×n is Hermitian.

(7)

An optimal solution of the SDP relaxation (7) can be computed efficiently using, say,
interior-point methods; see [18] and references therein.

Clearly υ
sdp
≤ υqp . We are interested in upper bounds for the relaxation performance

of the form
υqp ≤ Cυ

sdp
,

where C ≥ 1. Since we assume Hi 6= 0 for all i, it is easily checked that (7) has an optimal
solution, which we denote by Z∗.

3.1 General steering vectors: the real case

We consider the real case of IF = IR. Upon obtaining an optimal solution Z∗ of (7), we
construct a feasible solution of (1) using the following randomization procedure:

1. Generate a random vector ξ ∈ IRn from the real-valued normal distri-
bution N(0, Z∗).

2. Let z∗(ξ) = ξ/ min
1≤i≤m

√
ξT Hiξ.

We will use z∗(ξ) to analyze the performance of the SDP relaxation. Similar procedures
have been used for related problems [1, 3, 4, 5, 14]. First, we need to develop two lemmas.
The first lemma estimates the left-tail of the distribution of a convex quadratic form of a
Gaussian random vector.
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Lemma 1 Let H ∈ IRn×n, Z ∈ IRn×n be two symmetric positive semidefinite matrices
(i.e., H º 0, Z º 0). Suppose ξ ∈ IRn is a random vector generated from the real-valued
normal distribution N(0, Z). Then, for any γ > 0,

Prob
(
ξT Hξ < γE(ξT Hξ)

)
≤ max

{√
γ,

2(r̄ − 1)γ
π − 2

}
, (8)

where r̄ := min{rank (H), rank (Z)}.

Proof. Since the covariance matrix Z º 0 has rank r := rank (Z), we can write Z = UUT ,
for some U ∈ IRn×r satisfying UT ZU = Ir. Let ξ̄ := QT UT ξ ∈ IRr, where Q ∈ IRr×r is an
orthogonal matrix corresponding to the eigen-decomposition of the matrix

UT HU = QΛQT ,

for some diagonal matrix Λ = Diag{λ1, λ2, ..., λr}, with λ1 ≥ λ2 ≥ ... ≥ λr ≥ 0. Since
UT HU has rank at most r̄, we have λi = 0 for all i > r̄. It is readily checked that ξ̄ has
the normal distribution N(0, Ir). Moreover, ξ is statistically identical to UQξ̄, so that
ξT Hξ is statistically identical to

ξ̄T QT UT HUQξ̄ = ξ̄T Λξ̄ =
r̄∑

i=1

λi|ξ̄i|2.

Then, we have

Prob
(
ξT Hξ < γE(ξT Hξ)

)
= Prob

(
r̄∑

i=1

λi|ξ̄i|2 < γE

(
r̄∑

i=1

λi|ξ̄i|2
))

= Prob

(
r̄∑

i=1

λi|ξ̄i|2 < γ
r̄∑

i=1

λi

)
.

If λ1 = 0, then this probability is zero, which proves (8). Thus, we will assume that
λ1 > 0. Let λ̄i := λi/(λ1 + · · ·+ λr̄), for i = 1, ..., r̄. Clearly, we have

λ̄1 + · · ·+ λ̄r̄ = 1, λ̄1 ≥ λ̄2 ≥ . . . ≥ λ̄r̄ ≥ 0.

We consider two cases. First, suppose λ̄1 ≥ α, where 0 < α < 1. Then, we can bound
the above probability as follows:

Prob
(
ξT Hξ < γE(ξT Hξ)

)
= Prob

(
r̄∑

i=1

λ̄i|ξ̄i|2 < γ

)

≤ Prob
(
λ̄1|ξ̄1|2 < γ

)

≤ Prob
(
|ξ̄1|2 < γ/α

)
(9)

≤
√

2γ

πα
,
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where the last step is due to the fact that ξ̄1 is a real-valued zero mean Gaussian random
variable with unit variance.

In the second case, we have λ̄1 < α, so that

λ̄2 + · · ·+ λ̄r̄ = 1− λ̄1 > 1− α.

This further implies (r̄ − 1)λ̄2 ≥ λ̄2 + · · ·+ λ̄r̄ > 1− α. Hence

λ̄1 ≥ λ̄2 >
1− α

r̄ − 1
.

Using this bound, we obtain the following probability estimate:

Prob
(
ξT Hξ < γE(ξT Hξ)

)
= Prob

(
r̄∑

i=1

λ̄i|ξ̄i|2 < γ

)

≤ Prob
(
λ̄1|ξ̄1|2 < γ, λ̄2|ξ̄2|2 < γ

)

= Prob
(
λ̄1|ξ̄1|2 < γ

)
· Prob

(
λ̄2|ξ̄2|2 < γ

)
(10)

≤
√

2γ

πλ̄1
·
√

2γ

πλ̄2

≤ 2(r̄ − 1)γ
π(1− α)

.

Combining the estimates for the above two cases and setting α = 2/π, we immediately
obtain the desired bound (8).

Lemma 2 Let IF = IR. Let Z∗ º 0 be a feasible solution of (7) and let z∗(ξ) be generated
by the randomization procedure described earlier. Then, with probability 1, z∗(ξ) is well
defined and feasible for (1). Moreover, for every γ > 0 and µ > 0,

Prob
(

min
1≤i≤m

ξT Hiξ ≥ γ, ‖ξ‖2 ≤ µTr(Z∗)
)
≥ 1−m ·max

{√
γ,

2(r − 1)γ
π − 2

}
− 1

µ
, (11)

where r := rank (Z∗).

Proof. Since Z∗ º 0 is feasible for (7), it follows that Tr(HiZ
∗) ≥ 1 for all i = 1, ..., m.

Since E(ξT Hiξ) = Tr(HiZ
∗) ≥ 1 and the density of ξT Hiξ is absolutely continuous, the

probability of ξT Hiξ = 0 is zero, implying that z∗(ξ) is well defined with probability 1.
The feasibility of z∗(ξ) is easily verified.
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To prove (11), we first note that E(ξξT ) = Z∗. Thus, for any γ > 0 and µ > 0,

Prob
(

min
1≤i≤m

ξT Hiξ ≥ γ, ‖ξ‖2 ≤ µTr(Z∗)
)

= Prob
(
ξT Hiξ ≥ γ ∀ i = 1, ...,m and ‖ξ‖2 ≤ µTr(Z∗)

)

≥ Prob
(
ξT Hiξ ≥ γTr(HiZ

∗) ∀ i = 1, ..., m and ‖ξ‖2 ≤ µTr(Z∗)
)

= Prob
(
ξT Hiξ ≥ γE(ξT Hiξ) ∀ i = 1, ..., m and ‖ξ‖2 ≤ µE(‖ξ‖2)

)

= 1− Prob
(
ξT Hiξ < γE(ξT Hiξ) for some i or ‖ξ‖2 > µE(‖ξ‖2)

)

≥ 1−
m∑

i=1

Prob
(
ξT Hiξ < γE(ξT Hiξ)

)
− Prob

(
‖ξ‖2 > µE(‖ξ‖2)

)

> 1−m ·max
{√

γ,
2(r − 1)γ

π − 2

}
− 1

µ
,

where the last step uses Lemma 1 as well as Markov’s inequality:

Prob
(
‖ξ‖2 > µE(‖ξ‖2)

)
≤ 1

µ
.

