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ABSTRACT

In various penalty /smoothing approaches to solving a linear program,
one regularizes the problem by adding to the linear cost function a sepa-
rable nonlinear function multiplied by a small positive parameter. Popu-
lar choices of this nonlinear function include the quadratic function, the
logarithm function, and the xIn(x)-entropy function. Furthermore, the
solutions generated by such approaches may satisfy the linear constraints
only inexactly and thus are optimal solutions of the regularized problem
with a perturbed right-hand side. We give a general condition for such an
optimal solution to converge to an optimal solution of the original problem
as the perturbation parameter tends to zero. In the case where the non-
linear function is strictly convex, we further derive a local (error) bound
on the distance from such an optimal solution to the limiting optimal
solution of the original problem, expressed in terms of the perturbation
parameter.

1 Introduction

The two main topics of this paper, error bound and perturbation of linear pro-
grams, are ones on which Olvi Mangasarian has left indelible marks, as he has done
in so many areas of mathematical programming.

Consider the linear program (P):

minimize '
subject to  Ax <b, x >0,

where ¢ € ", A € ™" b € R™. We denote by S the set of optimal solutions
of (P), which is polyhedral and assumed to be nonempty, and we denote by X the
set of feasible solutions of (P), i.e., X := {x € R : Ax < b,z > 0}. In various
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penalty /smoothing approaches to solving this classical optimization problem, one
adds to the objective a separable nonlinear function multiplied by a small positive
scalar € and solves the resulting problem instead. Such a function has the form

f('rla aTn) = fl(xl) +oe fn(rn)a

where each f; : & — R U {oo} is either continuous on [0, co) or continuous on (0, c0)
with limg g f;(§) = co. The corresponding perturbed problem, denoted (P€), has the
form:

minimize 'z +ef (z)
subject to Az < b, = >0,

where b € R™ satisfies b — b as € — 0. We note that previous studies focus on the
case where b = b for all €, but the general case is also of interest since in practice the
constraints Ar < b may be satisfied only inexactly. One popular choice of f; is the

quadratic function
filay) = (2;)%/2 (1)

which has been studied by Karlin [Kar59, p. 238, Mangasarian [Man81, Mang&4,
Man86] and others [MNP96, Pin96]. In particular, it was shown in [Man84] that,
for all e sufficiently small (and with b° = b), the unique solution of (P¢) equals the
least 2-norm solution of (P). [A weaker version of this result was rediscovered in
[MNPI6].] The equivalence between the solution set of (P€) and the solution set of
(P) for small € is further studied in [FeM91, MaR79] for arbitrary real-valued function
f that is either continuously differentiable around S or Lipschitz continuous around
S or convex around X. Another popular choice of f; is the logarithm function

fi(zj) = —In(z;) (2)

which has been much studied in the context of interior penalty methods and Karmarkar-
type interior-point methods (see [FiM68, McL.80, Meg89, Wri92] and references therein).
A third choice is the entropy function

fi(zj) = x;In(z;), (3)

which was studied by Fang et al. [Fan92, FaT93, RaF92] and, from a dual exponential
penalty view, by Cominetti et al. [CoD94, CoS94| (see [FRT97, FaT96] for further
discussions). Such a perturbation of (P) also arises in the asymptotic analysis of a
certain perturbed entropy minimization problem, as communicated to the author by
A. Lewis at the University of Waterloo. In [CoS94], it was shown that, as ¢ — 0
(and with b° = b), the unique solution of (P¢) approaches the least x In(z)-entropy
solution of (P). This result was generalized in a recent work of Auslender et al.
[ACH97, Theorem 3.4] to the case where each f; is the conjugate of a certain kind of
strictly convex differentiable function, namely, a function satisfying the assumptions
(Hy), (Hs), (H;) in [ACH97] (see the end of Section 2 for further discussions of this).
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For arbitrary f that is bounded on X (and assuming b¢ = b for all €), it is easily
shown that the difference in the optimal objective value of (P€) and of (P) is within
a constant factor of € (see the proof of Proposition 2.1(c) in [Tse95]).

