
CONVERGENCE AND ERROR BOUND FORPERTURBATION OF LINEAR PROGRAMS1Dediated to Professor Olvi Mangasarian on the oasion of his 65th birthday, whoseboundless energy and reativity ontinue to inspire.June 22, 1997 (revised May 7, 1998)PAUL TSENGDepartment of Mathematis, University of WashingtonSeattle, Washington 98195, U.S.A. (tseng�math.washington.edu)ABSTRACTIn various penalty/smoothing approahes to solving a linear program,one regularizes the problem by adding to the linear ost funtion a sepa-rable nonlinear funtion multiplied by a small positive parameter. Popu-lar hoies of this nonlinear funtion inlude the quadrati funtion, thelogarithm funtion, and the x ln(x)-entropy funtion. Furthermore, thesolutions generated by suh approahes may satisfy the linear onstraintsonly inexatly and thus are optimal solutions of the regularized problemwith a perturbed right-hand side. We give a general ondition for suh anoptimal solution to onverge to an optimal solution of the original problemas the perturbation parameter tends to zero. In the ase where the non-linear funtion is stritly onvex, we further derive a loal (error) boundon the distane from suh an optimal solution to the limiting optimalsolution of the original problem, expressed in terms of the perturbationparameter.1 IntrodutionThe two main topis of this paper, error bound and perturbation of linear pro-grams, are ones on whih Olvi Mangasarian has left indelible marks, as he has donein so many areas of mathematial programming.Consider the linear program (P ):minimize Txsubjet to Ax � b; x � 0;where  2 <n; A 2 <m�n; b 2 <m. We denote by S the set of optimal solutionsof (P ), whih is polyhedral and assumed to be nonempty, and we denote by X theset of feasible solutions of (P ), i.e., X := fx 2 <m : Ax � b; x � 0g. In various1This researh is supported by National Siene Foundation Grant CCR-9311621.1



penalty/smoothing approahes to solving this lassial optimization problem, oneadds to the objetive a separable nonlinear funtion multiplied by a small positivesalar � and solves the resulting problem instead. Suh a funtion has the formf(x1; :::; xn) = f1(x1) + � � �+ fn(xn);where eah fj : < 7! < [ f1g is either ontinuous on [0;1) or ontinuous on (0;1)with lim�#0 fj(�) =1. The orresponding perturbed problem, denoted (P �), has theform: minimize Tx + �f(x)subjet to Ax � b�; x � 0;where b� 2 <m satis�es b� ! b as �! 0. We note that previous studies fous on thease where b� = b for all �, but the general ase is also of interest sine in pratie theonstraints Ax � b may be satis�ed only inexatly. One popular hoie of fj is thequadrati funtion fj(xj) = (xj)2=2 (1)whih has been studied by Karlin [Kar59, p. 238℄, Mangasarian [Man81, Man84,Man86℄ and others [MNP96, Pin96℄. In partiular, it was shown in [Man84℄ that,for all � suÆiently small (and with b� = b), the unique solution of (P �) equals theleast 2-norm solution of (P ). [A weaker version of this result was redisovered in[MNP96℄.℄ The equivalene between the solution set of (P �) and the solution set of(P ) for small � is further studied in [FeM91, MaR79℄ for arbitrary real-valued funtionf that is either ontinuously di�erentiable around S or Lipshitz ontinuous aroundS or onvex around X. Another popular hoie of fj is the logarithm funtionfj(xj) = � ln(xj) (2)whih has been muh studied in the ontext of interior penalty methods and Karmarkar-type interior-point methods (see [FiM68, ML80, Meg89, Wri92℄ and referenes therein).A third hoie is the entropy funtionfj(xj) = xj ln(xj); (3)whih was studied by Fang et al. [Fan92, FaT93, RaF92℄ and, from a dual exponentialpenalty view, by Cominetti et al. [CoD94, CoS94℄ (see [FRT97, FaT96℄ for furtherdisussions). Suh a perturbation of (P ) also arises in the asymptoti analysis of aertain perturbed entropy minimization problem, as ommuniated to the author byA. Lewis at the University of Waterloo. In [CoS94℄, it was shown that, as � ! 