This completes the proof.

We now use Lemma 2 to bound the performance of the SDP relaxation.

Theorem 1 Let IF = IR. For the QP (1) and its SDP relaxation (7), we have υqp = υsdp

if m ≤ 2, and otherwise

υqp ≤ 27m2

π
υsdp.

Proof. By applying a suitable rank reduction procedure if necessary, we can assume that
the rank r of the optimal SDP solution Z∗ satisfies r(r + 1)/2 ≤ m; see e.g. [17]. Thus
r <

√
2m. If m ≤ 2, then r = 1, implying that Z∗ = z∗(z∗)T for some z∗ ∈ IRn and it is

readily seen that z∗ is an optimal solution of (1), so that υqp = υsdp. Otherwise, we apply
the randomization procedure to Z∗. We also choose

µ = 3, γ =
π

4m2

(
1− 1

µ

)2

=
π

9m2
.

Then, it is easily verified using r <
√

2m that

√
γ ≥ 2(r − 1)γ

π − 2
∀ m = 1, 2, ...

9



Plugging these choices of γ and µ into (11), we see that there is a positive probability
(independent of problem size) of at least

1−m
√

γ − 1
µ

= 1−
√

π

3
− 1

3
= 0.0758...

that ξ generated by the randomization procedure satisfies

min
1≤i≤m

ξT Hiξ ≥ π

9m2
and ‖ξ‖2 ≤ 3Tr(Z∗).

Let ξ be any vector satisfying these two conditions.2 Then, z∗(ξ) is feasible for (1), so
that

υqp ≤ ‖z∗(ξ)‖2 =
‖ξ‖2

mini ξT Hiξ
≤ 3Tr(Z∗)

(π/9m2)
=

27m2

π
υsdp,

where the last equality uses Tr(Z∗) = υsdp.

In the above proof, other choices of µ can also be used, but the resulting bound seems
not as sharp. Theorem 1 suggests that the worst-case performance of the SDP relaxation
deteriorates quadratically with the number of quadratic constraints. Below we give an
example demonstrating that this bound is in fact tight up to a constant factor.

Example 1: For any m ≥ 2 and n ≥ 2, consider a special instance of (2), corresponding
to (1) with |Ii| = 1 (i.e., each Hi has rank 1), whereby

h` =
(

cos
(

`π

m

)
, sin

(
`π

m

)
, 0, . . . , 0

)T

, ` = 1, ...., m.

Let z∗ = (z∗1 , . . . , z∗n)T ∈ IRn be an optimal solution of (2) corresponding to the above
choice of steering vectors h`. We can write

(z∗1 , z
∗
2) = ρ(cos θ, sin θ), for some θ ∈ [0, 2π).

Since {`π/m, ` = 1, ..., m} is uniformly spaced on [0, π), there must exist an integer ` such
that

either
∣∣∣∣θ −

`π

m
− π

2

∣∣∣∣ ≤
π

2m
or

∣∣∣∣θ −
`π

m
+

π

2

∣∣∣∣ ≤
π

2m
.

For simplicity, we assume the first case. (The second case can be treated similarly.) Since
the last (n− 2) entries of h` are zero, it is readily checked that

|hT
` z∗| = ρ

∣∣∣∣cos
(

θ − `π

m

)∣∣∣∣ = ρ

∣∣∣∣sin
(

θ − `π

m
− π

2

)∣∣∣∣ ≤ ρ

∣∣∣∣sin
(

π

2m

)∣∣∣∣ ≤
ρπ

2m
.

2The probability that no such ξ is generated after N independent trials is at most (1−0.0758..)N , which

for N = 100 equals 0.000375.. Thus, such ξ requires relatively few trials to generate.
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Since z∗ satisfies the constraint |hT
` z∗| ≥ 1, it follows that

‖z∗‖ ≥ ρ ≥ 2m|hT
` z∗|

π
≥ 2m

π
,

implying

υqp = ‖z∗‖2 ≥ 4m2

π2
.

On the other hand, the positive semidefinite matrix

Z∗ = Diag{1, 1, 0, . . . , 0}
is feasible for the SDP relaxation (7), and it has an objective value of Tr(Z∗) = 2. Thus,
for this instance, we have

υqp ≥ 2m2

π2
υsdp.

The preceding example and Theorem 1 show that the SDP relaxation (7) can be weak
if the number of quadratic constraints is large, especially when the steering vectors h` are
in a certain sense “uniformly distributed” in space.

3.2 General steering vectors: the complex case

We consider the complex case of IF = IC. We will show that the performance ratio of
the SDP relaxation (7) improves to O(m) in the complex case (as opposed to O(m2) in
the real case). Similar to the real case, upon obtaining an optimal solution Z∗ of (7), we
construct a feasible solution of (1) using the following randomization procedure:

1. Generate a random vector ξ ∈ ICn from the complex-valued normal
distribution Nc(0, Z∗) [2, 26].

2. Let z∗(ξ) = ξ/ min
1≤i≤m

√
ξHHiξ.

Most of the ensuing performance analysis is similar to that of the real case. In partic-
ular, we will also need the following two lemmas analogous to Lemmas 1 and 2.

Lemma 3 Let H ∈ ICn×n, Z ∈ ICn×n be two Hermitian positive semidefinite matrices (i.e.,
H º 0, Z º 0). Suppose ξ ∈ ICn is a random vector generated from the complex-valued
normal distribution Nc(0, Z). Then, for any γ > 0,

Prob
(
ξHHξ < γE(ξHHξ)

)
≤ max

{
4
3
γ, 16(r̄ − 1)2γ2

}
, (12)
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where r̄ := min{rank (H), rank (Z)}.

Proof. We follow the same notations and proof as for Lemma 1, except for two blanket
changes:

matrix transpose → Hermitian transpose,
orthogonal matrix → unitary matrix.

Also, ξ̄ has the complex-valued normal distribution Nc(0, Ir). With these changes, we
consider the same two cases: λ̄1 ≥ α and λ̄1 < α, where 0 < α < 1. In the first case, we
have similar to (9) that

Prob
(
ξHHξ < γE(ξHHξ)

)
≤ Prob

(
|ξ̄1|2 < γ/α

)
. (13)

Recall that the density function of a complex-valued circular normal random variable
u ∼ Nc(0, σ2), where σ is the standard deviation, is

1
πσ2

e−
|u|2
σ2 ∀ u ∈ IC.

In polar coordinates, the density function can be written as

f(ρ, θ) =
ρ

πσ2
e−

ρ2

σ2 ∀ ρ ∈ [0,+∞), θ ∈ [0, 2π).

