
CONVERGENCE AND ERROR BOUND FORPERTURBATION OF LINEAR PROGRAMS1Dedi
ated to Professor Olvi Mangasarian on the o

asion of his 65th birthday, whoseboundless energy and 
reativity 
ontinue to inspire.June 22, 1997 (revised May 7, 1998)PAUL TSENGDepartment of Mathemati
s, University of WashingtonSeattle, Washington 98195, U.S.A. (tseng�math.washington.edu)ABSTRACTIn various penalty/smoothing approa
hes to solving a linear program,one regularizes the problem by adding to the linear 
ost fun
tion a sepa-rable nonlinear fun
tion multiplied by a small positive parameter. Popu-lar 
hoi
es of this nonlinear fun
tion in
lude the quadrati
 fun
tion, thelogarithm fun
tion, and the x ln(x)-entropy fun
tion. Furthermore, thesolutions generated by su
h approa
hes may satisfy the linear 
onstraintsonly inexa
tly and thus are optimal solutions of the regularized problemwith a perturbed right-hand side. We give a general 
ondition for su
h anoptimal solution to 
onverge to an optimal solution of the original problemas the perturbation parameter tends to zero. In the 
ase where the non-linear fun
tion is stri
tly 
onvex, we further derive a lo
al (error) boundon the distan
e from su
h an optimal solution to the limiting optimalsolution of the original problem, expressed in terms of the perturbationparameter.1 Introdu
tionThe two main topi
s of this paper, error bound and perturbation of linear pro-grams, are ones on whi
h Olvi Mangasarian has left indelible marks, as he has donein so many areas of mathemati
al programming.Consider the linear program (P ):minimize 
Txsubje
t to Ax � b; x � 0;where 
 2 <n; A 2 <m�n; b 2 <m. We denote by S the set of optimal solutionsof (P ), whi
h is polyhedral and assumed to be nonempty, and we denote by X theset of feasible solutions of (P ), i.e., X := fx 2 <m : Ax � b; x � 0g. In various1This resear
h is supported by National S
ien
e Foundation Grant CCR-9311621.1



penalty/smoothing approa
hes to solving this 
lassi
al optimization problem, oneadds to the obje
tive a separable nonlinear fun
tion multiplied by a small positives
alar � and solves the resulting problem instead. Su
h a fun
tion has the formf(x1; :::; xn) = f1(x1) + � � �+ fn(xn);where ea
h fj : < 7! < [ f1g is either 
ontinuous on [0;1) or 
ontinuous on (0;1)with lim�#0 fj(�) =1. The 
orresponding perturbed problem, denoted (P �), has theform: minimize 
Tx + �f(x)subje
t to Ax � b�; x � 0;where b� 2 <m satis�es b� ! b as �! 0. We note that previous studies fo
us on the
ase where b� = b for all �, but the general 
ase is also of interest sin
e in pra
ti
e the
onstraints Ax � b may be satis�ed only inexa
tly. One popular 
hoi
e of fj is thequadrati
 fun
tion fj(xj) = (xj)2=2 (1)whi
h has been studied by Karlin [Kar59, p. 238℄, Mangasarian [Man81, Man84,Man86℄ and others [MNP96, Pin96℄. In parti
ular, it was shown in [Man84℄ that,for all � suÆ
iently small (and with b� = b), the unique solution of (P �) equals theleast 2-norm solution of (P ). [A weaker version of this result was redis
overed in[MNP96℄.℄ The equivalen
e between the solution set of (P �) and the solution set of(P ) for small � is further studied in [FeM91, MaR79℄ for arbitrary real-valued fun
tionf that is either 
ontinuously di�erentiable around S or Lips
hitz 
ontinuous aroundS or 
onvex around X. Another popular 
hoi
e of fj is the logarithm fun
tionfj(xj) = � ln(xj) (2)whi
h has been mu
h studied in the 
ontext of interior penalty methods and Karmarkar-type interior-point methods (see [FiM68, M
L80, Meg89, Wri92℄ and referen
es therein).A third 
hoi
e is the entropy fun
tionfj(xj) = xj ln(xj); (3)whi
h was studied by Fang et al. [Fan92, FaT93, RaF92℄ and, from a dual exponentialpenalty view, by Cominetti et al. [CoD94, CoS94℄ (see [FRT97, FaT96℄ for furtherdis