Let S denote the set of optimal solutions of (P€) and let

S*:=argmin{ ) f;(z;) :z € S},

jeJ*

where J* := {j € {1,...,n} : z; > 0 for some z € S}. We will show that, as e — 0, S°
converges S* in a certain sense (see Proposition 1) and, when each f; is strictly convex
(so S¢ and S*, if nonempty, are singletons), we will give an estimate of the rate of
convergence (see Proposition 2). The latter estimate is given as a local (error) bound
on the distance from S to S*, expressed in terms of the perturbation parameter € and
b — b. To our knowledge, the only previous bounds of this kind were those obtained
by Mangasarian et al. [Man84, MaR79] for the case b = b and f being Lipschitz
continuous around S* (not necessarily separable), for which this distance equals zero
for all e sufficiently small. When f is not Lipschitz continuous around S*, such as
when each f; is the logarithm function or the entropy function, our bound appears
to be new, even for the case b = b.

In our notation, all vectors are column vectors, " denotes the space of n—
dimensional real column vectors, and 7 denotes transpose. For any vector z € R",
we denote by z; the ith component of z and, for any I C {1,...,n}, by z; the vector
obtained after removing from z those x; with i ¢ I. We also denote by ||z|| the Eu-
clidean norm of z, i.e., ||z|| = VaTz. For any B € R™*" and any I C {1,...,m} and
J C {1,...,n}, we denote by B; the submatrix of B obtained by removing all rows
of B with indices outside of I and by B;; the submatrix of B; obtained by removing
all columns of B; with indices outside of .J. We also denote by |I| the cardinality of
I and denote I°:= {1, ...,m}\I.

2 Convergence of Solutions of Perturbed Problem
Below we derive a general condition for S to converge to S* in a certain sense.

Proposition 1 Assume there exists an x* € S* and an & € X with f(Z) < oc. Then,
for any sequence of positive scalars T = {e',€*,...} tending to zero and any sequence
of vectors x€ € S, e € T, converging to some >, we have x> € S*.

Proof. If the claim is false, then either (i) 2> ¢ S or (ii) ™ € S but x> ¢ S*. In case
(i), since z* € S and x° converges to ™ so that £ € X, there is some constant p > 0
such that ¢f'z¢ > c¢f'2* + p for all sufficiently small € € Y. Now, z* satisfies Az* < b
and z* > 0 and, for each ¢ € T, Az < b and = > 0 has a solution (namely z¢) so, by
a lemma of Hoffman [Hof52], there exists a solution y¢ satisfying ||y —2*|| < &||b¢ —b||
for some constant x > 0 depending on A only. Similarly, there exists a solution g°¢
satisfying ||g¢ — || < k||b¢—b||. Fix any 6 € (0, 1) satisfying 6(c” & — ¢ 2*) < p. Then,
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Yy — z* and §¢ — & as € — 0, implying w® = (1 — )y + 09° — (1 — 0)x* + 6z and
(since f is continuous at (1 — 6)z* + 0)

cw +ef(w) — ot +0ci—c'a) < dat+p ase— 0.

Moreover, w€ is a feasible solution of (P€). Now, the convergence of z¢ implies f(x¢)
is bounded from below, so

: : 1, € € > T, * : T, € €

llmiél%{c z“+ef(z)} > cat+p > EGITI’IEH_M{C w +ef (w)},
contradicting z¢ € S for all e € T. In case (ii), we have 3=, j« f;(25°) > 3+ f3(27).
Let d := 2* — 2. Then ¢'d = 0, d; = 0 for all j ¢ J*, and A;d < 0, where
I={ie{l,...m}: Ajz>™ = b;}, and for any o € (0, 1) sufficiently near 1, we have
Yjes [ilaF +ady) < Xiepe fi(25°) and Ape(2°° +ad) < bre. Then, for all sufficiently
small e € T, the vector 2 := a°+ad satisfies ¢ 2 = "0, 305 f3(25) = ;g0 f5(25),
e fi(25) < Xjey- fi(5) and Az° < b, 2¢ > 0, contradicting 2€ € S =