In fact, a complex-valued normal distribution can be viewed as a joint distribution of its
modulus and its argument, with the following particular properties: (1) the modulus and
argument are independently distributed; (2) the argument is uniformly distributed over
[0, 2π); (3) the modulus follows a Weibull distribution with density

f(ρ) =





2ρ
σ2 e−

ρ2

σ2 , if ρ ≥ 0;
0, if ρ < 0,

and distribution function
Prob {|u| ≤ t} = 1− e−

t2

σ2 . (14)

Since ξ̄1 ∼ Nc(0, 1), substituting this into (13) yields

Prob
(
ξHHξ < γE(ξHHξ)

)
≤ Prob

(
|ξ̄1|2 < γ/α

)
≤ 1− e−γ/α ≤ γ/α,

where the last inequality uses the convexity of the exponential function.
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In the second case of λ̄1 < α, we have similar to (10) that

Prob
(
ξHHξ < γE(ξHHξ)

)
≤ Prob

(
λ̄1|ξ̄1|2 < γ

)
· Prob

(
λ̄2|ξ̄2|2 < γ

)

= (1− e−γ/λ̄1)(1− e−γ/λ̄2)

≤ γ2

λ̄1λ̄2

≤ (r̄ − 1)2γ2

(1− α)2
,

where last step uses the fact that λ̄1 ≥ λ̄2 ≥ (1−α)/(r̄− 1). Combining the estimates for
the above two cases and setting α = 3/4, we immediately obtain the desired bound (12).

Lemma 4 Let IF = IC. Let Z∗ º 0 be a feasible solution of (7) and let z∗(ξ) be generated
by the randomization procedure described earlier. Then, with probability 1, z∗(ξ) is well
defined and feasible for (1). Moreover, for every γ > 0 and µ > 0,

Prob
(

min
1≤i≤m

ξHHiξ ≥ γ, ‖ξ‖2 ≤ µTr(Z∗)
)
≥ 1−m ·max

{
4
3
γ, 16(r − 1)2γ2

}
− 1

µ
,

where r := rank (Z∗).

Proof. The proof is mostly the same as that for the real case (see Lemma 2). In particular,
for any γ > 0 and µ > 0, we still have

Prob
(

min
1≤i≤m

ξHHiξ ≥ γ, ‖ξ‖2 ≤ µTr(Z∗)
)

≥ 1−
m∑

i=1

Prob
(
ξHHiξ < γE(ξHHiξ)

)
− Prob

(
‖ξ‖2 > µE(‖ξ‖2)

)
.

Therefore, we can invoke Lemma 3 to obtain

Prob
(

min
1≤i≤m

ξHHiξ ≥ γ, ‖ξ‖2 ≤ µTr(Z∗)
)

≥ 1−m ·max
{

4
3
γ, 16(r − 1)2γ2

}
− Prob

(
‖ξ‖2 > µE(‖ξ‖2)

)

≥ 1−m ·max
{

4
3
γ, 16(r − 1)2γ2

}
− 1

µ
,

which completes the proof.
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Theorem 2 Let IF = IC. For the QP (1) and its SDP relaxation (7), we have vsdp = vqp

if m ≤ 3 and otherwise
vqp ≤ 8m · vsdp.

Proof. By applying a suitable rank reduction procedure if necessary, we can assume that
the rank r of the optimal SDP solution Z∗ satisfies r = 1 if m ≤ 3 and r ≤ √

m if m ≥ 4;
see [9, Section 5]. Thus, if m ≤ 3, then Z∗ = z∗(z∗)H for some z∗ ∈ ICn and it is readily
seen that z∗ is an optimal solution of (1), so that vsdp = vqp. Otherwise, we apply the
randomization procedure to Z∗. By choosing µ = 2 and γ = 1

4m , it is easily verified using
r ≤ √

m that
4
3
γ ≥ 16(r − 1)2γ2 ∀ m = 1, 2, ...

Therefore, it follows from Lemma 4 that

Prob
{

min
1≤i≤m

ξHHiξ ≥ γ, ‖ξ‖2 ≤ µTr(Z∗)
}
≥ 1−m

4
3
γ − 1

µ
=

1
6
.

Then, similar to the proof of Theorem 1, we obtain that with probability of at least 1/6,
z∗(ξ) is a feasible solution of (1) and vqp ≤ ‖z∗(ξ)‖2 ≤ 8m · vsdp.3

The proof of Theorem 2 shows that, by repeating the randomization procedure, the
probability of generating a feasible solution with a performance ratio no more than 8m ap-
proaches 1 exponentially fast (independent of problem size). Alternatively, a de-randomization
technique from theoretical computer science can perhaps convert the above randomization
procedure into a polynomial-time deterministic algorithm [12]; also see [14].

Theorem 2 shows that the worst-case performance of SDP relaxation deteriorates lin-
early with the number of quadratic constraints. This contrasts with the quadratic rate of
deterioration in the real case (see Theorem 1). Thus, the SDP relaxation can yield better
performance in the complex case. This is in the same spirit as the recent results in [26]
which showed that the quality of SDP relaxation improves by a constant factor for certain
quadratic maximization problems when the space is changed from IRn to ICn. Below we
give an example demonstrating that this approximation bound is tight up to a constant
factor.

Example 2: For any m ≥ 2 and n ≥ 2, let K = d√me (so K ≥ 2). Consider a special
instance of (2), corresponding to (1) with |Ii| = 1 (i.e., each Hi has rank 1), whereby

h` =
(

cos
jπ

K
, sin

jπ

K
e

i2kπ
K , 0, . . . , 0

)T

with ` = jK −K + k, j, k = 1, ..., K.

3The probability that no such ξ is generated after N independent trials is at most (5/6)N , which for

N = 30 equals 0.00421.. Thus, such ξ requires relatively few trials to generate.
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Hence there are K2 complex rank-1 constraints. Let z∗ = (z∗1 , . . . , z∗n)T ∈ ICn be an optimal
solution of (2) corresponding to the above choice of d√me2 steering vectors h`. By a phase
rotation if necessary, we can without loss of generality assume that z∗1 is real and write

(z∗1 , z
∗
2) = ρ(cos θ, sin θeiψ), for some θ, ψ ∈ [0, 2π).

Since {2kπ/K, k = 1, ...,K} and {jπ/K, j = 1, ..., K} are uniformly spaced in [0, 2π) and
[0, π) respectively, there must exist integers j and k such that

∣∣∣∣ψ −
2kπ

K

∣∣∣∣ ≤
π

K
and either

∣∣∣∣θ −
jπ

K
− π

2

∣∣∣∣ ≤
π

2K
or

∣∣∣∣θ −
jπ

K
+

π

2

∣∣∣∣ ≤
π

2K
.

Without loss of generality, we assume
∣∣∣∣θ −

jπ

K
− π

2

∣∣∣∣ ≤
π

2K
.