ussions). Su
h a perturbation of (P ) also arises in the asymptoti
 analysis of a
ertain perturbed entropy minimization problem, as 
ommuni
ated to the author byA. Lewis at the University of Waterloo. In [CoS94℄, it was shown that, as � ! 0(and with b� = b), the unique solution of (P �) approa
hes the least x ln(x)-entropysolution of (P ). This result was generalized in a re
ent work of Auslender et al.[ACH97, Theorem 3.4℄ to the 
ase where ea
h fj is the 
onjugate of a 
ertain kind ofstri
tly 
onvex di�erentiable fun
tion, namely, a fun
tion satisfying the assumptions(H0), (H2), (H3) in [ACH97℄ (see the end of Se
tion 2 for further dis
ussions of this).2



For arbitrary f that is bounded on X (and assuming b� = b for all �), it is easilyshown that the di�eren
e in the optimal obje
tive value of (P �) and of (P ) is withina 
onstant fa
tor of � (see the proof of Proposition 2.1(
) in [Tse95℄).Let S� denote the set of optimal solutions of (P �) and letS� := argminfXj2J� fj(xj) : x 2 Sg;where J� := fj 2 f1; :::; ng : xj > 0 for some x 2 Sg. We will show that, as �! 0, S�
onverges S� in a 
ertain sense (see Proposition 1) and, when ea
h fj is stri
tly 
onvex(so S� and S�, if nonempty, are singletons), we will give an estimate of the rate of
onvergen
e (see Proposition 2). The latter estimate is given as a lo
al (error) boundon the distan
e from S� to S�, expressed in terms of the perturbation parameter � andb� � b. To our knowledge, the only previous bounds of this kind were those obtainedby Mangasarian et al. [Man84, MaR79℄ for the 
ase b� = b and f being Lips
hitz
ontinuous around S� (not ne
essarily separable), for whi
h this distan
e equals zerofor all � suÆ
iently small. When f is not Lips
hitz 
ontinuous around S�, su
h aswhen ea
h fj is the logarithm fun
tion or the entropy fun
tion, our bound appearsto be new, even for the 
ase b� = b.In our notation, all ve
tors are 
olumn ve
tors, <n denotes the spa
e of n{dimensional real 
olumn ve
tors, and T denotes transpose. For any ve
tor x 2 <n,we denote by xi the ith 
omponent of x and, for any I � f1; :::; ng, by xI the ve
torobtained after removing from x those xi with i 62 I. We also denote by kxk the Eu-
lidean norm of x, i.e., kxk = pxTx. For any B 2 <m�n and any I � f1; :::; mg andJ � f1; :::; ng, we denote by BI the submatrix of B obtained by removing all rowsof B with indi
es outside of I and by BIJ the submatrix of BI obtained by removingall 
olumns of BI with indi
es outside of J . We also denote by jIj the 
ardinality ofI and denote I
 := f1; :::; mgnI.2 Convergen
e of Solutions of Perturbed ProblemBelow we derive a general 
ondition for S� to 
onverge to S� in a 
ertain sense.Proposition 1 Assume there exists an x� 2 S� and an x̂ 2 X with f(x̂) <1. Then,for any sequen
e of positive s
alars � = f�1; �2; :::g tending to zero and any sequen
eof ve
tors x� 2 S�, � 2 �, 
onverging to some x1, we have x1 2 S�.Proof. If the 
laim is false, then either (i) x1 62 S or (ii) x1 2 S but x1 62 S�. In 
ase(i), sin
e x� 2 S and x� 
onverges to x1 so that x1 2 X, there is some 
onstant � > 0su
h that 
Tx� � 
Tx� + � for all suÆ
iently small � 2 �. Now, x� satis�es Ax� � band x� � 0 and, for ea
h � 2 �, Ax � b� and x � 0 has a solution (namely x�) so, bya lemma of Ho�man [Hof52℄, there exists a solution y� satisfying ky��x�k � �kb��bkfor some 
onstant � > 0 depending on A only. Similarly, there exists a solution ŷ�satisfying kŷ�� x̂k � �kb��bk. Fix any � 2 (0; 1) satisfying �(
T x̂�
Tx�) < �. Then,3



y� ! x� and ŷ� ! x̂ as � ! 0, implying w� = (1� �)y� + �ŷ� ! (1� �)x� + �x̂ and(sin
e f is 
ontinuous at (1� �)x� + �x̂)
Tw� + �f(w�) ! 