0(and with b� = b), the unique solution of (P �) approahes the least x ln(x)-entropysolution of (P ). This result was generalized in a reent work of Auslender et al.[ACH97, Theorem 3.4℄ to the ase where eah fj is the onjugate of a ertain kind ofstritly onvex di�erentiable funtion, namely, a funtion satisfying the assumptions(H0), (H2), (H3) in [ACH97℄ (see the end of Setion 2 for further disussions of this).2



For arbitrary f that is bounded on X (and assuming b� = b for all �), it is easilyshown that the di�erene in the optimal objetive value of (P �) and of (P ) is withina onstant fator of � (see the proof of Proposition 2.1() in [Tse95℄).Let S� denote the set of optimal solutions of (P �) and letS� := argminfXj2J� fj(xj) : x 2 Sg;where J� := fj 2 f1; :::; ng : xj > 0 for some x 2 Sg. We will show that, as �! 0, S�onverges S� in a ertain sense (see Proposition 1) and, when eah fj is stritly onvex(so S� and S�, if nonempty, are singletons), we will give an estimate of the rate ofonvergene (see Proposition 2). The latter estimate is given as a loal (error) boundon the distane from S� to S�, expressed in terms of the perturbation parameter � andb� � b. To our knowledge, the only previous bounds of this kind were those obtainedby Mangasarian et al. [Man84, MaR79℄ for the ase b� = b and f being Lipshitzontinuous around S� (not neessarily separable), for whih this distane equals zerofor all � suÆiently small. When f is not Lipshitz ontinuous around S�, suh aswhen eah fj is the logarithm funtion or the entropy funtion, our bound appearsto be new, even for the ase b� = b.In our notation, all vetors are olumn vetors, <n denotes the spae of n{dimensional real olumn vetors, and T denotes transpose. For any vetor x 2 <n,we denote by xi the ith omponent of x and, for any I � f1; :::; ng, by xI the vetorobtained after removing from x those xi with i 62 I. We also denote by kxk the Eu-lidean norm of x, i.e., kxk = pxTx. For any B 2 <m�n and any I � f1; :::; mg andJ � f1; :::; ng, we denote by BI the submatrix of B obtained by removing all rowsof B with indies outside of I and by BIJ the submatrix of BI obtained by removingall olumns of BI with indies outside of J . We also denote by jIj the ardinality ofI and denote I := f1; :::; mgnI.2 Convergene of Solutions of Perturbed ProblemBelow we derive a general ondition for S� to onverge to S� in a ertain sense.Proposition 1 Assume there exists an x� 2 S� and an x̂ 2 X with f(x̂) <1. Then,for any sequene of positive salars � = f�1; �2; :::g tending to zero and any sequeneof vetors x� 2 S�, � 2 �, onverging to some x1, we have x1 2 S�.Proof. If the laim is false, then either (i) x1 62 S or (ii) x1 2 S but x1 62 S�. In ase(i), sine x� 2 S and x� onverges to x1 so that x1 2 X, there is some onstant � > 0suh that Tx� � Tx� + � for all suÆiently small � 2 �. Now, x� satis�es Ax� � band x� � 0 and, for eah � 2 �, Ax � b� and x � 0 has a solution (namely x�) so, bya lemma of Ho�man [Hof52℄, there exists a solution y� satisfying ky��x�k � �kb��bkfor some onstant � > 0 depending on A only. Similarly, there exists a solution ŷ�satisfying kŷ�� x̂k � �kb��bk. Fix any � 2 (0; 1) satisfying �(T x̂�Tx�) < �. Then,3