Since the last (n−2) entries of each h` are zero, it is readily seen that, for ` = jK−K +k,
∣∣∣Re(hH

` z∗)
∣∣∣ = ρ

∣∣∣∣cos θ cos
jπ

K
+ sin θ sin

jπ

K
cos

(
ψ − 2kπ

K

)∣∣∣∣

= ρ

∣∣∣∣cos
(

θ − jπ

K

)
+ sin θ sin

jπ

K

(
cos

(
ψ − 2kπ

K

)
− 1

)∣∣∣∣

= ρ

∣∣∣∣sin
(

θ − jπ

K
− π

2

)
− 2 sin θ sin

jπ

K
sin2

(
Kψ − 2kπ

2K

)∣∣∣∣

≤ ρ

∣∣∣∣sin
π

2K

∣∣∣∣ + 2ρ sin2 π

2K

≤ ρπ

2K
+

ρπ2

2K2
.

In addition, we have
∣∣∣Im(hH

` z∗)
∣∣∣ = ρ

∣∣∣∣sin θ sin
jπ

K
sin

(
ψ − 2kπ

K

)∣∣∣∣

≤ ρ

∣∣∣∣sin
(

ψ − 2kπ

K

)∣∣∣∣

≤ ρ

∣∣∣∣ψ −
2kπ

K

∣∣∣∣ ≤
ρπ

K
.

Combining the above two bounds, we obtain
∣∣∣hH

` z∗
∣∣∣ ≤

∣∣∣Re(hH
` z∗)

∣∣∣ +
∣∣∣Im(hH

` z∗)
∣∣∣ ≤ 3ρπ

2K
+

ρπ2

2K2
.

Since z∗ satisfies the constraint |hH
` z∗| ≥ 1, it follows that

‖z∗‖ ≥ ρ ≥ 2K2|hH
` z∗|

π(3K + π)
≥ 2K2

π(3K + π)
,
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implying

υqp = ‖z∗‖2 ≥ 4K4

π2(3K + π)2
=

4d√me4
π2(3d√me+ π)2

.

On the other hand, the positive semidefinite matrix

Z∗ = Diag{1, 1, 0, . . . , 0}

is feasible for the SDP relaxation (7), and it has an objective value of Tr(Z∗) = 2. Thus,
for this instance, we have

υqp ≥ 2d√me4
π2(3d√me+ π)2

υsdp ≥ 2m

π2(3 + π/2)2
υsdp.

The preceding example and Theorem 2 show that the SDP relaxation (7) can be weak
if the number of quadratic constraints is large, especially when the steering vectors h` are
in a certain sense “uniformly distributed” in space. In the next subsection, we will tighten
the approximation bound in Theorem 2 by considering special cases where the steering
vectors are “not too spread out in space”.

3.3 Specially configured steering vectors: the complex case

We consider the complex case of IF = IC. Let Z∗ be any optimal solution of (7). Since Z∗

is feasible for (7), Z∗ 6= 0. Then

Z∗ =
r∑

k=1

wkw
H
k , (15)

for some nonzero wk ∈ ICn, where r := rank (Z∗) ≥ 1. By decomposing wk = uk + vk,
with uk ∈ span{h1, ..., hM} and vk ∈ span{h1, ..., hM}⊥, it is easily checked that Z̃ :=∑r

k=1 uku
H
k is feasible for (7) and

〈I, Z∗〉 =
r∑

k=1

‖uk + vk‖2 =
r∑

k=1

(‖uk‖2 + ‖vk‖2) = 〈I, Z̃〉+
r∑

k=1

‖vk‖2.

This implies vk = 0 for all k, so that

wk ∈ span{h1, ..., hM}. (16)

Below we show that the SDP relaxation (7) provides a constant factor approximation
to the QP (1) when the phase spread of the entries of h` is bounded away from π/2.
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Theorem 3 Suppose that

h` =
p∑

i=1

βi`gi ∀ ` = 1, ..., M, (17)

for some p ≥ 1, βi` ∈ IC and gi ∈ ICn such that ‖gi‖ = 1 and gH
i gj = 0 for all i 6= j. Then

the following results hold.

(a) If Re(βH
i` βj`) > 0 whenever βH

i` βj` 6= 0, then υqp ≤ Cυ
sdp

, where

C := max
i,j,` | βH

i`
βj` 6=0

(
1 +

|Im(βH
i` βj`)|2

|Re(βH
i` βj`)|2

)1/2

. (18)

(b) If βi` = |βi`|eiφi`, where

φi` ∈ [φ̄` − φ, φ̄` + φ] ∀ i, `, for some 0 ≤ φ <
π

4
and some φ̄` ∈ IR, (19)

then Re(βH
i` βj`) > 0 whenever βH

i` βj` 6= 0, and C given by (18) satisfies

C ≤ 1
cos(2φ)

. (20)

Proof. (a) By (16), we have

wk =
p∑

i=1

αkigi,

for some αki ∈ IC. This together with (15) yields

〈I, Z∗〉 =
r∑

k=1

‖wk‖2 =
r∑

k=1

∥∥∥∥∥
p∑

i=1

αkigi

∥∥∥∥∥
2

=
r∑

k=1

p∑

i=1

|αki|2 =
p∑

i=1

λ2
i ,

where the third equality uses the orthonormal properties of g1, ..., gp, and the last equality
uses λi :=

(∑r
k=1 |αki|2

)1/2 = ‖(αki)r
k=1‖.

Let

z∗ :=
p∑

i=1

λigi.
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Then, the orthonormal properties of g1, ..., gp yields

‖z∗‖2 =

∥∥∥∥∥
p∑

i=1

λigi

∥∥∥∥∥
2

=
p∑

i=1

λ2
i = 〈I, Z∗〉 = υ

sdp
. (21)

Moreover, for each ` ∈ {1, ..., M}, we obtain from (15) that

〈h`h
H
` , Z∗〉 =

r∑

k=1

〈h`h
H
` , wkw

H
k 〉 =

r∑

k=1

|hH
` wk|2

=
r∑

k=1

∣∣∣∣∣
p∑

i=1

αkih
H
` gi

∣∣∣∣∣
2

=
r∑

k=1

∣∣∣∣∣
p∑

i=1

αkiβi`

∣∣∣∣∣
2

= Re




r∑

k=1

p∑

i=1

p∑

j=1

αH
kiαkjβ

H
i` βj`


 = Re




p∑

i=1

p∑

j=1

βH
i` βj`

r∑

k=1

αH
kiαkj




=
p∑

i=1

p∑

j=1

Re

(
βH

i` βj`

r∑

k=1

αH
kiαkj

)

≤
p∑

i=1

p∑

j=1

∣∣∣βH
i` βj`

∣∣∣
∣∣∣∣∣

r∑

k=1

αH
kiαkj

∣∣∣∣∣ ≤
p∑

i=1

p∑

j=1

∣∣∣βH
i` βj`

∣∣∣ ‖(αki)r
k=1‖‖(αkj)r

k=1‖

=
p∑

i=1

p∑

j=1

∣∣∣βH
i` βj`

∣∣∣ λiλj ,

where the fourth equality uses (17) and the orthonormal properties of g1, ..., gp; the last
inequality is due to the Cauchy-Schwarz inequality. Then, it follows that

〈h`h
H
` , Z∗〉 ≤

p∑

i=1

p∑

j=1

(
|Re(βH

i` βj`)|2 + |Im(βH
i` βj`)|2

)1/2
λiλj

=
p∑

i=1

p∑

j=1

∣∣∣Re(βH
i` βj`)

∣∣∣
(

1 +
|Im(βH

i` βj`)|2
|Re(βH

i` βj`)|2
)1/2

λiλj

≤
p∑

i=1

p∑

j=1

∣∣∣Re(βH
i` βj`)

∣∣∣ Cλiλj

=
p∑

i=1

p∑

j=1

Re(βH
i` βj`)Cλiλj ,

where the summation in the second step is taken over i, j with βH
i` βj` 6= 0, the third step

is due to (18), and the last step is due to the assumption that Re(βH
i` βj`) > 0 whenever
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βH
i` βj` 6= 0. Also, we have from (17) and the orthonormal properties of g1, ..., gp that

|hH
` z∗|2 =

∥∥∥∥∥
p∑

i=1

λih
H
` gi

∥∥∥∥∥
2

=

∥∥∥∥∥
p∑

i=1

λiβi`

∥∥∥∥∥
2

=
p∑

i=1

p∑

j=1

λiλjRe(βH
i` βj`).

