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Abstract

An approach to solving a complementarity problem entails regular-
izing/perturbing the problem by adding to the given mapping another
mapping multiplied by a small positive parameter. We study properties
of the limit point of the solution to the regularized problem. We also
derive local error bounds on the distance from the solution to its limit
point, expressed in terms of the regularization parameter.
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1 Introduction
Consider the complementarity problem (CP) of finding an # € 2" satisfying
x>0, F(z)>0, F(z)fz=0, (1)

where F' @ Jt} — R" is a given continuous mapping. This is a well-known
problem in optimization, with many applications [12, 24]. In various regulariza-
tion/continuation /smoothing approaches to solving this problem, one adds to
the mapping I another mapping G : R , ~ R", multiplied by a small positive
scalar €, and computes (possibly inexactly) an z¢ € 1" satisfying

2° >0, F(z%) +eG(xf) >0, (F(z%) 4 Gx%)) Tz =0. (2)
Then, one may decrease ¢ and update z° accordingly. Our interests are in
properties of any limit point of z¢ (along some sequence of ¢ — 0) and the
distance from ¢ to this limit point. There are also the related issues of exis-
tence/uniqueness/boundedness of z¢ as € = 0, which we will not focus on.
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The regularized CP (2) is closely linked to a regularized smooth optimization
problem of the form

minimize fo(u)—+ego(u) subject to u >0, fi(u)+egi(u) <0,i=1,...,m, (3)

where fo, fi, ..., fmm are continuously differentiable functions defined on some
open set containing §)‘El_|_ and g9, 41, ..., gm are continuously differentiable func-
tions defined on %l_l__l_ (m > 0, > 1). In particular, it is well known that the
associated Karush-Kuhn-Tucker condition is exactly (2) with z = [Z] and

Fle) = VfO(U)jfZX(:;T%?Vﬁ(U)]  Gla) = [Vgo(u)jglz(:éjglingi(u)

Moreover, if fo, f1, ..., fm are convex (respectively, quadratic) on their respective
domains, then this F' is monotone (respectively, affine) and continuous on %l_l:"m
[42, Example 8], and similarly for G. A well studied case in this optimization
setting is when g; = Ofor¢ = 1, ..., m, 1.e., constraint functions are unregularized.

For the regularized CP (2), one popular choice of G is the identity mapping

G(z) = =, (4)

corresponding to the well-known Tikhonov regularization technique. This choice
has been much studied [6, 12, 14, 15, 26, 49, 50, 51, 53], including in the general
setting of finding a zero of a maximal monotone operator [2, page 62], [8, Chapter
I1], [32]. The analogous choice of

go(u) = ||ull*/2

for (3) has been considered by Karlin [27], Mangasarian [37, 38, 39] and others
[36, 44] in the context of linear programs (LP) and by Tikhonov and various
others in the general optimization setting (see [1, 13, 32] and references therein).
It was shown in [8, Proposition 2.6(iii)] (also see [12, Theorem 5.6.2(b)],[32,
Proposition 6.1], [49], [61, Theorem 2]) that, if F' is monotone, then each limit
point of z¢ (as € — 0) is the least 2-norm solution of CP. Analogous results
were obtained by Mangasarian [38] in the context of LP (also see [19, 40] for
extensions to other choices of gy in this context) and by Levitin and Polyak
and others in the general optimization setting (see [1],[13, pages 30, 37],[32,
Proposition 6.1] and references therein). If F is only a Pp-function, Sznader
and Gowda [51, Theorem 3] showed that any limit point is weak-Pareto-minimal
in the sense that no other solution is componentwise strictly less (so any non-
positive solution is weak-Pareto-minimal). A second popular choice of G is the
inverse function

G(x) = [-1/xlf=1, (5)
corresponding to log-barrier methods and interior-point methods. This choice
has been considered Kojima et al. [28, 29, 30, 31] and Giiler [23] and, in the
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general setting of finding a zero of a maximal monotone operator, by McLinden
[42]. The analogous choice of

go() = =3~ Infuy)

for (3) has been much studied in the context of LP (see [20, 41, 43, 54] and
references therein). Tt was shown by McLinden [42, Corollary 2] that if F' is
monotone and CP has a strictly complementary solution, then any limit point
of ¢ is a least weighted — In(u) solution of CP. Analogus results were obtained
by McLinden [41, Theorem 9] and Megiddo [43] in the context of LP. A third
choice is the logarithm function

G(e) = [In(z)) + 1 (6)
The analogous choice of

gofu) = 3" s Infu;) (7

for (3) was considered in the context of LP by Fang et al. [16, 17, 18, 45] and,
from a dual exponential penalty view, by Cominetti et al. [10, 11]. It was
shown in [11] that any limit point of the solution of the regularized LP is the
least «In(u)-entropy solution of the LP. This result was generalized recently by
Auslender et al. [4] to convex programs, with go being a certain kind of separable
strictly convex essentially smooth function. A similar result was shown in [52]
for the LP case, without the convexity and smoothness assumption. Related
results in the general optimization setting are given in [1, 13] and references
therein. These results do not assume g to be separable or even continuous, but
they do need gg to be lower semicontinuous and real-valued at the limit point
to be meaningful.

As the preceding discussion shows, there have been many studies of the
properties of a limit point z of £, with particular focus on the cases of G given
by (4) or (5) or (6). However, there have been relatively few studies of the
distance from x€ to Z, estimated in terms of €. In the context of LP with gq
given by (7), this distance is known to be in the order of e~ P/ for some constant
p > 0[11, Theorem 5.8]. The same reference also gives distance estimates for the
dual LP. If gy is more generally a separable strictly convex essentially smooth
function, this distance can be estimated in terms of (Vgo)~! and e [52]. If the
LP has a multicommodity network flow structure and g is a weighted inverse
barrier function whose weights are affine functions of a nonnegative variable,
this distance is known to be in the order of \/¢ [7].

In this paper, we study the above questions in the context of CP and its
regularization (2). In particular, we show that if /" is pseudo-monotone on 3t}
and (G 1s continuous at z, then z solves the variational inequality problem with
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mapping G over the solution set. Moreover, if F' is analytic on an open set
containing N7, then the generalized distance (G(z€) — G(z))? (2 — z) is in the
order of €7 for some v > 0, with v = 1 if F' is affine (see (16)). Alternatively, if

G(z) = [Gjlz)li=r, (8)

where each G is strictly increasing and continuous on 44 but may tend to —co
at 0 (e.g., G given by (5) or (6)), we show that in each coordinate subspace over
which F'is pseudo-monotone, Z solves the variational inequality problem with
mapping G over the solution set (see Proposition 3(a)). Moreover, under the
assumption that either (i) I" is pseudo-monotone on %} and lim;_,otG;(t) =
0 for j ¢ J (e.g., G given by (6)) or (ii) F is affine with certain principal
submatrices of its Jacobian positive semidefinite and spanning the corresponding
rows or (iii) F' is affine with certain principal submatrix of its Jacobian positive
semidefinite and limsup,_,,tG;(t) < 0 for j ¢ J (e.g., G given by (b)), we
estimate (|25 —2;|)jes in terms of (z%);¢s and, in the case where F' is affine, we
estimate the latter in terms of €, where J is the set of indices j with G;(%;) >
—oo (see Proposition 3(cl)—(c4)). Thus, our results may be applied to analyze
regularization of a convex quadratic program of the form (3). Our study is
motivated by a related work in the context of LP [52], although our results and
our proofs are quite different from those in [52] due to the different problem
structure and regularization.