Tx� + �(
T x̂� 
Tx�) < 
Tx� + � as �! 0:Moreover, w� is a feasible solution of (P �). Now, the 
onvergen
e of x� implies f(x�)is bounded from below, solim inf�2�f
Tx� + �f(x�)g � 
Tx� + � > lim�2�;�!0f
Tw� + �f(w�)g;
ontradi
ting x� 2 S� for all � 2 �. In 
ase (ii), we have Pj2J� fj(x1j ) > Pj2J� fj(x�j).Let d := x� � x1. Then 
Td = 0, dj = 0 for all j 62 J�, and AId � 0, whereI := fi 2 f1; :::; mg : Aix1 = big, and for any � 2 (0; 1) suÆ
iently near 1, we havePj2J� fj(x1j +�dj) < Pj2J� fj(x1j ) and AI
(x1+�d) < bI
. Then, for all suÆ
ientlysmall � 2 �, the ve
tor z� := x�+�d satis�es 
T z� = 
Tx�,Pj 62J� fj(z�j) = Pj 62J� fj(x�j),Pj2J� fj(z�j) < Pj2J� fj(x�j) and Az� � b�; z� � 0, 
ontradi
ting x� 2 S�.The assumptions in Proposition 1 are quite mild and, in parti
ular, if S is nonemptybounded and infx2[0;1)n f(x) > �1, then S� is nonempty whenever (P �) has a fea-sible solution. If we do not assume x� 
onverges but do assume it is bounded, thenProposition 1 implies ea
h 
luster point of x� is in S�. If we do not even assume x�is bounded, then, while we 
an still show that mins2S kx� � sk ! 0 as � ! 0, we donot know of an analogous result on the 
onvergen
e of x� to S�. In the 
ases whereb� = b and ea
h fj is Lips
hitz 
ontinuous on [0;1) or is 
onvex real-valued on anopen interval 
ontaining [0;1), Proposition 1 
an also be dedu
ed from the results ofMangasarian and Meyer [MaR79℄ (also see [FeM91℄). In the 
ase where b� = b and fjis the logarithm fun
tion (2), Proposition 1 
orresponds to a well-known result aboutinterior-point methods, namely, the 
onvergen
e of the 
entral path to the analyti

enter of the optimal fa
e [M
L80, Theorem 9℄. In the 
ase where b� = b and fj isthe entropy fun
tion (3), Proposition 1 
orresponds to [CoS94, Proposition 4.1℄. Inthe 
ase where fj(xj) = supyj2<(xjyj � gj(yj)) [Ro
70, Chapter 12℄ for some 
onvexgj : < 7! < [ f1g satisfying limyj!�1 gj(yj)=yj = 0 and limyj!1 gj(yj)=yj = 1, it
an be shown by a standard duality argument that a dual of (P �) isminimize (b�)T�+ � nXj=1 gj(�(
j + (AT )j�)=�) subje
t to � � 0;so Proposition 1 is 
losely related to a dual 
onvergen
e result given in [ACH97,Theorem 3.4℄ whi
h also assumes b� = b and g1; :::; gn are identi
al and stri
tly 
onvexdi�erentiable. The same referen
e also studied primal 
onvergen
e and extensions to
onvex programming. The weaker 
on
lusion that x1 2 S is related to the 
lassi
altheory for penalty methods [FiM68, Theorem 25℄. Otherwise, Proposition 1 appearsto be a new result. 4



3 A Lo
al Error Bound for Solutions of PerturbedProblemIn this se
tion, we 
onsider the 
ase where ea
h fj is stri
tly 
onvex on [0;1), sothat S� and S�, if nonempty, have single element x� and x�. We derive a bound on thedistan