Comparing the above two displayed equations, we see that

〈h`h
H
` , Z∗〉 ≤ C|hH

` z∗|2, ` = 1, ...,M.

Since Z∗ is feasible for (7), this shows that
√

Cz∗ is feasible for (1), which further implies

υqp ≤
∥∥∥
√

Cz∗
∥∥∥
2

= C‖z∗‖2 = Cυsdp.

This proves the desired result.

(b) The condition (19) implies that |φi` − φj`| ≤ 2φ < π/2. In other words, the phase
angle spread of the entries of each β` = (β1`, β2`, . . . , βn`)T is no more than 2φ. This
further implies that

cos(φi` − φj`) ≥ cos(2φ) ∀ i, j, `. (22)

We have

βH
i` βj` = |βi`|e−iφi` |βj`|eiφj`

= |βi`||βj`|ei(φj`−φi`)

= |βi`||βj`|(cos(φj` − φi`) + i sin(φj` − φi`)).

Since |φi` − φj`| < π/2 so that cos(φj` − φi`) > 0, we see that Re(βH
i` βj`) > 0 whenever

βH
i` βj` 6= 0. Then

(
1 +

|Im(βH
i` βj`)|2

|Re(βH
i` βj`)|2

)1/2

≤
(
1 + tan2(φj` − φi`)

)1/2
=

1
cos(φj` − φi`)

≤ 1
cos(2φ)

,

where the last step uses (22). Using this in (18) completes the proof.

In Theorem 3(b), we can more generally consider βi` of the form βi` = ωi`e
iφi`(1+ iθi`),

where ωi` ≥ 0, αi` satisfies (19), and

|θj` − θi`| ≤ σ|1 + θi`θj`| ∀ i, j, `, for some σ ≥ 0 with tan(2φ)σ < 1. (23)

Then the proof of Theorem 3(b) can be extended to show the following upper bound on
C given by (18):

C ≤ 1
cos(2φ)

·
√

1 + σ2

1− tan(2φ)σ
. (24)
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However, this generalization is superficial as we can also derive (24) from (20) by rewriting
βi` as

βi` = |βi`|eiφ̃i` with φ̃i` = φi` + tan−1(θi`).

Then, applying (20) yields C ≥ cos(2φ̃), where φ̃ = maxi,j,` |φ̃i` − φ̃j`|/2. Using trigono-
metric identity, it can be shown that cos(2φ̃) equals the right-hand side of (24) with
σ = max

i,j,` | θi`θj` 6=−1
|θj` − θi`|/|1 + θi`θj`|.

Notice that Theorem 3(b) implies that if φ = 0, then the SDP relaxation (7) is tight for
the quadratically constrained QP (1) with IF = IC. Such is the case when all components
of h`, ` = 1, ...,M , are real and nonnegative.

4 A convex QP restriction

In this subsection, we consider a convex quadratic programming restriction of (2) in the
complex case of IF = IC and analyze its approximation bound. Let us write h` (the channel
steering vector) as

h` = (. . . , |hj`|eiφj` , . . .)T
j=1,....,n.

For any φ̄j ∈ [0, 2π), j = 1, ..., n, and any φ ∈ (0, π/2), define the four corresponding index
subsets:

J1
` := {j | φj` ∈ [φ̄j − φ, φ̄j + φ]},

J2
` := {j | φj` ∈ [φ̄j − φ + π/2, φ̄j + φ + π/2]},

J3
` := {j | φj` ∈ [φ̄j − φ + π, φ̄j + φ + π]},

J4
` := {j | φj` ∈ [φ̄j − φ + 3π/2, φ̄j + φ + 3π/2]},

for ` = 1, ..., M . The above four subsets are pairwise disjoint if and only if φ < π/4, and
are collectively exhaustive if and only if φ ≥ π/4. Choose an index subset J with the
property that

for each `, at least one of J1
` , J2

` , J3
` , J4

` contains J.

Of course, J = ∅ is always allowable, but we should choose J maximally since our ap-
proximation bound will depend on the ratio n/|J | (see Theorem 4 below). Partition the
constraint set index {1, ..., M} into four subsets K1, K2,K3,K4 such that

J ⊆ Jk
` ∀ ` ∈ Kk, k = 1, 2, 3, 4.
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Consider the following convex QP restriction of (2) corresponding to K1, K2, K3, K4:

υcqp := min ‖z‖2

s.t. Re(hH
` z) ≥ 1 ∀ ` ∈ K1,

−Im(hH
` z) ≥ 1 ∀ ` ∈ K2,

−Re(hH
` z) ≥ 1 ∀ ` ∈ K3,

Im(hH
` z) ≥ 1 ∀ ` ∈ K4.

(25)

The above problem is a restriction of (2) because, for any z ∈ IC,

|z| ≥ max{|Re(z)|, |Im(z)|}
= max{Re(z), Im(z),−Re(z),−Im(z)}.

If J 6= ∅ and (. . . , hj`, . . .)j∈J 6= 0 for ` = 1, ...,M , then (25) is feasible, and hence has
an optimal solution. Since (25) is a restriction of (2), υqp ≤ υcqp . We have the following
approximation bound.

Theorem 4 Suppose that J 6= ∅ and (25) is feasible. Then,

υcqp ≤ υqp

N

cos2 φ
max

k=1,...,N


max

j∈Ĵk

η̄j

η
πk(j)




2

,

where N := dn/|J |e, η̄j := max` |hj`|, η
j

:= min`|hj` 6=0 |hj`|, Ĵ1, ..., ĴN is any partition of

{1, ..., n} satisfying |Ĵk| ≤ |J | for k = 1, ..., N , and πk is any injective mapping from Ĵk to
J .

Proof. By making the substitution

z
new

j ← zje
iφ̄j ,

we can without loss of generality assume that φ̄j = 0 for all j and `.

Let z∗ denote an optimal solution of (2) and write

z∗ = (. . . , rje
iβj , . . .)T

j=1,...,n,

with rj ≥ 0. Then, for any `, we have from |hj`| ≤ η̄j for all j that

1 ≤ |hH
` z∗| ≤ r :=

n∑

j=1

rj η̄j .
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Also, we have

υqp = ‖z∗‖2 =
n∑

j=1

r2
j .