In our notation, ™ denotes the space of n—dimensional real column vectors,
J} and N7, denote the nonnegative orthant and the positive orthant in R”,
respectively, and 7 denotes transpose. For any x € 2", we denote by z; the ith
component of x; and, for any I C N := {1,...,n}, by 2 the vector obtained
by removing from x those x; with ¢ & I, and by (x7,0) the vector in *" whose
ith component is «; if i € I and is zero otherwise. [Here and throughout, :=
means “define”.] We denote by |I| the cardinality of I, and denote I¢ := N\I,
[lz]| .= V2T2, ||z||w := maxen |#;|. For any M € R"*" and any I,J C N,
we denote by M the submatrix of M obtained by removing all rows of M with
indices outside of I and by My the submatrix of M; obtained by removing
all columns of M; with indices outside of J. For any F': i} ~— R” and any
nonempty closed convex set ¥ C R}, we denote

VIE, F) ={exeX: Flx)T(y—x) > 0Vy e X}.

[Thus x satisfies (1) if and only if z € VI(R7}, F) and «° satsifies (2) if and only
if x° € VI(RY}, F' 4 ¢().] We denote by F; the ith component of I and, for any
I C N, by Fr the mapping obtained by removing from F those F; with ¢ & I.
We say I is pseudo-monotone on R} [5, page 121] if

vy €Ny and F(y) (e —y) >0 = F(e)7(z—y) >0 (9)

For any # € " and any nonempty closed set ¥ C %", we denote dist(z,X) :=
mingex ||y — .
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2 Error Bounds on Distance to Limiting Solu-
tion

First, we have the following bound on the distance from z° to the solution set
of (1) in terms of the regularization G¢(«¢). This is a simple consequence of an
error bound result for analytic systems [33].

Proposition 1 Consider an open set @ C R containing N} and an analytic
F Q= R with ¥ := VI(R}, F') nonempty. Then, for every bounded = C R",
there exist T > 0 and v > 0 such that

dist(x, ¥) < 7 (|| max{0, G*(z)}| + |G () "2 ])" (10)

for all G* : R} — RN" (e >0) and all 2* € EN VIR, F 4+ G°).

Proof. We have that an x € X satisfies

and that an z° € VI(N, I" 4+ G°) satisfies

—2°<0, —F(z%) <GYz%), F) e =-G(c)T 2"
So if ¢ is also in the bounded set =, then since F' is analytic on an open set
containing 17 | an error bound result of Lojasiewicz, as extended by Luo and
Pang for analytic systems [33, Theorem 2.2], yields (10) with 7 > 0 and v > 0
some constants. [ |

Note 1. Proposition 1 does not say anything about the existence or unique-
ness or boundedness of «° € VI(I, I + G¢). In the case where " is mono-
tone and affine and G°(#) = M2 + ¢°, Robinson [47, Theorem 2] showed
that X being nonempty and bounded is both necessary and sufficient for the
existence of z¢ satisfying dist(x,X) — 0 as ||M|| + |[¢°]| — 0. If F is a
continuously differentiable Py-function, a result of Facchinei [14, Theorem 4.4]
implies that ¥ being nonempty and bounded is sufficient for the existence of
z¢ satisfying dist(2€,¥) — 0 as € — 0, where G° is continuous and satisfies
lime—0 SUP, gist (2, 2) <o ||G¢(2)|| = 0 for some ¢ > 0. If I is a continuously dif-
ferentiable Py-function and G¢(z) = ex, Facchinei and Kanzow [15, Theorem
3.5] showed existence and uniqueness of € for all ¢ > 0 and, if in addition ¥
is nonempty and bounded, then #€ is bounded and dist(z¢,¥) — 0 as ¢ — 0.
Ravindran and Gowda [46] extended the preceding two results to CP with bound
constraints, and they weakened the differentiability assumption on F' to continu-
ity. In the case where F is a polynomial Py-function and G¢(x) = ez, Sznajder
and Gowda [51, Theorem 5] showed that € either converges or diverges in norm.
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Proposition 1 does not give an estimate of the Holder constant 4. [In the
case where F' is affine and monotone, a bound with v = 1/2 can be shown [33,
Theorem 5.4].] By adding a mild assumption on G¢, we derive below a second
distance bound in terms of G¢(z€), with vy = 1 when F is affine. Moreover, in
the case where [ is pseudo-monotone on 3’} and G(x¢)/e converges, we derive
a bound on the distance from z° to its limit point in terms of e.

Proposition 2 Consider a continuous F' : 2} — N", a sequence of positive
scalars T = {c',¢2 ...} tending to zero and, for each ¢ € T, a G* : o= R
and an ¢ € ¥ = VIR, F' + G) such that x° converges to some & and
G*(x) /e converges to some g as ¢ € T = 0. Then & € ¥ := VI(RN}, F), and
the following hold.

(a). If F is pseudo-monotone on N7, then & € VI(X, g).

(b). If F' is analytic on an open set containing R, then there exist 7> 0 and
~v > 0 such that
dist(2°, %) < 7||G(«)||" (11)

forall e € T, with v = 1 whenever F is affine.

(¢). If I 1s pseudo-monotone on RN} and is analytic on an open set containing
R, then there exist T > 0 and v > 0 such that

(G (x9)/e=g)" (2 = ") < 7lgllll GO (12)

for all #* € VI(E,g) and all ¢ € X, with y = 1 whenever I is affine.

Proof. Since z¢ € ¢ so that z€ > 0, F(2¢)+G*(2) > 0, (F(29)+G(z%))T 2 =
0 for all e € T, we have in the limit (also using G*(2€) — 0) that z > 0, F'(z) > 0,
F(z)Tz=0. Thus z € .