y� ! x� and ŷ� ! x̂ as � ! 0, implying w� = (1� �)y� + �ŷ� ! (1� �)x� + �x̂ and(sine f is ontinuous at (1� �)x� + �x̂)Tw� + �f(w�) ! Tx� + �(T x̂� Tx�) < Tx� + � as �! 0:Moreover, w� is a feasible solution of (P �). Now, the onvergene of x� implies f(x�)is bounded from below, solim inf�2�fTx� + �f(x�)g � Tx� + � > lim�2�;�!0fTw� + �f(w�)g;ontraditing x� 2 S� for all � 2 �. In ase (ii), we have Pj2J� fj(x1j ) > Pj2J� fj(x�j).Let d := x� � x1. Then Td = 0, dj = 0 for all j 62 J�, and AId � 0, whereI := fi 2 f1; :::; mg : Aix1 = big, and for any � 2 (0; 1) suÆiently near 1, we havePj2J� fj(x1j +�dj) < Pj2J� fj(x1j ) and AI(x1+�d) < bI. Then, for all suÆientlysmall � 2 �, the vetor z� := x�+�d satis�es T z� = Tx�,Pj 62J� fj(z�j) = Pj 62J� fj(x�j),Pj2J� fj(z�j) < Pj2J� fj(x�j) and Az� � b�; z� � 0, ontraditing x� 2 S�.The assumptions in Proposition 1 are quite mild and, in partiular, if S is nonemptybounded and infx2[0;1)n f(x) > �1, then S� is nonempty whenever (P �) has a fea-sible solution. If we do not assume x� onverges but do assume it is bounded, thenProposition 1 implies eah luster point of x� is in S�. If we do not even assume x�is bounded, then, while we an still show that mins2S kx� � sk ! 0 as � ! 0, we donot know of an analogous result on the onvergene of x� to S�. In the ases whereb� = b and eah fj is Lipshitz ontinuous on [0;1) or is onvex real-valued on anopen interval ontaining [0;1), Proposition 1 an also be dedued from the results ofMangasarian and Meyer [MaR79℄ (also see [FeM91℄). In the ase where b� = b and fjis the logarithm funtion (2), Proposition 1 orresponds to a well-known result aboutinterior-point methods, namely, the onvergene of the entral path to the analytienter of the optimal fae [ML80, Theorem 9℄. In the ase where b� = b and fj isthe entropy funtion (3), Proposition 1 orresponds to [CoS94, Proposition 4.1℄. Inthe ase where fj(xj) = supyj2<(xjyj � gj(yj)) [Ro70, Chapter 12℄ for some onvexgj : < 7! < [ f1g satisfying limyj!�1 gj(yj)=yj = 0 and limyj!1 gj(yj)=yj = 1, itan be shown by a standard duality argument that a dual of (P �) isminimize (b�)T�+ � nXj=1 gj(�(j + (AT )j�)=�) subjet to � � 0;so Proposition 1 is losely related to a dual onvergene result given in [ACH97,Theorem 3.4℄ whih also assumes b� = b and g1; :::; gn are idential and stritly onvexdi�erentiable. The same referene also studied primal onvergene and extensions toonvex programming. The weaker onlusion that x1 2 S is related to the lassialtheory for penalty methods [FiM68, Theorem 25℄. Otherwise, Proposition 1 appearsto be a new result. 4



3 A Loal Error Bound for Solutions of PerturbedProblemIn this setion, we onsider the ase where eah fj is stritly onvex on [0;1), sothat S� and S�, if nonempty, have single element x� and x�. We derive a bound on thedistane between x� and x� in terms of � and b��b. The proof of this uses Proposition1, the optimality onditions for (P �) and (P ), as well as a result of Ho�man [Hof52℄relating to an upper Lipshitzian property of the solution set of a linear system withrespet to right-hand side perturbation [WaW69℄.Proposition 2 Assume eah fj is stritly onvex and ontinuously di�erentiable on(0;1) and de�ne rfj(0) := lim�#0rfj(�). Assume there exists an x� 2 S� and anx̂ 2 X with rfj(x̂j) > �1 for all j = 1; :::; n. Then, for any sequene of positivesalars � = f�1; �2; :::g