Define

Rk :=


 ∑

j∈Ĵk

r2
j




1/2

, Sk :=
∑

j∈Ĵk

rj η̄j .

Then

1 ≤ r =
N∑

k=1

Sk, υqp =
N∑

k=1

R2
k.

Without loss of generality, assume that R1/S1 = mink Rk/Sk. Then, using the fact that

min
k

|xk|
|yk| ≤

√
N
‖x‖2

‖y‖1

for any x, y ∈ IRN with y 6= 0,4 we see from the above relations that

R1

S1
≤ R1

S1
r

≤
√

N

√
υqp

r
r

=
√

N
√

υqp .

Since |Ĵ1| ≤ |J |, there is an injective mapping π from Ĵ1 to J . Let ω := minj∈Ĵ1
η

π(j)
/η̄j .

Define the vector z̄ ∈ ICn by

z̄j :=
{

rπ−1(j)/(S1ω cosφ) if j ∈ π(Ĵ1);
0 else.

Then,

‖z̄‖2 =
R2

1

S2
1ω2 cos2 φ

≤ Nυqp

ω2 cos2 φ
.

Moreover, for each ` ∈ K1, since π(Ĵ1) ⊆ J ⊆ J1
` , we have

Re
(
hH

` z̄
)

= Re




∑

j∈π(Ĵ1)

hH
j`z̄j




4Proof: Suppose the contrary, so that for some x, y ∈ IRN with y 6= 0, we have |xk|/|yk| >
√

N‖x‖2/‖y‖1
for all k. Then, multiplying both sides by |yk| and summing over k yields ‖x‖1 >

√
N‖x‖2, contradicting

properties of 1- and 2-norms.
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=
1

S1ω cosφ
Re




∑

j∈π(Ĵ1)

rπ−1(j)|hj`|e−iφj`




=
1

S1ω cosφ

∑

j∈π(Ĵ1)

rπ−1(j)|hj`| cosφj`

≥ 1
S1ω cosφ

∑

j∈π(Ĵ1)

rπ−1(j)ηj
cosφ

=
1

S1ω

∑

j∈Ĵ1

rj η̄j

η
π(j)

η̄j

≥ 1
S1ω

∑

j∈Ĵ1

rj η̄j ·min
j∈Ĵ1

η
π(j)

η̄j

= 1,

where the first inequality uses |hj`| ≥ η
j

and φj` ∈ [−φ, φ] for j ∈ J1
` . Since z̄j = 0 for

j 6∈ J1
` , this shows that z̄ satisfies the first set of constraints in (25). A similar reasoning

shows that z̄ satisfies the remaining three sets of constraints in (25).

Notice that the z̄ constructed in the proof of Theorem 4 is feasible for the further
restriction of (25) whereby zj = 0 for all j 6∈ J . This further restricted problem has the
same (worst-case) approximation bound specified in Theorem 4.

Let us compare the two approximation bounds in Theorem 3 and Theorem 4. First,
the required assumptions are different. On the one hand, the bound in Theorem 3 does
not depend on |hj`|, while the bound in Theorem 4 does. On the other hand, Theorem 3
requires that the bounded angular spread

|φj` − φi`| ≤ 2φ ∀ j, `, (26)

for some φ < π/4, while Theorem 4 allows φ < π/2 and only requires the condition (26)
for all 1 ≤ ` ≤ M and j ∈ J , where J is a pre-selected index set. Thus, the bounded
angular spread condition required in Theorem 3 corresponds exactly to |J | = n. Thus,
the assumptions required in the two theorems do not imply one another. Second, the two
performance ratios are also different. Naturally, the final performance ratio in Theorem 4
depends on the choice of J through the ratio |J |/n, so a large J is preferred. In the event
that the assumptions of both theorems are satisfied and let us assume for simplicity that
η̄j = η

j
for all j, then |J | = n and φ < π/4, in which case Theorem 4 gives a performance

ratio of 1/ cos2 φ while Theorem 3 gives 1/ cos(2φ). Since cos(2φ) = cos2 φ−sin2 φ ≤ cos2 φ,
we have 1/ cos(2φ) ≥ 1/ cos2 φ, showing that Theorem 4 gives a tighter approximation
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bound. However, this does not mean Theorem 4 is stronger than Theorem 3 since the two
theorems hold under different assumptions in general.

We can specialize Theorem 4 to a typical situation in transmit beamforming. Consider
a uniform linear transmit antenna array consisting of n elements, and let us assume that
the M receivers are in a sector area from the far field, and the propagation is line-of-sight.
By reciprocity, each steering vector h` will be Vandermonde with generator e−i2π d

λ
sin θ`

(see, e.g., [10]), where d is the inter-antenna spacing, λ is the wavelength, and θ` is the
angle of arrival of the `th receiving antenna. In a sector of approximately 60 degrees about
the array broadside, we will have |θ`| ≤ π/3. Suppose that d/λ = 1/2. Then the steering
vector corresponding to the `th receiving antenna will have the form

h` = (. . . , e−i(j−1)π sin θ` , . . .)T
j=1,...,n.

In this case, we have that φj` = (j − 1)π sin θ` and |hj`| = 1 for all j and `. We can take,
e.g.,

φ̄j = 0, φ = j̄π max
`
| sin θ`|, J = {1, ..., j̄ + 1},

where j̄ := b1/max` | sin θ`|c. Thus, the assumptions of Theorem 4 are satisfied. Moreover,
since |θ`| ≤ π/3 for all `, it follows that |J | = j̄ + 1 ≥ 2. If n is not large, say, n ≤ 8, then
Theorem 4 gives a performance ratio of n/(|J | cos2 φ) ≤ 16.

More generally, if we can choose the partition Ĵ1, ..., ĴN and the mapping πk in Theorem
4 such that

(. . . , η̄j , . . .)j∈Ĵk
= (. . . , η

πk(j)
, . . .)j∈J ∀ k,

then the performance ratio in Theorem 4 simplifies to N/ cos2 φ. In particular, this holds
when |hj`| = η > 0 for all j and ` or when J = {1, ..., n} (so that N = 1) and |hj`| is
independent of ` for all j, and more generally, when the channel coefficients periodically
repeat their magnitudes. In general, we should choose the partition Ĵ1, ..., ĴN and the
mapping πk to make the performance ratio in Theorem 4 small. For example, if J = Ĵ1 =
{1, 2} and η̄1 = 100, η̄2 = 10, η

1
= 1, η

2
= 10, then π1(1) = 2, π1(2) = 1 is the better

choice.
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5 Homogeneous QP in Maximization Form

Let us now consider the following complex norm maximization problem with convex ho-
mogeneous quadratic constraints:

υqp := max ‖z‖2

s.t.
∑

`∈Ii

|hH
` z|2 ≤ 1, i = 1, ...,m,

z ∈ ICn,

(27)

where h` ∈ ICn.