(a). Assume [ is pseudo-monotone on i’y . Then ¥ is closed convex [5, page
121]. Moreover, for any y € X, (9) and the fact that F/(y)? (€ — y) > 0 imply

0 < F)" (2 —y) <G (2" (y - z9),

where the second inequality uses z° € X and y € R} . Dividing both sides by €
yields in the limit that 0 < ¢ (y — z).
(b). For each € > 0, since ¢ € X¢, we have
F(z%) = -G (z%)r, F(2%r > —G(2)re, 27>0, x5 =0, (13)
for some I C N. Let Ty := {e € T : (13) holds}. Consider any I C N such
that | Y| = co. Since G¢(z€) = 0 as e € Y1 — 0, then any cluster point x of z°

satisfies
F(z)r =0, F(z);e>0, x>0, =zre=0. (14)
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Assume F is analytic on an open set containing #y . Then an error bound result
of Lojasiewicz, as extended by Luo and Pang to analytic systems [33, Theorem
2.2], implies the nonlinear system (14) has a solution y¢ satisfying

2 =yl < 7l G (@), (15)

where 71 > 0 and 57 > 0 are constants depending on F and [ and and
sup.ev, ||2¢|| only. Thus, y* € ¥ and, moreover, in the case where I is affine,
a lemma of Hoffman [25] implies that vy = 1. For any I with |T| < oo,
let y° be any fixed element of ¥ for all € € Ty and then, for any 5 > 1,
(15) would hold for a suitable 77 (since its left-hand side is bounded and its
right-hand side is bounded away from zero). Taking v := minyy; and 7 :=
maxy {supﬁen TI||GE(1‘E)||W_V} yields (11) for all e € T = UsYy, with v = 1
whenever F' is affine.

(c) Assume F' is pseudo-monotone on R’ and is analytic on an open set
containing R} . Fix any * € VI(¥,g) and any ¢ € T. Letting y° € ¥ satisfy
||z — y¢|| = dist(x, X), we have together with (11) in part (b) that

0 < g"(y—2a) = g"( —)+g" ("~
TIIgIIIIGE l‘ﬁ)ll“rg (€ —a7)

IA

for some constants 7 > 0 and v > 0. Also, since z* € X, we have from (9) and
zf € X° that

0 < F) (2 —2%),  0<(F9)+G(x)" (" —x).

Adding the above two inequalities to the previous inequality multiplied by €, we
obtain

0 < erllglIGS(=)[" + (eg — G* () (2 — 2¥).
Rearranging terms yields (12). ]

Note 2. Notice that Proposition 2 is stated in the setting of € along a sequence,
rather than € in a continuum as in Proposition 1. Although for practical pur-
poses such as analyzing the convergence of an iterative method, the former
setting is sufficient, it is nevertheless possible to extend Proposition 2 to the
latter setting, provided ||G¢(x)|| is bounded away from zero whenever € in the
continuum is bounded away from zero. Also, Propositions 1 and 2 may possibly
be extended to F' being piecewise-analytic and, more generally, “subanalytic”
[34].

Note 3. In the case where I’ is an analytic Py-function and the solution set
¥ is nonempty and bounded, [14, Theorem 4.4] implies that ¢ is defined and
bounded as ¢ — 0 and so Proposition 2(b) yields that, for any sequence of
¢ along which #¢ converges, (11) holds for all € in this sequence, where 7,7
depend on the limit point (y = 1 if F' is affine). A similar result was shown
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earlier by Robinson [47, Theorem 2] in the case of F' being monotone and affine.
If in addition F' is polynomial and G¢(z) = ex, then 2 converges [51]. Bounds
of the type (11) were also derived by Fischer [21, Section 3.2] under similar,
though not identical, assumptions on F' and G°. Fischer derived his bounds
by applying a stability result of Klatte for parametric optimization. In the
case where the set-valued mapping ' = VIR, F) has the Aubin property
relative to {F' + G : G : N} — %”,supxe%z:”x_fllg||G(x)|| < 1} at F for
z, a bound similar to (11) with v = 1 holds [48, 9F]. However, verifying the
Aubin property may be difficult. In the optimization setting, an analogous
Lipschitzian property can be shown, under very mild assumptions, for the set
of e-approximate solutions [3, Theorem 4.3].

Note 4. In the case where F' is pseudo-monotone on R} and G*(x) = eG(x)
with G continuous at &, Proposition 2(a),(c) imply ¢ = G(Z) and # € VI(Z, G).
This extends previous results [6, Theorem 2.3], [12, Theorem 5.6.2(b)], [49] for
the case of F' being monotone or pseudo-monotone and G(x) = x (also see [2,
page 63], [8, Proposition 2.6(iii)], [32, Proposition 6.1] for analogous results in
the context of maximal monotone operators in an infinite-dimensional space).
If I is also analytic on an open set containing %7 , taking #* = Z in (12) yields

(G) = G@)" (2" = 2) < (IG@NGE)) €. (16)

Thus, if in addition G is strictly monotone at z in the sense that there exist
c>0,0>0,0 >0 such that

(G(e) — G@) (& —2) > olle 7l Ve>O0with e —2] <5, (I7)

then (16) would yield the error bound that ||z¢ — Z|| is in the order of (¢)/¢
whenever |[x° — Z|| < J. Notice that (& essentially needs to be continuous at
in order to satisfy the assumption that G¢(x)/e converges as ¢ — Z.

In deriving the error bound in Proposition 2(c), we have required G¢(2€) — 0
as € — 0. This rules out the important case of G¢(z) = eG(x), where G is given
by (5) or (6) or, more generally, (8) with possibly lim o G;(t) = —oco. In
Proposition 3 below, we consider this case and we study properties of any limit
point  of ¢ (see part (a)) and derive error bounds on the distance from z€ to
Z (see parts (c1)—(c4)). In particular, parts (cl), (c2), (c4) of this proposition
estimate, under various assumptions on F and G4, ..., Gy, the distance |[(z—2) j||
in terms of ||z ye||, and parts (c3) and (c4) estimate, in the case where F' is affine,
the latter in terms of €, with J being the set of indices j with G;(%;) > —oo.
While these error bounds may be complex, Example 1 below suggests that
this complexity is needed to account for the different (relative) growth rates of
G4, ..., Gy near zero and the linkage among the components of ¢ as imposed by
the complementarity condition (2).
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Proposition 3 Consider a continuous F' : R} — R" and a continuous G :
N, = N given by (8), where limy o G;(t) = G;(0) € [—00,00) for all j € N.
Consider a sequence of positive scalars Y = {e* ¢2, ...} tending to zero and,
for each ¢ € T, an ¢ € X := VI(N}, I 4 €G) converging to some & as ¢ €

T —

0. Thenz € ¥ := VI(?}E’_IL_,F) and the following hold with J := {j €

N @ Gj(z5) > —oo}, Y being the path-connected component of ¥ containing

z, J

= {j € N : Gj(z;) > —co for some x € ¥} and, for each I C J,

Tr={ee™: F(a)r+ Gz = O,xﬁJ\I =0}.

(a). For each J C H C J such that xg v~ F(xg,0) is pseudo-monotone on

§)‘E|_|l_q|, and Sg = {xg : (xg,0) € ¥} is convexr and has an element yg =
(yj)jer with Gi(y;) > —oo for all j € H, we have Ty € VI(Zg,pH)
(respectively, H = J and &g € VI(Zm,{pg + Gu)) if lla4l|l/e = o
(respectively, ||q5||/e = some ¢ € Ny ) as € — 0 along some subsequence
of T, where pg is any cluster point of ¢5 /|05 along this subsequence
and q¢ := F(x%) — F(2%,0).