e between x� and x� in terms of � and b��b. The proof of this uses Proposition1, the optimality 
onditions for (P �) and (P ), as well as a result of Ho�man [Hof52℄relating to an upper Lips
hitzian property of the solution set of a linear system withrespe
t to right-hand side perturbation [WaW69℄.Proposition 2 Assume ea
h fj is stri
tly 
onvex and 
ontinuously di�erentiable on(0;1) and de�ne rfj(0) := lim�#0rfj(�). Assume there exists an x� 2 S� and anx̂ 2 X with rfj(x̂j) > �1 for all j = 1; :::; n. Then, for any sequen
e of positives
alars � = f�1; �2; :::g tending to zero and any bounded sequen
e of ve
tors x� 2 S�,� 2 �, there exist positive 
onstants ��, � and � su
h that, for all � 2 � with � � ��, wehavex�j � rf�1j (��=�) 8j 2 K; Xj2J �j(x�j; x�j) + kx�Lk � � (kb� � bk + kx�Kk) ;where J := fj 2 f1; :::; ng : rfj(x�j) > �1g, K is some subset of J
 := f1; :::; ngnJand L = J
nK (K may depend on �), and �j(�;  ) := (� �  )(rfj(�)�rfj( )) forea
h j 2 J.Proof. Sin
e ea
h fj is stri
tly 
onvex on (0;1), x� must be the only element of S�.Sin
e x� is bounded and hen
e has 
onvergent subsequen
es, then Proposition 1 yieldsx� ! x� as �! 0. Also, x̂ satis�es Ax̂ � b; x̂ � 0 and, for ea
h � 2 �, Ax � b�; x � 0has a solution (namely x�), so, by a lemma of Ho�man [Hof52℄, there exists a solutiony� satisfying ky� � x̂k � �kb� � bk, where � > 0 is a 
onstant depending on A only.Thus, y� ! x̂ as � ! 0, implying (sin
e rfj(x̂j) > �1 for all j) y�j ! x̂j > 0whenever rfj(0) = �1. Moreover, y� is a feasible solution of (P �). Sin
e f is 
onvexon [0;1)n and the dire
tional derivative of x 7! 
Tx + �f(x) at x� in the dire
tiony� � x� is 
T (y� � x�) + � nXj=1rfj(x�j)(y�j � x�j);it must be that rfj(x�j) > �1 and �rfj(x�j) is bounded as �! 0, for all j = 1; :::; n.[Otherwise, be
ause rfj(x�j) = �1 implies x�j = 0 and �rfj(x�j) being unboundedimplies �rfj(x�j) ! �1 and x�j ! 0 as � ! 0 along some subsequen
e of �, thisdire
tional derivative would be negative (possibly �1) for some � 2 �, 
ontradi
tingx� 2 S�.℄For ea
h � 2 �, sin
e x� is an optimal solution of the 
onvex program (P �) andrfj(x�j) > �1 for j = 1; :::; n (so x�J
 > 0), it follows from the Karush-Kuhn-Tu
ker5



theorem (see [Ro
70, Corollary 28.3.1℄) that there exist index sets I � f1; :::; mg,M � J , and �� 2 <m satisfying�rfj(x�j) + 
j + (AT )j�� �= 0 j 2M [ J
� 0 j 2 JnM ; ��I � 0; ��I
 = 0; (4)x�JnM = 0; AIx� = b�I ; AI
x� < b�I
: (5)The number of su
h index sets I and M is �nite and independent of �, so, by passinginto a subsequen
e if ne
essary, we 
an assume I and M are �xed for all � 2 �. Also,sin
e �rf(x�) is bounded as �! 0, it follows from a lemma of Ho�man [Hof52℄ thatthere exists �� satisfying (4) that is bounded as �! 0. Thus, we 
an assume that ��is bounded.Then, for suÆ
iently small � 2 � so that rfj(x�j) � 0 for all j 2 J