To motivate this problem, consider the problem of designing an intercept beamformer5

capable of suppressing signals impinging on the receiving antenna array from irrelevant or
hostile emitters, e.g., jammers, whose steering vectors (spatial signatures, or “footprints”)
have been previously estimated, while achieving as high gain as possible for all other trans-
missions. The jammer suppression capability is captured in the constraints of (27), and
|Ii| > 1 covers the case where a jammer employs more than one transmit antennas. The
maximization of the objective ‖z‖2 can be motivated as follows. In intercept applications,
the steering vector of the emitter of interest, h, is a priori unknown, and is naturally
modelled as random. A pertinent optimization objective is then the average beamformer
output power, measured by E[|hHz|2]. Under the assumption that the entries of h are
uncorrelated and have equal average power, it follows that E[|hHz|2] is proportional to
‖z‖2, which is often referred to as the beamformer’s white noise gain.

Similar to (1), we let

Hi :=
m∑

`∈Ii

h`h
H
`

and consider the natural SDP relaxation of (27):

υ
sdp

:= max Tr(Z)
s.t. Tr(HiZ) ≤ 1, i = 1, ..., m,

Z º 0, Z is complex and Hermitian.
(28)

We are interested in lower bounds for the relaxation performance of the form

υqp ≥ C υ
sdp

,

where 0 < C ≤ 1. It is easily checked that (28) has an optimal solution.
5Note that here we are talking about a receive beamformer, as opposed to our earlier motivating

discussion of transmit beamformer design.
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Let Z∗ be an optimal solution of (28). We will analyze the performance of the SDP
relaxation using the following randomization procedure:

1. Generate a random vector ξ ∈ ICn from the complex-valued normal
distribution Nc(0, Z∗).

2. Let z∗(ξ) = ξ/ max
1≤i≤m

√
ξHHiξ.

First, we need the following lemma analogous to Lemmas 1 and 3.

Lemma 5 Let H ∈ ICn×n, Z ∈ ICn×n be two Hermitian positive semidefinite matrices (i.e.,
H º 0, Z º 0). Suppose ξ ∈ ICn is a random vector generated from the complex-valued
normal distribution Nc(0, Z). Then, for any γ > 0,

Prob
(
ξHHξ > γE(ξHHξ)

)
≤ r̄ e−γ , (29)

where r̄ := min{rank (H), rank (Z)}.

Proof. If H = 0, then (29) is trivially true. Suppose H 6= 0. Then, as in the proof of
Lemma 1, we have

Prob
(
ξHHξ > γE(ξHHξ)

)
= Prob

(
r̄∑

i=1

λ̄i|ξ̄i|2 > γ

)
,

where λ̄1 ≥ λ̄2 ≥ . . . ≥ λ̄r̄ ≥ 0 satisfy λ̄1 + · · · + λ̄r̄ = 1 and each ξ̄i ∈ IC has the
complex-valued normal distribution Nc(0, 1). Then

Prob
(
ξHHξ > γE(ξHHξ)

)
≤ Prob

(
|ξ̄1|2 > γ or |ξ̄2|2 > γ or · · · or |ξ̄r̄|2 > γ

)

≤
r̄∑

i=1

Prob
(
|ξ̄i|2 > γ

)

= r̄ e−γ ,

where the last step uses (14).

Theorem 5 For the complex QP (27) and its SDP relaxation (28), we have vsdp = vqp if
m ≤ 3 and otherwise

vqp ≥ 1
4 ln(100K)

vsdp,

where K :=
∑m

i=1 min{rank (Hi),
√

m}.
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Proof. By applying a suitable rank reduction procedure if necessary, we can assume that
the rank r of the optimal SDP solution Z∗ satisfies r = 1 if m ≤ 3 and r ≤ √

m if m ≥ 4;
see [9, Section 5]. Thus, if m ≤ 3, then Z∗ = z∗(z∗)H for some z∗ ∈ ICn and it is readily
seen that z∗ is an optimal solution of (27), so that vsdp = vqp. Otherwise, we apply the
randomization procedure to Z∗. By using Lemma 5, we have, for any γ > 0 and µ > 0,

Prob
(

max
1≤i≤m

ξHHiξ ≤ γ, ‖ξ‖2 ≥ µTr(Z∗)
)

≥ 1−
m∑

i=1

Prob
(
ξHHiξ > γE(ξHHiξ)

)
− Prob

(
‖ξ‖2 < µTr(Z∗)

)

≥ 1−Ke−γ − Prob
(
‖ξ‖2 < µTr(Z∗)

)
, (30)

where the last step uses r ≤ √
m.

Let

ηj :=

{
|ξj |2/Z∗jj , if Z∗jj > 0;
0, if Z∗jj = 0,

j = 1, ..., n.

For simplicity, let us assume that Z∗jj > 0 for all j = 1, ..., n. Since ξj ∼ Nc(0, Z∗jj), as
we discussed in Subsection 3.2, |ξj | follows a Weibull distribution with variance Z∗jj (see
(14)), and therefore

Prob (ηj ≤ t) = 1− e−t ∀ t ∈ [0,∞).

Hence,

E(ηj) =
∫ ∞

0
te−tdt = 1, E(η2

j ) =
∫ ∞

0
t2e−tdt = 2, Var(ηj) = 1.

Moreover,

E(|ηj − E(ηj)|) =
∫ 1

0
(1− t)e−tdt +

∫ ∞

1
(t− 1)e−tdt =

2
e
.

Let us denote λj = Z∗jj/Tr(Z∗), j = 1, ..., n, and η :=
∑n

j=1 λjηj . We have E(η) = 1 and

E(|η −E(η)|) = E




∣∣∣∣∣∣

n∑

j=1

λj(ηj − E(ηj))

∣∣∣∣∣∣


 ≤

n∑

j=1

λjE(|ηj − E(ηj)|) =
2
e
.

Since, by Markov’s inequality,

Prob (|η − E(η)| > α) ≤ E(|η − E(η)|)
α

≤ 2
αe

, ∀ α > 0,

we have

Prob
(
‖ξ‖2 < µTr(Z∗)

)
= Prob (η < µ)

≤ Prob (|η −E(η)| > 1− µ)

≤ 2
e(1− µ)

, for all µ ∈ (0, 1).
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Substituting the above inequality into (30), we obtain

Prob
(

max
1≤i≤m

ξHHiξ ≤ γ, ‖ξ‖2 ≥ µTr(Z∗)
)

> 1−Ke−γ − 2
e(1− µ)

, ∀ µ ∈ (0, 1).

Setting µ = 1/4 and γ = ln(100K) yields a positive right-hand side of 0.00898.., which
then proves the desired bound.