(b). If F is analytic on an open set conlaining N7, then there exist 7> 0 and

(c1).

(c2).

(¢3).

~v > 0 such that
dist (%, X) < 7(e||G(2) | +[[25]1)" (18)
for alle € ¥, with v = 1 whenever F is affine.

If F' is pseudo-monotone on Ny and lim;,otG;(t) = 0 for all j € Je,
then J = J and & € VI(X,G). If in addition F is analytic on an open set
containing N7, then there exist 7 > 0 and v > 0 such that

(G(z) = G(&))] (2° = 2)5 < 7(el|G(a) gl + [25e )T = G(a) Fewle (19)
for alle € ¥, with v = 1 whenever F is affine.

If F(x) = Ma+q for some M € RV q € R, with Mjz. € Myy(RIVIXIT°]
and Myy € MJTJ(%'J'X'J'), and if ¥ is conver, then J = J and & €
VI(X,G). Moreover, for each I C J with |Y1| = oo and My positive
semidefinite and Myje = MirNyje for some Nyje € REXICL there exists
71 > 0 such that

(G(z) =G (@) (e =) s < mr(e||G ) g+ |25 |) =G (e)] Nrgex§e (20)
for alle € Ty.

If F(x) = Mz + q for some M C R"*", ¢ € R, and if & is conver and
G s strictly increasing for all j € J¢, then there exist p > 0 and 7 > 0
such that

5 <Gyt (=ple) Y€ K, el <7 [Hlakll+ D hi(e) +e | (21)
jeL
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for all e € T sufficiently small, where K C J° (K may depend on €},
L := J\K, and hj(e€) is the unique n > 0 satisfying Gj_1 (—n/e) = n for
jeJe. If M = —M7T| then (21) remains true without the h; terms.

(c4). If F(#) = Mz + q for some M C R"*", ¢ € R", with Mz positive
semidefinite, and if G; is strictly increasing with limsup,_,,tG;(t) < 0 for
all j € J¢, then T is the union of a countable collection of subsequences
Y for each of which there exist T > 0,p > 0, properly nested J = H; D

-D H,_1 D H, = J, and A\{ > 0 depending on MN(HI)CJ:EHI)C and ¢
only Il =1,..,r, €€ T) such that A\; — 0 as ¢ € Y — 0 and, for each
l=1,..,r—1,

either z§ < Gj_l(—p//\lﬁ) or x5 <TA Vi€ H\Hi (22)

for all € € Y sufficiently small. And if in addition Gy is locally Lips-
chitzian at Zj with constant & > 0 and satisfies (17) with o > 0,5 >
0,0 =1, then there exist 7" > 0 (independent of k, o) such that

(2 = 2)s]| < 7' (k)0 + 14 1/0)X; (23)
for all e € T sufficiently small.

Proof. ForeachjEJWeha%G(j)—)G(’)aseET — 0s
fact ¢ satisfies (2) for all € € T yields in the limit that &; > 0, F(&); 2
F(z);&; = 0. For each j € J°, we have ; = 0 and F(z°); = —eG ( ;) > 0 for
all € € T sufficiently small. The latter yields in the limit F(z); > Thus z
satisfies (1) and hence z € X.

(a). Consider any J C H C J such that x5 + F(xg,0) is pseudo-monotone

the
0,

on §)‘E|_|l_q|, and Yg is convex and contains an element yg = (y;);em with G (y;) >
—oo for all j € H. Then, we have from (yg,0) € ¥ and ¢ € X¢ that

0 < Flym, 0)ir(xy — ym), 0< (F(xfy,0)n + qir + <G m)" (yar — vr),

with ¢¢ := F(z¢) — F(2%,0). Since 2§ € §)‘E|H|, the first inequality and the
pseudo-monotonicity of 2 — F(xg,0) on %l_ll_ql imply 0 < F(z%,0) 5 (2% —ym),

which when added to the second inequality yields
0 < (g5 +€G(2)m)" (ym — @) (24)

Consider any subsequence of T along which either (1) ||¢%||/e — oo or (ii)
llg|l/e = ¢ € R4, and let py be any cluster point of ¢5/||¢%|| along this
subsequence. In case (i), dividing both sides of (24) by ||¢%|| and using y; >
0 = z; and G;j(x§) — —oo for all j € J¢ yield in the limit that

0 < ph(yn — zm).
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Since X is convex, this holds for all yg € g, so Zg € VI(Z g, pr). In case
(i1), dividing both sides of (24) by € and arguing as in case (i) yield in the limit
that H = J and

0 < (Cpr+G(@)r)" (ya — Zr)-

Since Yy is convex, this holds for all yg € Xg, so 2y € VI(Zg,Cpr + Gr).

(b). For each j € J¢, we have 2§ > 0 for all e € T and G;(z5) < 0 for all
¢ € T below some €. Consider any I C J such that |Y;| = co. For each ¢ € T
below ¢, since € € Xf, we have

—eG(x)r, F(a)ng > —eG(a) g, Fla)se >0, (25)

F(l‘ﬁ)] =
x5 >0, l‘EJ\IZO, 5. = 5.

~

Since F(z¢) = F(z) and G(2%); — G(Z); as ¢ € T1 — 0, (25) yields in the
limit that z satisfies

F(l‘)[:O, F(l‘)[czo, l‘]ZO, l‘]c:O. (26)
Assume F is analytic on an open set containing #y . Then an error bound result

of Lojasiewicz, as extended by Luo and Pang to analytic systems [33, Theorem
2.2], implies the nonlinear system (26) has a solution y¢ satisfying

ly" =@l < 7r(ellG () oll + e D)™ (27)

where 77 > 0 and 77 > 0 are constants depending on /' and I and sup.cvy, ||z°]
only. Thus, y¢ € ¥ and, in the case where F is affine, a lemma of Hoffman [25]
implies vy = 1. If T is finite but nonempty, let y° be any fixed element of X
for all ¢ € T and then (27) would hold for any v > 1 and a sufficiently large
77. Taking v := miny v; and

7= max{ sup 77 (€e]|G(2%) 5| + ||J:EJC||)W_V}
I eeXr

yields (18) for all e € Y = U;Yy.
(c1). Assume F' is pseudo-monotone on 3t} and lim;0tG;(t) = 0 for all
j € J¢. Then ¥ is closed convex [5, page 121] so ¥ = ¥ and there exists y € ¥
such that G;(y;) > —oo for all j € J. For each e € T, since y € X, (9) and
x€ € X° imply
0< P (2 = ) < Gl (y = ). (29)
Also, by (a), z € X, so J C J. For each j € J, we have Gj(x5)(y; — =5)
converges as ¢ € T — 0. For each j € J\J, we have y; > 0 and Gj(z§) — —o0,
so Gj(z5)(y; —x5) = —oc as e € T — 0. For each j € J¢, we have x§ = y; =0
so our assumption on G; yields G;(z5)(y; —z5) — 0 as e € T — 0. Hence, (28)
implies J\J = @, i.e., J = J. Now, for any y € %, (9) and z¢ € ¢ imply (28)
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holds. Dividing both sides of (28) by € and using y; = 0 and G(x§)z§ — 0 for
all j € J° = J¢ yields in the limit that

0<G(@))(y—2)s =G(@) (y - 7)

(here o0 -0 =0), so z € VI(Z, G).