 (sin
erfj(x�j)! �1 as �! 0), we have from (4) that �� satis�es�rfj(x�j) + 
j + (AT )j�� �= 0 j 2M� 0 j 2 JnM ; 
J
 + (AT )J
�� � 0; ��I � 0; ��I
 = 0:Sin
e �rfj(x�j)! 0 as �! 0, for all j 2 J , so the system
j + (AT )j��= 0 j 2M� 0 j 2 JnM ; 
J
 + (AT )J
� � 0; �I � 0; �I
 = 0; (6)has a solution (namely, any 
luster point of �� as �! 0), it follows from a lemma ofHo�man [Hof52℄ that there exists a solution �� satisfyingk�� � ��k � � �krfj(x�j)j2Jk; (7)where � > 0 is a 
onstant depending on A only.Let � denote the set of � 2 <m satisfying (6) and k�k � sup�2� k��k. We 
laimthat there exists a s
alar � > 0 su
h that, for every � 2 � there exists a K � J
 su
hthat 
j + (AT )j� > � 8j 2 K and 
L + (AT )L� = 0 for some � 2 �; (8)where L := J
nK. If not, then for every sequen
e of s
alars �k > 0, k = 1; 2; :::,tending to zero, there would exist a �k 2 � su
h that, for every K � J
 we have
j + (AT )j�k � �k for some j 2 K or 
L + (AT )L� 6= 0 8� 2 �;where L := J
nK. Sin
e � is bounded and 
losed, then �k, k = 1; 2; :::, has a 
lusterpoint � 2 � su
h that, for every K � J
 we have
j + (AT )j� = 0 for some j 2 K or 
L + (AT )L� 6= 0 8� 2 �;where L := J
nK. However, this 
annot be true sin
e the above relations fail to holdfor K = fj 2 J
 : 
j + (AT )j� > 0g and � = �.6



For ea
h � 2 �, we have �� 2 � and hen
e there exists a K � J
 su
h that (8)holds with � = �� and L := J
nK. Sin
e the number of su
h subset K is �niteand independent of �, by passing into a subsequen
e if ne
essary, we 
an assume itis the same K and L for all � 2 �. Sin
e, by (7), �� � �� ! 0 as � ! 0, we have
j + (AT )j�� � � for all j 2 K and suÆ
iently small � 2 �, in whi
h 
ase (4) and thenonde
reasing property of rf�1j would implyx�j = rf�1j ��(
j + (AT )j��)=�� � rf�1j (��=�) 8j 2 K: (9)Sin
e x� ! x�, we have from (5) that x�JnM = 0 and I � I�, where I� := fi 2f1; :::; mg : Aix� = big. Also, x�J
 = 0. For 
onvenien
e, let �� := b� � b. We 
laimthat there exists a 
onstant �1 > 0 su
h thatkx�Lk � �1(k��I�k+ kx�Kk): (10)If not, then (k��I�k+ kx�Kk)=kx�Lk ! 0 as �! 0 along some subsequen
e of �. Sin
ex�J
 = 0 and AIx� = b and AIx� = b�I so that AIJ(x�J � x�J) + AILx�L = ��I � AIKx�K ,dividing both sides by kx�Lk would yield in the limit (note that I � I�)AIJ(x�J � x�J)=kx�Lk+ AILx�L=kx�Lk = (��I � AIKx�K)=kx�Lk ! 0:Similarly, sin
e x�J
 = 0 and AHx� = bH and AHx� � b�H , where we denote H := I�nI,so that AHJ(x�J � x�J) + AHLx�L � ��H � AHKx�K, dividing both sides by kx�Lk wouldyield in the limitAHJ(x�J � x�J)=kx�Lk+ AHLx�L=kx�Lk � (��H � AHKx�K)=kx�Lk ! 0:Thus, AIJ�J+AIL�L = 0 and AHJ�J+AHL�L � 0 for some �J 2 <jJj and some nonzero�L 2 [0;1)jLj. Moreover, �j � 0 for all j 2 J with x�j = 0 and �JnM = 0. Then,for � > 0 suÆ
iently small, the ve