tending to zero and any bounded sequene of vetors x� 2 S�,� 2 �, there exist positive onstants ��, � and � suh that, for all � 2 � with � � ��, wehavex�j � rf�1j (��=�) 8j 2 K; Xj2J �j(x�j; x�j) + kx�Lk � � (kb� � bk + kx�Kk) ;where J := fj 2 f1; :::; ng : rfj(x�j) > �1g, K is some subset of J := f1; :::; ngnJand L = JnK (K may depend on �), and �j(�;  ) := (� �  )(rfj(�)�rfj( )) foreah j 2 J.Proof. Sine eah fj is stritly onvex on (0;1), x� must be the only element of S�.Sine x� is bounded and hene has onvergent subsequenes, then Proposition 1 yieldsx� ! x� as �! 0. Also, x̂ satis�es Ax̂ � b; x̂ � 0 and, for eah � 2 �, Ax � b�; x � 0has a solution (namely x�), so, by a lemma of Ho�man [Hof52℄, there exists a solutiony� satisfying ky� � x̂k � �kb� � bk, where � > 0 is a onstant depending on A only.Thus, y� ! x̂ as � ! 0, implying (sine rfj(x̂j) > �1 for all j) y�j ! x̂j > 0whenever rfj(0) = �1. Moreover, y� is a feasible solution of (P �). Sine f is onvexon [0;1)n and the diretional derivative of x 7! Tx + �f(x) at x� in the diretiony� � x� is T (y� � x�) + � nXj=1rfj(x�j)(y�j � x�j);it must be that rfj(x�j) > �1 and �rfj(x�j) is bounded as �! 0, for all j = 1; :::; n.[Otherwise, beause rfj(x�j) = �1 implies x�j = 0 and �rfj(x�j) being unboundedimplies �rfj(x�j) ! �1 and x�j ! 0 as � ! 0 along some subsequene of �, thisdiretional derivative would be negative (possibly �1) for some � 2 �, ontraditingx� 2 S�.℄For eah � 2 �, sine x� is an optimal solution of the onvex program (P �) andrfj(x�j) > �1 for j = 1; :::; n (so x�J > 0), it follows from the Karush-Kuhn-Tuker5



theorem (see [Ro70, Corollary 28.3.1℄) that there exist index sets I � f1; :::; mg,M � J , and �� 2 <m satisfying�rfj(x�j) + j + (AT )j�� �= 0 j 2M [ J� 0 j 2 JnM ; ��I � 0; ��I = 0; (4)x�JnM = 0; AIx� = b�I ; AIx� < b�I: (5)The number of suh index sets I and M is �nite and independent of �, so, by passinginto a subsequene if neessary, we an assume I and M are �xed for all � 2 �. Also,sine �rf(x�) is bounded as �! 0, it follows from a lemma of Ho�man [Hof52℄ thatthere exists �� satisfying (4) that is bounded as �! 0. Thus, we an assume that ��is bounded.Then, for suÆiently small � 2 � so that rfj(x�j) � 0 for all j 2 J (sinerfj(x�j)! �1 as �! 0), we have from (4) that �� satis�es�rfj(x�j) + j + (AT )j�� �= 0 j 2M� 0 j 2 JnM ; J + (AT )J�� � 0; ��I � 0; ��I = 0:Sine �rfj(x�j)! 0 as �! 0, for all j 2 J , so the systemj + (AT )j��= 0 j 2M� 0 j 2 JnM ; J + (AT )J� � 0; �I � 0; �I = 0; (6)has a solution (namely, any luster point of �� as �! 0), it follows from a lemma ofHo�man [Hof52℄ that there exists a solution �� satisfyingk�� � ��k � � �krfj(x�j)j2Jk; (7)where � > 0 is a onstant depending on A only.Let � denote the set of � 2 <m satisfying (6) and k�k � sup�2� k��k. We laimthat there exists a salar � > 0 suh that, for every � 2 � there exists a K � J suhthat j + (AT )j� > � 8j 2 K and L + (AT )L� = 0 for some � 2 �; (8)where L := JnK. If not, then for every sequene of salars �k > 0, k = 1; 2; :::,tending to zero, there would exist a �k 2 � suh that, for every K � J we havej + (AT )j�k � �k for some j 2 K or L + (AT )L� 6= 0 8� 2 �;where L := JnK. Sine � is bounded and losed, then �k, k = 1; 2; :::, has a lusterpoint � 2 � suh that, for every K � J we havej + (AT )j� = 0 for some j 2 K or L + (AT )L� 6= 0 8� 2 �;where L := JnK. However, this annot be true sine the above relations fail to holdfor K = fj 2 J : j + (AT )j� > 0g and � = �.6