Assume in addition F' is analytic on an open set containing R}, so that, by
part (a), there exist 7 > 0 and v > 0 such that (18) holds for all ¢ € T. Let
y° € ¥ satisfy ||«° — y°|| = dist(2, ). Now, for each € € T, since z € X, (9)
and z° € X° imply

0< F@) (@ —7),  0< (F@)+ G (@ - 2°).

Adding these two inequalities and dividing by € gives 0 < G(xElT(i — ). Also,
z € VI(X,G) and y* € ¥ imply 0 < G(2)F(y* — #);5 (since J = J). Adding
these two inequalities and using zj. = 0 gives

0< G@E]( — )7+ (G(F) - G h(a® - 2)s - G ferse.

Combining this with (18) and renaming 7||G(Z) || as T yields (19). B

(c2). Assume F(x) = Mz + q for some M € %" ¢ € R", and assume X
is convex. Consider any I C J such that |Y;| = co and Mz5. = M77N77 and
Misr;= MJTJNJJ for some Njj. € RITXIT and some Nyy € RIVIXIL First, we
have Myy +q7 = 0 for all y € X. [If Myy + ¢; > 0 for some i € N and some
y € X, then the convexity of X would imply z; = 0 for all x € X, s0 7 € Je]
Fix any y € ¥. Since r € X, then d = y — x satisfies dj. = 0 and Myydy = 0.
Moreover, for each ¢ € J with #; = 0 we have d; > 0. Thus, there exists a > 0
such that z¢ := 2+ ad > 0 for all € € T sufficiently small. Then, z° € X* and
z € X imply

0 (M€ + q + G (2%))7 (25 — x9)
a(Myet +q;+€G(e) ) dy
a(Mj(x€ — &)+ eG(a) ;)T dy
€ = € et € T

= a(Mzpp((x° = 2) 7+ Nyje(a® — 2)5e)) + eG(2%)5)" d
= EaG(l‘E)?dj,

A

where the last equality uses M}:jdj = NT_Mjzd; = 0. This shows that
G(l:ﬁ)§dj > 0. Since # € X so that J: D J,if J # J, then the convexity
of X would imply the existence of y € ¥ with yy ; > 0. Using this y in the
above argument would yield dy ; > 0 and hence G($E)§dj — —00, a contra-
diction. Thus J = J. Then, G; is continuous at Z; for all j € J and the above

inequality yields in the limit as € — 0 that

0 < G(a)5dy = G(@)" (y - 7)
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(here 0o -0 = 0), so z € VI(X, G).

Consider any I C J with |T;| = oo, My positive semidefinite and Myj. =
My Nyige for some Nyje € RUXITL Then z satisfies (26). For each € € Ty,
Hoffman’s lemma implies (26) has a solution y° satisfying (27), with 77 > 0 and
vr = 1. Then y¢ € ¥ (since the line segment joining # and y° lies in %) so the
fact z € VI(X, G) implies

0 < G@)'(y -2
= G@)] (¥ -2 +G@)] (z* —2)r
< l|G@))|(e|G () sl + [|25|) + G(@)] (z° — 2)s. (29)

Also, we have from (25) and # satisfying (26) that
0=(Mz+q)r, 0=(Mzf+q+ eG(z%))r,

which when subtracted and using l‘EJ\I =0 and Zre = 0 yields 0 = Myr((2€ —
Z)r + NrjexSe) + eG(x) 1. This and the positive semidefinite property of Myr
yield

0 < ((¢ = &) + Npgew§e)" Myr((e° — &)1 + Nygez§e)
= —e((z*=2)1 + NIJCJ:EJC)TG(J:E)I.

Dividing the above inequality by ¢ and adding it to the inequality (29), we
obtain

0 < 7l|G@) (G ) s+ x5l + (G(2) = G (a)T (2 = 2) 1 = G(a)] Nrgeae.

Using (z° — &) sy = 0 and renaming 77||G (z)7]| as 77 yield (20). B

(c3). Assume F(x) = Mz + q for some M C R"*", ¢ € ", and assume X
is convex and each (; is strictly increasing. Fix any I C J such that || = oco.
For each € € T, Hoffman’s lemma implies (26) has a solution y° satisfying (27)
with 77 > 0 and y7 = 1. Let ¥ denote the set of © € RN” satisfying (26) and
||| < sup.cvy, |[¥°]|. We claim that there exists a scalar p > 0 such that, for
every y € W there exists a K C J° such that

Miy+4q; >2pV¥j €K and Mpy+qr =0 for some ¢ € ¥, (30)

where L := J\K (cf. proof of [52, Proposition 2]). If not, then for every
sequence of scalars pf > 0, k = 1,2, ..., tending to zero, there would exist a
vF € W such that, for every K C J¢ we have

ijk—i—qngpk forsome j € K or Mpyy+qr Z0Vy €Y,

where L := J°\K. Since ¥ is bounded and closed, then v*, k = 1,2,..., has a
cluster point ¥ € ¥ such that, for every K C J° we have

Mijv+q; =0 forsome j€ K or Mpy+qr#0Vy e,
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where L := J°\ K. However, this cannot be true since the above relations fail
to hold for K ={j € J°: Mv+¢; >0} and ¢y = v.

For each € € T, we have y* € ¥ and hence there exists a K C J¢ such that
(30) holds with y = ¢ and L := J°\ K. Since the number of such subset K is
finite, by passing into a subsequence if necessary, we can assume it is the same
K for all e € T1. Since (27) and 2€ — z imply 2 —y* > 0 as e € T — 0, we
have M;z® 4 q; > p for all j € K and sufficiently small ¢ € T, in which case
M;x®+q; + EGj(l‘;) = 0 and the strictly increasing property of G; would imply

2§ = G7H (—(Mjet +q5)/€) <G7' (=pfe) Vi€ K. (31)

Foreach e € Xy, let Ly :={j € L : Mz + ¢q; > hj(e)} and let Ly := L\ L;.
Since there is only a finite number of different L; and Ls, by passing to a
subsequence if necessary, we can assume that L; and Ls are the same for all

€ € Tyr. Then, we have as argued above that
v < G (=hy(€)/) = hy() Vi€ Li. (32)
We claim there exists constant m > 0 such that
l[eg Al < 7 (lekor,ll+ D hie) +¢) (33)
JjEL:

for all ¢ € T7. If not, then there would exist a subsequence of ¢ € T along
which (|[z% Il + ZjeL2 hj(e) + e)/||a:22\j|| — 0. By (30), there exists ¢ € ¥
satisfying Mz 4+ ¢ = 0. Then ¢ would satisfy (26), which together with (25)
implies