tor x 2 <n given by xJ := x�J + ��J ; xL := ��L,xK := 0 would satisfy x � 0, xJnM = 0, AIx = AIx� = bI , and AI
x � bI
. Thenx 2 X and, together with any � 2 � satisfying 
L + (AT )L� = 0 (see (8)), satis�esthe Kuhn-Tu
ker 
onditions for (P ), so x 2 S. Moreover, the dire
tional derivativeof f at x� in the dire
tion x� x� would be negative (sin
e x�j = 0 and rfj(0) = �1for all j 2 K [ L = J
), 
ontradi
ting the de�nition of x�.For j 2 JnM , we have from (5) and x�j ! x�j that x�j = x�j = 0 for all � 2 �.Lastly, we estimate x�M � x�M . From (4) and �� being a solution of (6) we haverfj(x�j) + (AT )j(�� � ��)=� = 0 8j 2M; ��I
 � ��I
 = 0for all � 2 �. Sin
e, by (7), (�� � ��)=� is bounded as � ! 0, then it has a 
lusterpoint � 2 <m satisfyingrfj(x�j) + (AT )j� = 0 8j 2M; �I
 = 0:7



Multiplying the �rst set of equations by � and adding them to 
j + (AT )j�� = 0,j 2M (sin
e �� is a solution of (6)), gives�rfj(x�j) + 
j + (AT )j(�� + ��) = 0 8j 2M:Subtra
ting this from the �rst set of equations in (4) 
orresponding to j 2M gives� �rfj(x�j)�rfj(x�j)�+ (AT )j(�� � �� � ��) = 0 8j 2M:Multiplying both sides by (x�j � x�j) and summing over all j 2 M gives the singleequation�(x�M � x�M)T �rfj(x�j)�rfj(x�j)�j2M = (AMx�M � AMx�M)T (�� � �� + ��): (11)Sin
e ��I
 = ��I
 = �I
 = 0 and AIx� = bI and AIx� = bI+��I, then (Ax��Ax�)T (�����+ ��) = (��I)T (��I ���I + ��I). This, together with x�j = 0 for j 2 f1; :::; ngnM andx�JnM = 0, implies(AMx�M � AMx�M)T (�� � �� + ��I)= (Ax� � Ax�)T (�� � �� + ��)� (AJ
x�J
)T (�� � �� + ��)= (��I)T (��I � ��I + ��I)� (AJ
x�J
)T (�� � �� + ��): (12)Using (7), (10), and (12) to bound the right-hand side of (11) (also noting thatrfj(x�j)j2J is bounded as �! 0) yields� (x�M � x�M)T �rfj(x�j)�rfj(x�j)�j2M � � �2 (k��I�k+ kx�Kk) ;for some 
onstant �2 > 0. The above inequality, together with (9) and (10) andx�JnM = x�JnM = 0, 
ompletes the proofWe note that Proposition 2 still holds if we allow fj to be non-di�erentiable at a�nite number of points in (0;1), and the proof of this entails only minor modi�
a-tions. If in addition ea
h fj is lo
ally uniformly 
onvex of order � � 1 at x�j for allj 2 J (i.e., there exists a 
onstant � > 0 su
h that �j(xj; x�j) � �jxj � x�j j� for all xjnear x�j , j 2 J), then Proposition 2 would imply the distan
e bound�Xj2J jx�j � x�j j� + kx�J
 � x�J
k � � �kb� � bk + krf�1j (��=�)j2K k�for all suÆ
iently small � 2 �. In the 
ase where fj(xj) = � ln(xj), we have � = 2and rf�1j (��=�) = �=� whi
h tends to zero linearly with �. In the 
ase wherefj(xj) = xj ln(xj), we have � = 2 and rf�1j (��=�) = exp(��=� + 1) whi
h tendsto zero exponentially with �. In the 
ase where ea
h fj is stri
tly 
onvex and rfj isde�ned and 
ontinuous on [0;1) for all j (e.g., fj(xj) = (xj)2=2), we have K = L = ;8