The assumptions in Proposition 1 are quite mild and, in particular, if S'is nonempty
bounded and inf,cp o) f(2) > —o00, then S is nonempty whenever (P¢) has a fea-
sible solution. If we do not assume z¢ converges but do assume it is bounded, then
Proposition 1 implies each cluster point of z¢ is in S*. If we do not even assume z¢
is bounded, then, while we can still show that mingeg ||z¢ — s|]| = 0 as e — 0, we do
not know of an analogous result on the convergence of 2 to S*. In the cases where
b¢ = b and each f; is Lipschitz continuous on [0, 00) or is convex real-valued on an
open interval containing [0, o0), Proposition 1 can also be deduced from the results of
Mangasarian and Meyer [MaR79] (also see [FeM91]). In the case where b° = b and f;
is the logarithm function (2), Proposition 1 corresponds to a well-known result about
interior-point methods, namely, the convergence of the central path to the analytic
center of the optimal face [McL80, Theorem 9]. In the case where b = b and f; is
the entropy function (3), Proposition 1 corresponds to [CoS94, Proposition 4.1]. In
the case where f;(z;) = sup, en(z;y; — 9j(y;)) [Roc70, Chapter 12] for some convex
g; + = N U {oo} satisfying lim,, , o g;(y;)/y; = 0 and limy, o g;(y;)/y; = oo, it
can be shown by a standard duality argument that a dual of (P€) is

minimize  (b)"A+ €Y g;(—(c; + (A");A)/e) subject to A >0,

=1

so Proposition 1 is closely related to a dual convergence result given in [ACH97,
Theorem 3.4] which also assumes b = b and ¢y, ..., g,, are identical and strictly convex
differentiable. The same reference also studied primal convergence and extensions to
convex programming. The weaker conclusion that 2> € S is related to the classical
theory for penalty methods [FiM68, Theorem 25]. Otherwise, Proposition 1 appears
to be a new result.



3 A Local Error Bound for Solutions of Perturbed
Problem

In this section, we consider the case where each f; is strictly convex on [0, 00), so
that S and S*, if nonempty, have single element 2 and 2*. We derive a bound on the
distance between ¢ and x* in terms of € and ¢ —b. The proof of this uses Proposition
1, the optimality conditions for (P€) and (P), as well as a result of Hoffman [Hof52]
relating to an upper Lipschitzian property of the solution set of a linear system with
respect to right-hand side perturbation [WaWe69].

Proposition 2 Assume each f; is strictly convexr and continuously differentiable on
(0,00) and define V f;(0) := lim¢ )y V f;(£). Assume there exists an z* € S* and an
& € X with Vf;j(z;) > —oc for all j = 1,...,n. Then, for any sequence of positive
scalars T = {e', €%, ...} tending to zero and any bounded sequence of vectors z¢ € S¢,
e € T, there exist positive constants €, p and T such that, for all e € Y with € < €, we
have

vy SV (=pfe) Vi€ K, 3 ¢agaf) + gl < 7 (1= bl + [lakll)

jed

where J := {j € {1,...,n} : Vfj(x}) > —oo}, K is some subset of J¢:= {1,...,n}\J
and L = J\K (K may depend on €), and ¢;(&,v) = (£ —)(Vf;(§) = V() for
each j € J.