My(z® =) = —eG(a)r, (z° =¥ >0,

My (z® =) > —eG(zf)y, (= =d)nr =0,
Mgiop, (2 =) >0, (z° = ¥)kuL, = Txur,

ML2 (xﬁ - 1/)) = MszE + qr,, (xﬁ - 1/))112 Z Oa

where I' :={i€ T :¢; =0}, J :={i € J\I: My¢p+¢; =0}, and K' :={i € K :
M +q; = 0}. Dividing both sides by ||J:EL2\j|| and using 0 < M,z +q; < h;(e)
for 7 € Lo would yield in the limit that

MIU = Oa ur Z Oa
MJ/U Z 0, UJN\T = 0,
Mgy, v >0, ugur, =0,
ML2U = Oa UL, Z Oa

for some u € %" with uy \y # 0. Then, since ¢y € ¥ and Mry + g = 0, the
vector ¥ + au would be in X for all o > 0 sufficiently small. Since ¢ and z
satisfy (26) so that ¢ € ¥, this vector is also in ¥. Since Up,\ 7 # 0, this would
contradict the fact that z 7. = 0 for all z € X.
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Assume M = —M7T. We claim that there exists constant 7 > 0 such that
27 71l < mu(llek ]l + €) (34)

for all e € Ty. If not, then there would exist a subsequence of € € T along which
(=%l + 6)/||J:EL\j|| — 0. By (30), there exists ¢ € ¥ satisfying Mz + ¢z = 0.
Then ¢ would satisfy (26), which together with (25) implies

Mp(z€ =) = —eG(2g, (z¢—4¢)p >0,
My(x=¢) > =Gy, (2*=¢)nr =0,
MK’($E_¢) >0, (x6_1/))K =z%,

ML(l‘E—1/)) 20 (l‘e—ﬂ))L > 0.

where I' .= {ie€T:¢; =0}, J ={ie J\]: M+ ¢ =0}, and K' = {i €
K : M;¢+ q; = 0}. Dividing both sides by ||$6L\j|| would yield in the limit that

Mpu =0, uy >0,
MJ/U 20, UJN\T :0,
Mgu 20, UK =0,
MLU >0, ur, >0,

for some u € R" with up\y # 0. Since M = —M7 so that u" Mu = 0, the
above implies u;(Mu); = 0 for all j € L. Then, since ¢ € ¥ and Mry+q¢r =0,
the vector ¢ + au would be in X for all @ > 0 sufficiently small and hence, as
argued earlier, would be in 3. Since up\y # 0, this would contradict the fact
that 7. =0 for all x € X.

(c4). Assume F(x) = Mz + ¢ for some M C R7*", ¢ € ", with M55 posi-
tive semidefinite. Also assume G is strictly increasing with limsup,_,,tG;(t) <
0 for all j € J°. Fix any I C J such that |Y;| = co. Let H; := J. Initialize T
to comprise all sufficiently small € € T so that Gj(xj) < 0 for all j € J°.

Given H; for some ! > 1, we construct below (by passing to a subsequence of
T if necessary) a proper subset H;y1 of H; having the desired properties (22),
until H; = J. For notational simplicity, we will write H; and H;4q as H and
H"™Y respectively, dropping the subscript [. First, by passing to a subsequence
if necessary, we assume there exist g, € %" and of > 0 (h =1,...,n, € € T)
satisfying

n
- «@
A1
MymexSe = E apqn Ye€ YT, af =0, ( a:— )h:l
h=1 h

_1—>0aSGET—>O.

ey

(35)
[To see that such a decomposition exists, let ¢° := Mygeag.. If ¢ = 0 for
all ¢ € T small, then choose g, = 0 and af = ()" for h = 1,...,n. Otherwise

take any subsequence of T along which ¢¢ # 0 and q°/11¢¢|| converges. Let ¢
be its limit and let ¢° be the orthogonal projection of ¢° onto the subspace
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orthogonal to ¢;. Then §¢ = ¢¢ — afq¢; for some of satisfying ||¢¢||/af — 1 along
the subsequence. Apply the above construction inductively to ¢ (restricted to
the above subspace) yields (35).] For each ¢ € Y, we have from ¢ € T; and
Gj(z5) <0 forall j € J¢and J C H that =° satisfies (cf. (25))

MLH$;[+MLHC$;IC+(]L :—eG(xE)L’ l‘? 20,
Mpraesy + Mprgexye +qnr > —eG(x) g, tpnr =0,
MHcHx;I—I—MHchl‘;IC-l-(JHC Zoa x;I\J >0’

where for convenience we let I := TU(H\J). Letting of := 1, ¢o := ¢, Iy := J\I,
Ky := 1T and Ly := H® and y§ := ¢, we see from the above relations and (35)

that the following holds with k& = 0:

Mpu(yp)m + ZZn:k aj(gn)r = —eG(z)L, (i) kx>0,
My (Y + 2= @i (an)n 2 —€G(&)r, - ()nr =0, (36)
MLkH(yZ:)H + Zh:k aZ(Qh)Lk > 0, (ylﬁc H\J >0,
k-1
Yk zxﬁ—ZaZuh, Iy C J, (37)
h=0

for all € € T. Now, suppose that (36)—(37) hold for some k > 0 for all € € Y. By
further passing to a subsequence if necessary, we can assume one of the following
two cases occurs.

Case 1. There exist j € H\J and p > 0 such that ¢G;(25)/a; < —p for all
€€ T.

In this case, let H™*" := H\{j} and we have that H™*" is a proper subset of
H and contains J. Moreover, the strictly increasing property of ; implies

5 < Gy (=pag/e). (38)

Case 2. For all j € H\J, eGj(z§)/aj, = 0 as € € T = 0.
In this case, by further passing to a subsequence, we can assume either af /e —
o0 or af /e converges, as € € T —0.

Suppose af, /e — 00 as € € T — 0. Since (36) holds for all € € Y, dividing
all sides by «f, and using L = I U (H\J) and the fact we are in Case 2 yield in
the limit

Mrog(ue)m + (g)r =0, (ur)r, >0,
M, m(ue)mg + (qe)1, >0, (ur)nr =0, (39)
My, g(up)m + (gr)r,. >0, (ur)m\g >0,

for some up € N™. [Notice that ug = #, so (ug)je = 0.] By further passing
to a subsequence if necessary, we can assume one of the following two subcases
occurs.
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Subcase 2a. There exist j € H\J and 7 > 0 such that (y, — ajus);/af < 7 for
alle e T.

In this subcase, let H"*% := H\{j} and we have that H"¢" is a proper subset
of H and contains J. Moreover, (ug); = &; = 0, so (37) yields

Ta§ > (vh — afug); = (25— Y afun);. (40)
h=1

Subcase 2b. For all j € H\J, (¥, — afug);/a] — 0o as € € T — 0.