and Proposition 2 implies that, if in addition b� = b, then x� = x� for all suÆ
ientlysmall �. This �nite perturbation result is a spe
ial 
ase of those shown in [MaR79℄and, interestingly, it 
an also be dedu
ed from Proposition 2. Noti
e that in the three
ases 
onsidered above, the best approximation of x� by x�, as �! 0, is obtained inthe third 
ase and the worst approximation is obtained in the �rst 
ase. For pra
ti
al
omputation, however, the �rst 
ase has been more favoured. Of 
ourse, we 
an useother 
hoi
es of fj, su
h as fj(xj) = 1=xj or fj(xj) = �pxj, et
., and use Proposition2 to obtain 
orresponding error bounds.Noti
e that the index subset K in Proposition 2 depends on �. The followingexample shows that this dependen
e 
annot be removed in general. Consider theperturbed problem:minimize x1 + �f1(x1) + �f2(x2)subje
t to �x1 + x2 � 0; x1 � 0; x2 � 0; (13)where f1(x1) = 1p�1(x1)1�p for x1 > 0 and f2(x2) = 1q�1(x2)1�q for x2 > 0, withp > 1; q > 1 (so rf1(x1) = �(x1)�p, rf2(x2) = �(x2)�q). This problem satis�esthe assumptions of Proposition 2 with S� = f(0; 0)g and J = ;. Moreover, dire
t
al
ulation yields the optimal solution x� = (x�1; x�2) and Lagrange multiplier �� 2 [0; 1℄given by x�1 = (�=(1� ��))1=p = x�2 = (�=��)1=q ; (1� ��)q = �q�p(��)p:Thus, if p < q, then 1 � �� ! 0 as � ! 0, so x�1 = x�2 is in the order of (�)1=q, withK = f2g. [Sin
e p < q, x�1 
annot be below rf�11 (��=�) = (�=�)1=p for any positive
onstant �.℄ Symmetri
ally, if p > q, then �� ! 0 as �! 0, so x�1 = x�2 is in the orderof (�)1=p, with K = f1g. This shows that K is determined by the relative growthrate of rf1 and rf2 near 0. Now suppose we modify f1 and f2 so that these twogrowth rates alternate in dominan
e. In parti
ular, let �k+1 = (�k)2=2 for k = 1; 2; :::,with �1 = 1, and 
hoose stri
tly 
onvex and 
ontinuously di�erentiable fun
tions f1and f2 on (0;1) satisfying rf1(�k) = �(�k)�1 and rf2(�k) = �(�k)�2 for k oddand rf1(�k) = �(�k)�2 and rf2(�k) = �(�k)�1 for k even. [Noti
e that �k # 0and rfj(�k) # �1 as k ! 1 for j = 1; 2, so the fun
tion fj 
an be 
onstru
tedby interpolating rfj using its value at �1; �2; ::: and then integrating.℄ With this
hoi
e of f1 and f2, the problem (13) still satis�es the assumptions of Proposition 2with S� = f(0; 0)g and J = ;. Moreover, it 
an be seen that x�1 = x�2 tends to zero
ontinuously in �, so for ea
h k suÆ
iently large, we 
an �nd �k su
h that x�k1 = x�k2 =�k. Then, arguing as above, we obtain that K = f2g for � along the subsequen
e�odd = f�kgk odd, and K = f1g for � along the subsequen
e �even = f�kgk even. So,for � along � = �odd [ �even, K would depend on �. It is an open (and nontrivial)question whether K would still depend on � if f1; :::; fn are identi
al.A
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