For eah � 2 �, we have �� 2 � and hene there exists a K � J suh that (8)holds with � = �� and L := JnK. Sine the number of suh subset K is �niteand independent of �, by passing into a subsequene if neessary, we an assume itis the same K and L for all � 2 �. Sine, by (7), �� � �� ! 0 as � ! 0, we havej + (AT )j�� � � for all j 2 K and suÆiently small � 2 �, in whih ase (4) and thenondereasing property of rf�1j would implyx�j = rf�1j ��(j + (AT )j��)=�� � rf�1j (��=�) 8j 2 K: (9)Sine x� ! x�, we have from (5) that x�JnM = 0 and I � I�, where I� := fi 2f1; :::; mg : Aix� = big. Also, x�J = 0. For onveniene, let �� := b� � b. We laimthat there exists a onstant �1 > 0 suh thatkx�Lk � �1(k��I�k+ kx�Kk): (10)If not, then (k��I�k+ kx�Kk)=kx�Lk ! 0 as �! 0 along some subsequene of �. Sinex�J = 0 and AIx� = b and AIx� = b�I so that AIJ(x�J � x�J) + AILx�L = ��I � AIKx�K ,dividing both sides by kx�Lk would yield in the limit (note that I � I�)AIJ(x�J � x�J)=kx�Lk+ AILx�L=kx�Lk = (��I � AIKx�K)=kx�Lk ! 0:Similarly, sine x�J = 0 and AHx� = bH and AHx� � b�H , where we denote H := I�nI,so that AHJ(x�J � x�J) + AHLx�L � ��H � AHKx�K, dividing both sides by kx�Lk wouldyield in the limitAHJ(x�J � x�J)=kx�Lk+ AHLx�L=kx�Lk � (��H � AHKx�K)=kx�Lk ! 0:Thus, AIJ�J+AIL�L = 0 and AHJ�J+AHL�L � 0 for some �J 2 <jJj and some nonzero�L 2 [0;1)jLj. Moreover, �j � 0 for all j 2 J with x�j = 0 and �JnM = 0. Then,for � > 0 suÆiently small, the vetor x 2 <n given by xJ := x�J + ��J ; xL := ��L,xK := 0 would satisfy x � 0, xJnM = 0, AIx = AIx� = bI , and AIx � bI. Thenx 2 X and, together with any � 2 � satisfying L + (AT )L� = 0 (see (8)), satis�esthe Kuhn-Tuker onditions for (P ), so x 2 S. Moreover, the diretional derivativeof f at x� in the diretion x� x� would be negative (sine x�j = 0 and rfj(0) = �1for all j 2 K [ L = J), ontraditing the de�nition of x�.For j 2 JnM , we have from (5) and x�j ! x�j that x�j = x�j = 0 for all � 2 �.Lastly, we estimate x�M � x�M . From (4) and �� being a solution of (6) we haverfj(x�j) + (AT )j(�� � ��)=� = 0 8j 2M; ��I � ��I = 0for all � 2 �. Sine, by (7), (�� � ��)=� is bounded as � ! 0, then it has a lusterpoint � 2 <m satisfyingrfj(x�j) + (AT )j� = 0 8j 2M; �I = 0:7



Multiplying the �rst set of equations by � and adding them to j + (AT )j�� = 0,j 2M (sine �� is a solution of (6)), gives�rfj(x�j) + j + (AT )j(�� + ��) = 0 8j 2M:Subtrating this from the �rst set of equations in (4) orresponding to j 2M gives� �rfj(x�j)�rfj(x�j)�+ (AT )j(�� � �� � ��) = 0 8j 2M:Multiplying both sides by (x�j � x�j) and summing over all j 2 M gives the singleequation�(x�M � x�M)T �rfj(x�j)�rfj(x�j)�j2M = (AMx�M � AMx�M)T (�� � �� + ��): (11)Sine ��I = ��I = �I = 0 and AIx� = bI and AIx� = bI+��I, then (Ax��Ax�)T (�����+ ��) = (��I)T (��I ���I + ��I). This, together with x�j = 0 for j 2 f1; :::; ngnM andx�JnM = 0, implies(AMx�M � AMx�M)T (�� � �� + ��I)= (Ax� � Ax�)T (�� � �� + ��)� (AJx�J)T (�� � �� + ��)= (��I)T (��I � ��I + ��I)� (AJx�J)T (�� � �� + ��): (12)Using (7), (10), and (12) to bound the right-hand side of (11) (also noting thatrfj(x�j)j2J is bounded as �! 