In this subcase, let Iyy1 = {i € Iy : Mg (ug)m + (qx); = 0} and Kgyqqp :={i €
Ky @ (ug); =0} and Lgyr :={¢ € Ly : Myg(ui)m + (qx)i = 0}. Then (36) and
(39) yield

Mrp(y, — ojue)m + Z;;:k+1 ag(gn)r = —eG(2)L, (¥ — ajun) iy, >0,
M1k+1H(ylEc - alﬁcuk)H + Zhn:k-H aZ(Qh)1k+1 > _EG(xE)Ik+1a (ylﬁc - alﬁcuk)J\I =0,
MLk+1H(ylﬁc - alﬁcuk)H + Zh:k+1 aZ(Qh)Lk+1 > 0, (ylﬁc - alﬁcuk)H\J >0,

- (41)
for all € € T sufficiently small. Letting y;,;, = y; — ajugp and we see that

(36)—(37) hold with k replaced by k + 1. Below we show that & < n so that
we can repeat the above construction with & replaced by k& + 1. Suppose not,
so that k = n. Then, dividing all sides of (41) by min;je s(y;,,1); and using
the fact that we are in Subcase 2b (so that e¢Gj(25)/aj — 0 for all j € L and

af/(Ypy1); = 0forall j € H\J as ¢ € T — 0) yield in the limit that
Mrg(tns1)m =0, (Unp1)ng =0, (ung1); > 1Vje H\J,

for some up 41 € N™. Then, using this and (41) and H = LU (J\I), we see that
Y= Yn1 — 2/ (¥n 1) B\ l|co tn41 satisfies

MLLyE = —EG(l‘E)L.

Also, Yy =2 — 2 — Sor_, asup — 0 so that y* — 0. Multiplying the above
equation on the left by (y5)T and using the positive semidefinite property of
My, (since My is positive semidefinite and I C J) yields 0 < —e(y5 )T G(x¢) L.
Dividing both sides by ¢ and using L = T U (H\J) gives

Y uG ) < =) wiG(as). (42)

JEHNJ Jjel

For cach j € H\J, we have yi = (y5,11); =2l (45, 4 1)\ lloo (ng1); < =(¥541)5 =
-5 — Sor_i ot (up)j so that (also using Gj(z5) <0)

4G a5) 2 = (14 Y wifaf) ) ) 25Gi23)
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Since we are in Subcase 2b with k = n, then for each j € H\J we have
(Yns1)i/af = o0 as e € T = 0, s0 that (yny4); = 5 + 2j_y o) (us); yields
2 /aj — oo. This together with the above inequality and limsup,_, o tG;(t) <0
implies the left-hand side of (42) is positive and bounded away from zero. On
the other hand, we have G(2€); — G(Z); and y* — 0 as € € T — 0, so the
right-hand side of (42) tends to zero, a contradiction.

Suppose instead «f /€ converges to some ¢ € N4 as € € T — 0. Then, k > 1
and, since we are in Case 2 (and Gj(z§) — —oo for j € H\J), it must be that
H\J = 0, i.e., H = J. The first equation in (36) can then be written using

(yZ)J\[ =0 as

Miyr(yg)r + Z ag(qn)r = —eG(z%)r.
h=k

Dividing this by € yields in the limit
Mir(ug)r + e(gn)r = —G(2)1,

for some ug € R". Combining the above two equations yields

n

M A+ (af —ce)(ge)r + Y aflan)r = «(G(&)r — Ga)r),
h=k+1

where A = eup —y, =% — 2+ ZIZ;} ajup + eur. Multiplying the left-hand
side by A? and using the positive semidefinite property of My (since My is
positive semidefinite and I C J) yields

AT ((QZ —c) g+ Y aZ(th)I) > AT (G(#)r — G(x)r).
h=k+1

Thus, dividing both sides by € and expanding Ay yields

(2 — 2] (G(2)1 = G(x)r)

< - (Z a1 + e(um) ()1 — Gl

. ((r ! +§az<uh>1 v e(um)T ((“— — ) + Z+ i—%m)
< gazwh)m(um GG = GEnl

. (||<x—xﬁ>f||+ zazwh)m(um )‘(%’?—cﬂquél%qh)[
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Suppose in addition Gy is locally Lipschitzian at ;7 with constant « > 0 and
satisfies (17) with ¢ > 0, > 0,0 = 1. Then for all € € Y sufficiently small
so that ||(Z2 — z%)1|| < d and ||G(Z)r — G(2%)1]| < k]|(Z — 2°)1]|, the preceding
inequality yields

0% < (ri + )¢ +rs,
where 7 := || ShZ o, (un)r ()il 5 5= [ (%5 = ) () + g % (o,
and &€ :=||(# — x)]|. Solving this using the quadratic formula yields

244
(rk+s) +/(rk + 5)2 + Ursgr/f—l—s_i_\/; igrﬁ—l—s_i_r—l—s/a’
20 o o o 2

£ <

where the last two inequalities use the identities v/a + b < /a 4+ /b and ab <
(a? 4+ b%)/2. This and x5 ; = 0 and, by taking 7/ > 0 sufficiently large so that

r < 7'(af +¢) for all ¢ € T, yields

€

ge)all+ > “Ell(ga)all- (43)

h=k+1

e - k 1 . 3| af
I =2l < 7(S4 ) (af+e) + 5| £ =

Thus, letting A° := €/af, in case (38) and letting A° := af + 22:1 af (up); in
case (40) yield (22). Similarly, (43) yields (23) for suitable choice of A°.

By repeating the above argument with TI\T in place of T7, we can extract
another subsequence of T; having the same properties as YT and so on. We
do this for all 7 C J with |T;| = oo, thus yielding a countable collection of
subsequences whose union is T. [

Note 5. A few words about the assumptions in Proposition 3 are in or-
der. First, the assumptions on F(zg,0) and Xy in part (a) are satisfied
by H = J if F is pseudo-monotone on N (since ¥ = ¥ is convex in this
case). Second, the assumption of lim;_,otG;(t) = 0 in part (cl) is equiv-
alent to lim._,g Gj_l(—l/e)/e = 0 if G; is strictly increasing. This is be-
cause Gj_l(—l/e)/e > ¢ > 0 implies, by G; being strictly increasing, that
—c¢ > ceGj(ce). Conversely, tG;(t) < —c for some ¢ > 0 implies, by Gj_1
being strictly increasing, that ¢ < Gj_l(—c/t)/(t/c). Third, the assumptions
on M in part (c2) are satisfied by any I C J C N if M is symmetric posi-
tive semidefinite (see, e.g., [35, Lemma 5]) or if M is symmetric nondegenerate
(i.e., My is nonsingular for all I C N). It is also satisfied by any I € J C N

1 1 2
if M = |1 1 2], which is neither symmetric nor nondegenerate. Fourth,
0 0 1

for the h; defined in part (c3), direct calculation finds that, for G given by (5),
hj(€) = /€ and, for G given by (6), h;(€) is the uniqe 5 satisfying —n/In(n) =,
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so that h;(e) = o(e?) for any fixed 3 € (0,1). To see that the bound (21) is
reasonable, notice that for n = 1 and F(z) = 2 and G(z) = —1/x, we have
2 4+ eG(xf) = 0 so that 2 = G71(=2/¢) = €/2. Similarly, for n = 1 and
F(z) = « and G(¢) = —1/x, we have ¢ + ¢G(zf) = 0 so that z® = \/e. Notice
that the skew symmetry assumption M = —M7 is satisfied when an LP is for-
mulated as a CP. The dependence of K on € cannot be removed, as is shown by
an example in [52] in the context of LP. Fifth, the nesting of index sets in part
(c4) reflects a nested dependence of the convergence rate of some components
of #¢ (indexed by H;) on the remaining components. Intuitively, if T converges
more slowly than z{, then the term M;;z5 can influence what the limit z; will
be and the rate at which x§ converges to this limit.