Proof. Since each f; is strictly convex on (0, 00), * must be the only element of S*.
Since z¢ is bounded and hence has convergent subsequences, then Proposition 1 yields
¢ — x* as € — 0. Also, 7 satisfies Az < b,z > 0 and, foreach e € T, Ax < 0,2 >0
has a solution (namely z¢), so, by a lemma of Hoffman [Hof52], there exists a solution
y© satisfying ||y — z|| < &|[b¢ — b||, where k > 0 is a constant depending on A only.
Thus, y — & as € — 0, implying (since Vf;(;) > —oc for all j) y§ — 25 > 0
whenever V f;(0) = —oo. Moreover, y¢ is a feasible solution of (P€). Since f is convex

n [0,00)" and the directional derivative of z + ¢’z + ef(x) at 2¢ in the direction
y© — xcis

ey — xf —l—eZVf] yj—.r])

j=1
it must be that Vf;(25) > —oc and €V f;(5) is bounded as € — 0, for all j = 1,.
[Otherwise, because Vf]( §) = —00 1mp11es x5 = 0 and er](.,]) being unbounded

implies erj(.rj) — —00 and x5 — 0 as € — 0 along some subsequence of T, this

directional derivative would be negative (possibly —oc) for some € € T, contradicting
xc e S

For each € € T, since z¢ is an optimal solution of the convex program (P€) and
Vfj(x§) > —oo for j=1,...,n (so 5. > 0), it follows from the Karush-Kuhn-Tucker



theorem (see [Roc70, Corollary 28.3.1]) that there exist index sets I C {1,...,m},
M C J, and A\ € R™ satistying

=0 jeMUJ

eV fi(x§) + e+ (A7) {ZO e M

)\EI 2 07 )\EIC = 0’ (4)

o =0, At =1bp,  Apea® < b (5)

The number of such index sets I and M is finite and independent of €, so, by passing
into a subsequence if necessary, we can assume [ and M are fixed for all e € T. Also,
since €V f(z¢) is bounded as € — 0, it follows from a lemma of Hoffman [Hof52] that
there exists A¢ satisfying (4) that is bounded as € — 0. Thus, we can assume that A
is bounded.

Then, for sufficiently small € € T so that Vf;(z5) < 0 for all j € J° (since

j
Vfi(z5) — —oc as e = 0), we have from (4) that A° satisfies

=0 jeM

T € € €
20 ]GJ\M, CJC+(A )Jc)\ ZO, )\IZO, )\IC—O.

€V f;(2) + ¢; + (AT); X {

Since €V f;(z5) — 0 as e — 0, for all j € J, so the system

=0 jeM

Cj_l_(AT)j)‘{ZO ]EJ\M )

Cje + (AT)JC)\ 2 Oa )\[ 2 Oa )\[C - 07 (6)

has a solution (namely, any cluster point of A as e — 0), it follows from a lemma of
Hoffman [Hof52] that there exists a solution p° satisfying

Al < TSyl g

where k > 0 is a constant depending on A only.

Let A denote the set of A € R™ satisfying (6) and [|A|| < sup.ey |[1€]]. We claim
that there exists a scalar p > 0 such that, for every A € A there exists a K C J¢ such
that

i+ (AT A>pVje K and ¢+ (A7) u =0 for some p € A, (8)

where L := J°\K. If not, then for every sequence of scalars p* > 0, k = 1,2, ...,
tending to zero, there would exist a ¥ € A such that, for every K C .J¢ we have

c; + (AT < pF forsome j € K or e+ (AT)u# 0V € A,

where L := J°\ K. Since A is bounded and closed, then v*, k = 1,2, ..., has a cluster
point v € A such that, for every K C J° we have

¢+ (AT) ;v =0 forsome j € K or ¢+ (A" u#0Vu €A,

where L := J°\ K. However, this cannot be true since the above relations fail to hold
for K={je J:¢c;+ (A");v >0} and p = v.