The above proof technique also applies to the real case, i.e., h` ∈ IRn and z ∈ IRn. The
main difference is that ξ ∼ N(0, Z∗), so that |ξ̄i|2 in the proof of Lemma 5 and ηj in the
proof of Theorem 5 both follow a χ2 distribution with one degree of freedom. Then

Prob
(
|ξ̄i|2 > γ

)
=

∫ ∞
√

γ

e−t2/2

√
2π

dt ≤
∫ ∞
√

γ

e−γt/2

√
2π

dt =

√
2

πγ
e−γ/2, ∀ γ > 0,

E(ηj) = 1, and

E|ηj − E(ηj)| =
∫ ∞

0

e−t/2

√
2πt

|t− 1|dt

=
1√
2π

∫ 1

0

e−t/2

√
t

dt− 1√
2π

∫ 1

0

√
te−t/2dt

+
1√
2π

∫ ∞

1

√
te−t/2dt− 1√

2π

∫ ∞

1

e−t/2

√
t

dt

=
4√
2πe

< 0.968,

where in the last step we used integration by parts on the first and the fourth terms. This
yields the analogous bound that, for any γ ≥ 1 and µ ∈ (0, 1),

Prob
(

max
1≤i≤m

ξT Hiξ ≤ γ, ‖ξ‖2 ≥ µTr(Z∗)
)

> 1−K

√
2

πγ
e−γ/2−0.968

1− µ
> 1−Ke−γ/2−0.968

1− µ
,

where K :=
∑m

i=1 min{rank (Hi),
√

2m}. Setting µ = 0.01 and γ = 2 ln(50K) yields a
positive right-hand side of 0.0022... This in turn shows that vsdp = vqp if m ≤ 2 (see the
proof of Theorem 1) and otherwise

vqp ≥ 1
200 ln(50K)

vsdp.

We note that, in the real case, a sharper bound of

vqp ≥ 1
2 ln(2mµ)

vsdp,
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where µ := min{m, maxi rank (Hi)}, was shown by Nemirovski, Roos and Terlaky [14]
(also see [13, Theorem 4.7]), though the above proof seems simpler. Also, an example
in [14] shows that the O(1/ ln m) bound is tight (up to a constant factor) in the worst
case. This example readily extends to the complex case by identifying ICn with IR2n and
observing that |hH

` z| ≥ |Re(h`)T Re(z) + Im(h`)T Im(z)| for any h`, z ∈ ICn. Thus, in the
complex case, the O(1/ ln m) bound is also tight (up to a constant factor).

6 Discussion

In this paper, we have analyzed the worst-case performance of SDP relaxation and convex
restriction for a class of NP-hard quadratic optimization problems with homogeneous
quadratic constraints. Our analysis is motivated by important emerging applications in
transmit beamforming for physical layer multicasting and sensor localization in wireless
sensor networks. Our generalization (1) of the basic problem in [20] is useful, for it
shows that the same convex approximation approaches and bounds hold in the case where
each multicast receiver is equipped with multiple antennas. This scenario is becoming
more pertinent with the emergence of small and cheap multi-antenna mobile terminals.
Furthermore, our consideration of the related homogeneous QP maximization problem
has direct application to the design of jam-resilient intercept beamformers. In addition to
these timely topics, more traditional signal processing design problems can be cast in the
same mathematical framework; see [20] for further discussions.

While theoretical worst-case analysis is very useful, empirical analysis of the ratio
υqp

υ
sdp

through simulations with randomly generated steering vectors {h`} is often equally

important. In the context of transmit beamforming for multicasting [20] for the case
|Ii| = 1 ∀i (single receiving antenna per subscriber node), simulations have provided the
following insights:

• For moderate values of m, n (e.g., m = 24, n = 8), and independent and identically
distributed (i.i.d.) complex-valued circular Gaussian (i.i.d. Rayleigh) entries of the
steering vectors {h`}, the average value of υqp

υ
sdp

is under 3 – much lower than the
worst-case value predicted by our analysis.

• In all generated instances where all steering vectors have positive real and imaginary
parts, the ratio υqp

υ
sdp

equals one (with error below 10−8). This is better than what

our worst-case analysis predicts for limited phase spread (see Theorem 3).

• In experiments with measured VDSL channel data, for which the steering vectors
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follow a correlated log-normal distribution, υqp

υ
sdp

= 1 in over 50% of instances.

• Our analysis shows that the worst-case performance ratio υqp

υ
sdp

is smaller in the

complex case than in the real case (O(m) versus O(m2)). Moreover, this remains
true with high probability when υqp is replaced by its upper bound

υ
ubqp

:= min
k=1,...,N

‖z∗(ξk)‖2,

where ξ1, ..., ξN are generated by N independent trials of the randomization proce-
dure (see Subsections 3.1 and 3.2) and N is taken sufficiently large. In our simulation,
we used N = 30nm. Figure 1 shows our simulation results for the real Gaussian
case.6 It plots

υ
ubqp

υ
sdp

for 300 independent realizations of i.i.d. real-valued Gaussian
steering vector entries, for m = 8, n = 4. Figure 2 plots the corresponding his-
togram. Figures 3 and 4 show the corresponding results for i.i.d. complex-valued
circular Gaussian steering vector entries.7 Both the mean and the maximum of the
upper bound

υ
ubqp

υ
sdp

are lower in the complex case. The simulations indicate that
SDP approximation is better in the complex case not only in the worst case but also
on average.

The above empirical (worst-case and average-case) analysis complements our theoret-
ical worst-case analysis of the performance of SDP relaxation for the class of problems
considered herein.

Finally, we remark that our worst-case analysis of SDP performance is based on the
assumption that the homogeneous quadratic constraints are concave (see (1)). Can we
extend this analysis to general homogeneous quadratic constraints? The following example
in IR2 suggests that this is not possible.

Example 3: For any L > 0, consider the quadratic optimization problem with homoge-
neous quadratic constraints:

min ‖z‖2

s.t. z2
2 ≥ 1, z2

1 − Lz1z2 ≥ 1, z2
1 + Lz1z2 ≥ 1,

z ∈ IR2.

(31)

The last two constraints imply z2
1 ≥ L|z1||z2|+ 1 which, together with the first constraint

z2
2 ≥ 1, yield z2

1 ≥ L|z1|+ 1 or, equivalently, |z1| ≥ (L +
√

L2 + 4)/2. So the optimal value
6Here the SDP solution is constrained to be real-valued, and real Gaussian randomization is used.
7Here the SDP solutions are complex-valued, and complex Gaussian randomization is used.
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of (31) is at least 1 + (L +
√

L2 + 4)2/4 (and in fact is equal to this). The natural SDP
relaxation of (31) is

min Z11 + Z22

s.t. Z22 ≥ 1, Z11 − LZ12 ≥ 1, Z11 + LZ12 ≥ 1,

Z º 0.

Clearly, Z = I2 is a feasible solution (and, in fact, an optimal solution) of this SDP, with
an objective value of 2. Therefore, the SDP performance ratio for this example is at least
1/2 + (L +

√
L2 + 4)2/8, which can be arbitrarily large.
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Figure 1: Upper bound on υqp

υ
sdp

for m = 8, n = 4, 300 realizations of real Gaussian i.i.d.
steering vector entries, solution constrained to be real.
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Figure 2: Histogram of the outcomes in Fig. 1.
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for m = 8, n = 4, 300 realizations of complex Gaussian
i.i.d. steering vector entries.
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Figure 4: Histogram of the outcomes in Fig. 3.
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