0) yields� (x�M � x�M)T �rfj(x�j)�rfj(x�j)�j2M � � �2 (k��I�k+ kx�Kk) ;for some onstant �2 > 0. The above inequality, together with (9) and (10) andx�JnM = x�JnM = 0, ompletes the proofWe note that Proposition 2 still holds if we allow fj to be non-di�erentiable at a�nite number of points in (0;1), and the proof of this entails only minor modi�a-tions. If in addition eah fj is loally uniformly onvex of order � � 1 at x�j for allj 2 J (i.e., there exists a onstant � > 0 suh that �j(xj; x�j) � �jxj � x�j j� for all xjnear x�j , j 2 J), then Proposition 2 would imply the distane bound�Xj2J jx�j � x�j j� + kx�J � x�Jk � � �kb� � bk + krf�1j (��=�)j2K k�for all suÆiently small � 2 �. In the ase where fj(xj) = � ln(xj), we have � = 2and rf�1j (��=�) = �=� whih tends to zero linearly with �. In the ase wherefj(xj) = xj ln(xj), we have � = 2 and rf�1j (��=�) = exp(��=� + 1) whih tendsto zero exponentially with �. In the ase where eah fj is stritly onvex and rfj isde�ned and ontinuous on [0;1) for all j (e.g., fj(xj) = (xj)2=2), we have K = L = ;8



and Proposition 2 implies that, if in addition b� = b, then x� = x� for all suÆientlysmall �. This �nite perturbation result is a speial ase of those shown in [MaR79℄and, interestingly, it an also be dedued from Proposition 2. Notie that in the threeases onsidered above, the best approximation of x� by x�, as �! 0, is obtained inthe third ase and the worst approximation is obtained in the �rst ase. For pratialomputation, however, the �rst ase has been more favoured. Of ourse, we an useother hoies of fj, suh as fj(xj) = 1=xj or fj(xj) = �pxj, et., and use Proposition2 to obtain orresponding error bounds.Notie that the index subset K in Proposition 2 depends on �. The followingexample shows that this dependene annot be removed in general. Consider theperturbed problem:minimize x1 + �f1(x1) + �f2(x2)subjet to �x1 + x2 � 0; x1 � 0; x2 � 0; (13)where f1(x1) = 1p�1(x1)1�p for x1 > 0 and f2(x2) = 1q�1(x2)1�q for x2 > 0, withp > 1; q > 1 (so rf1(x1) = �(x1)�p, rf2(x2) = �(x2)�q). This problem satis�esthe assumptions of Proposition 2 with S� = f(0; 0)g and J = ;. Moreover, diretalulation yields the optimal solution x� = (x�1; x�2) and Lagrange multiplier �� 2 [0; 1℄given by x�1 = (�=(1� ��))1=p = x�2 = (�=��)1=q ; (1� ��)q = �q�p(��)p:Thus, if p < q, then 1 � �� ! 0 as � ! 0, so x�1 = x�2 is in the order of (�)1=q, withK = f2g. [Sine p < q, x�1 annot be below rf�11 (��=�) = (�=�)1=p for any positiveonstant �.℄ Symmetrially, if p > q, then �� ! 0 as �! 0, so x�1 = x�2 is in the orderof (�)1=p, with K = f1g. This shows that K is determined by the relative growthrate of rf1 and rf2 near 0. Now suppose we modify f1 and f2 so that these twogrowth rates alternate in dominane. In partiular, let �k+1 = (�k)2=2 for k = 1; 2; :::,with �1 = 1, and hoose stritly onvex and ontinuously di�erentiable funtions f1and f2 on (0;1) satisfying rf1(�k) = �(�k)�1 and rf2(�k) = �(�k)�2 for k oddand rf1(�k) = �(�k)�2 and rf2(�k) = �(�k)�1 for k even. [Notie that �k # 0and rfj(�k) # �1 as k ! 1 for j = 1; 2, so the funtion fj an be onstrutedby interpolating rfj using its value at �1; �2; ::: and then integrating.℄ With thishoie of f1 and f2, the problem (13) still satis�es the assumptions of Proposition 2with S� = f(0; 0)g and J = ;. Moreover, it an be seen that x�1 = x�2 tends to zeroontinuously in �, so for eah k suÆiently large, we an �nd �k suh that x�k1 = x�k2 =�k. Then, arguing as above, we obtain that K = f2g for � along the subsequene�odd = f�kgk odd, and K = f1g for � along the subsequene �even = f�kgk even. So,for � along � = �odd [ �even, K would depend on �. It is an open (and nontrivial)question whether K would still depend on � if f1; :::; fn are idential.Aknowledgement. I thank the two referees for their reading of this paper andtheir omments. 9
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