For each € € T, we have u¢ € A and hence there exists a K C J¢ such that (8)
holds with A = p¢ and L := J\K. Since the number of such subset K is finite
and independent of €, by passing into a subsequence if necessary, we can assume it
is the same K and L for all e € Y. Since, by (7), \* — u¢ — 0 as ¢ — 0, we have
¢j+ (AT);\ > pfor all j € K and sufficiently small € € T, in which case (4) and the
nondecreasing property of fol would imply

w5 =V (<o + (A");X) /e) SV (=ple) V€K (9)

Since 2 — z*, we have from (5) that 273, = 0 and I C I*, where I" := {i €
{1,...,m} : Ajz* = b;}. Also, z%. = 0. For convenience, let A := b° —b. We claim
that there exists a constant 7; > 0 such that

2]l < 7 (A7 + %)) (10)

If not, then (||A% || + [|2%])/]|z% |l = 0 as € — 0 along some subsequence of Y. Since
% =0 and A;z* = b and A;z° = b5 so that Ay, (25 — a%) + Ajpaf = Ay — Apgate,
dividing both sides by ||z5 || would yield in the limit (note that I C I*)

A (@ = wp)Norll + Aar/lop ) = (A7 = Arease) /|27 ]] = 0.

Similarly, since z%. = 0 and Agaz* = by and Agz© < by, where we denote H := [*\1,
so that Ay (x5 — 2%) + Appas < Ay — Ay, dividing both sides by ||z¢ | would
yield in the limit

Ay — )/l + Anpay /a7l < (A = Aurate) /23] = 0.

Thus, A[JOJ+AILOL = 0 and AHJOJ+AHL9L S 0 for some 9] € SR‘J‘ and some nonzero
0., € [0,00)I"l. Moreover, §; > 0 for all j € J with w7 = 0 and 0,y = 0. Then,
for a > 0 sufficiently small, the vector x € R" given by =, := 2% + ab,, x; = aby,
rg = 0 would satisfy > 0, zpn = 0, Ajx = Apx* = by, and Ajex < bye. Then
r € X and, together with any pu € A satisfying ¢;, + (A"),u = 0 (see (8)), satisfies
the Kuhn-Tucker conditions for (P), so x € S. Moreover, the directional derivative
of f at 2 in the direction z — 2* would be negative (since 7 = 0 and V f;(0) = —o0
for all j € K UL = J°), contradicting the definition of z*.

For j € J\M, we have from (5) and z§ — z} that 25 = 27 = 0 for all e € T,
Lastly, we estimate 25, — 3,. From (4) and p being a solution of (6) we have

Vi) + (AT);(A = p) Je=0Vj€ M, Ao —pje =0

for all e € Y. Since, by (7), (A° — u%)/e is bounded as ¢ — 0, then it has a cluster
point m € R satisfying

V@) + (AT m=0Vj e M, mp.=0.



€

Multiplying the first set of equations by e and adding them to ¢; + (A");u¢ = 0,
j € M (since pf is a solution of (6)), gives

eV fi(x}) + ¢ + (A);(p +em) =0 Vj € M.
Subtracting this from the first set of equations in (4) corresponding to j € M gives

e (Vfi(z5) = V() + (AT);(\ — pf —en) =0 ¥j € M.

*

%) and summing over all j € M gives the single

Multiplying both sides by (2§ —
equation

el — 23" (Ve — V(D) = (Awaly — Away) (1 — X +em). (11)

jeM
Since )\EIC = /Lejc = Tje = 0 and A[JZ‘* = b[ and A[fEE = b[+A€[, then (A(EE—A(E*)T(/LE—
A +em) = (A9)T (g — X +em;). This, together with % = 0 for j € {1,...,n}\M and
T =0, implies

(Apasy, — Apat) ' (1 — A +emp)
= (Az — Ax)T(pf — 2N +em) — (Agea)T (1€ — A+ er)
(A" (ug = Xp + emp) — (Ageafe )" (= X+ em). (12)

Using (7), (10), and (12) to bound the right-hand side of (11) (also noting that
V fi(x5)jes is bounded as € — 0) yields

e (ahy = 23)" (VH(5) = Vf5()) < em (151 + Jliel)

for some constant 75 > 0. The above inequality, together with (9) and (10) and
Ty = Ty = 0, completes the proof  m

We note that Proposition 2 still holds if we allow f; to be non-differentiable at a
finite number of points in (0,00), and the proof of this entails only minor modifica-
tions. If in addition each f; is locally uniformly convex of order § > 1 at z for all
j € J (i.e., there exists a constant o > 0 such that ¢;(z;, 25) > olz; — 23| for all x;
near r;, j € J), then Proposition 2 would imply the distance bound

o3 Jaf — a3+ flafe — a5l < 7 (16— bl + IV £ (—p/€)jen )

jed
for all sufficiently small e € Y. In the case where f;(z;) = —In(z;), we have f = 2
and Vf; ' (=p/e) = €/p which tends to zero linearly with e. In the case where
fi(x;) = x;In(z;), we have 8 = 2 and Vf; ' (—p/e) = exp(—p/e + 1) which tends
to zero exponentially with e. In the case where each f; is strictly convex and V f; is
defined and continuous on [0, cc) for all j (e.g., f;(z;) = (x;)?/2), we have K = L = ()
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and Proposition 2 implies that, if in addition b = b, then z¢ = z* for all sufficiently
small e. This finite perturbation result is a special case of those shown in [MaR79]
and, interestingly, it can also be deduced from Proposition 2. Notice that in the three
cases considered above, the best approximation of x* by x¢, as € — 0, is obtained in
the third case and the worst approximation is obtained in the first case. For practical
computation, however, the first case has been more favoured. Of course, we can use
other choices of f;, such as f;(z;) = 1/z; or f;(z;) = — /75, etc., and use Proposition
2 to obtain corresponding error bounds.

Notice that the index subset K in Proposition 2 depends on e. The following
example shows that this dependence cannot be removed in general. Consider the
perturbed problem:

minimize x1 + €f1(x1) + €fa(xs) (13)
subject to -2+ a0, <0, 21 >0, 29 >0,
where fi(z;) = Iﬁ(:rl)lfp for 21 > 0 and fy(zq) = ‘1%1(:1:2)1*‘1 for @y > 0, with
p>1,g>1(so Vfi(x)) = —(21)P, Vfa(xe) = —(x2)7%). This problem satisfies

the assumptions of Proposition 2 with S* = {(0,0)} and J = (. Moreover, direct
calculation yields the optimal solution 2¢ = (2, 5) and Lagrange multiplier A® € [0, 1]
given by

B = (1= NP = a5 = (N (=X = ey

Thus, if p < ¢, then 1 — X — 0 as € — 0, so 2§ = 2§ is in the order of (¢)'/9, with
K = {2}. [Since p < q, 2§ cannot be below V£, *(—p/e) = (¢/p)'/? for any positive
constant p.| Symmetrically, if p > ¢, then A* — 0 as ¢ — 0, so x{ = z§ is in the order
of (¢)'/?, with K = {1}. This shows that K is determined by the relative growth
rate of Vf; and V fy near 0. Now suppose we modify f; and f, so that these two
growth rates alternate in dominance. In particular, let gy = (ag)?/2 fork = 1,2, ...,
with a; = 1, and choose strictly convex and continuously differentiable functions f;
and fy on (0, 00) satisfying Vfi(ax) = —(ax) " and Vfo(ar) = —(ag) 2 for k odd
and Vfi(ag) = —(ag)? and Vfa(ar) = —(a) " for k even. [Notice that oy | 0
and Vfj(ag) | —oo as k — oo for j = 1,2, so the function f; can be constructed
by interpolating V f; using its value at oy, a9, ... and then integrating.] With this
choice of f; and fy, the problem (13) still satisfies the assumptions of Proposition 2
with S* = {(0,0)} and J = (). Moreover, it can be seen that z{ = 2§ tends to zero
continuously in e, so for each k sufficiently large, we can find €* such that xik = :rgk =
ag. Then, arguing as above, we obtain that K = {2} for e along the subsequence
Yodd = {€¥}k 0aa, and K = {1} for € along the subsequence Yeyen = {€*}1 even. S0,
for € along T = Yoqq U Yeyen, K would depend on e. It is an open (and nontrivial)
question whether K would still depend on € if fi,..., f, are identical.

Acknowledgement. I thank the two referees for their reading of this paper and
their comments.
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