Note 6. If Z in Proposition 3 satisfies strict complementarity, i.e., z+F(z) > 0,
then parts (c3) and (c4) of this proposition simplify considerably. In par-
ticular, we have F'(z); > 0 as well as F(z); + ¢Gj(25) = 0 for all j €
J¢, so that F(2%); — F(z); and the strictly increasing property of G; yield
x5 < Gj_l(—F(xE)j/e) < Gj_l(—p/e) for all € € T sufficiently small, where
p = minjes F(2);/2.

Note 7. If I is affine and pseudo-monotone on #’} and G is strictly increasing
with limy_,¢tG;(t) = 0 for all j € J°, then ¥ = X and Proposition 3(cl),(c3)
yield the error bound (19) and (21) for all € € Y sufficiently small, with J = J,
v~ =1and 7 > 0,p > 0 some constants, and with K C J¢ depending on
e and L := J\K. Similarly, if I is affine and monotone on #’} and G; is
strictly increasing with limsup,_ ,tG;(t) < 0 for all j € J° and G; is Lipschitz
continuous and strongly monotone near Z; for all j € J, then ¥ = ¥ and
Proposition 3(cl),(c4) yield the error bound (21), (22), (23) for all sufficiently
small € along some subsequence T, etc. Moreover, there exists a ¢ > 0 such that
tG;(t) < —cforall j € J¢and allt > 0 sufficiently small, implyingt < G;(—c¢/t).
Thus, the second case in (22) implies the first case.

Note 8. Proposition 3 does not say anything about existence or uniqueness or
boundedness of ¢ € VI(R}, ' + (). In the case where G is given by (5), it
was shown by Kojima et al. [29, Theorem 4.4] that F' being a continuous Pp-
function and satisfying strict feasibility (i.e., > 0, F(z) > 0 has a solution) and
a boundedness condition implies the existence and uniqueness of € for all € (also
see [30, Theorem 4.4] for the case of affine F' and see [28] for extensions to other
types of I'). Analogous results were shown earlier by McLinden in the context
of convex programs [41] and, more generally, when F is a maximal monotone
operator [42]. These results were further improved and extended by Kojima et
al. [31] and Giiler [23]. Recently, Chen et al. [9, Corollary 3.14] showed that
F being a continuously differentiable Py-function and ¥ being nonempty and
bounded is sufficient for the existence and uniqueness of x€ for all ¢ sufficiently
small. Subsequently, Gowda and Tawhid [22, Theorems 8 and 9] weakened the
differentiability assumption on F' to continuity and considered more general
regularizations on F.
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We illustrate Proposition 3 with the following example with n = 3 variables.

Example 1. Consider

1 1 2 -1 Gl(l‘l) ] — 5
Fle)=Mz+q, M= |1 1 1|, ¢q=|-1|,G) =|Gax2)| = |22—5
01 1 0 Gis(3) 1/}

with G > 0. Notice that M is positive semidefinite and it can be checked that
S ={(t,1-1,0):0<t<1}.

(i). Suppose 3 < 1 so that lim;_,¢tG3(t) = 0. Then either by direct calculation
or by using Proposition 3(cl), we find that 2 — z = (.5,.5,0) € VI(X,§) as
€ = 0. Thus J = J = {1,2} and, for ¢ sufficiently small, we have z¢ > 0 and
hence F(z€) 4+ eG(2f) = 0. Then, direct calculation yields

w5 = G (— (a5 + #5)/6) m G5 (=5/) = (2)1/7

and (2§ — .5, 25— .5) = —x5(1+2¢,¢ —1)/(2¢ + €2) = O(e'/P=1). This illustrates
parts (c1) and (c3) of Proposition 3.

(i1). Suppose # > 1 so that lim;_,otG5(t) = —o0. Then direct calculation finds
that, for all € sufficiently small, we have 2§ = 0 and #§ = (1 + .5e — z5)/(1 +€)
with z§ satisfying 5+ (14+¢)Gs(2§) = —(1+.5¢)/e. Thus ¢ — # = (0,1,0) and
J =J ={1,2}. Moreover, #; € VI(X;,ps) with ¥y = {(t,1 —¢) : 0 <t < 1}
and py = [?] /\/5. Lastly, we have

25 =G5 (—(14 5e+ex§)/e(1+¢€)) = (e(14€)/(1 + 5e + Gxg))l/ﬁ P

and hence 2§ — 1 &~ —x§ &~ —!/#. This illustrates parts (a) and (c3) of Propo-
sition 3.

(iii). Suppose 3 > 1 and G, Gy are changed to G1(¢) = Ga(t) = —1/t. First,
we claim that, for each € > 0, 2¢ exists and is unique. To see this, let I := {1, 2}
and note that M7y = H H is positive semidefinite and

2l‘3—1

Myzz3+qr = [ - 1] € {bIE%Z:bjzyI—MHxI for some x;,yIE%i_l_}
5 —

for all 3 > 0, so a result of Kojima et al. [31, Corollary 1.2, Theorem 3.3]
implies that, for each 3 > 0, the equation Mrrx;r + Mrsxs + qr + eG(x); = 0
has a unique solution zy(x3) > 0 which is continuous in #3 and is bounded as
z3 — 0. Then the equation

Msraxy(xs) + Mass + g3 + ¢Ga(xz) = wo(x3) + 23— ¢/(x3)" =0

has a solution z§ > 0 since the left-hand side is continuous in 3 > 0 and tends
to —oo as x5 — 0 and tends to oo as x5 — co. Then ¢ := [z;(x§) 5]" > 0
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satisfies

5+ x5+ 225 — 1 4 eGy(x5)
F(zf)+eG(z%)= | 2] +x5+ 25— 1+ eGa(zs) | =0. (44)
vh+ ah o+ cGala))

Uniqueness of z¢ follows from F' 4 € being strictly monotone on %129_ Now,
(44) and z° > 0 imply 2§ < 1+ ¢/2f, 2§ < 1+ ¢/x§, x5 < ¢/(x5)° for all
€ > 0, so z° is bounded as € — 0. Then, z° has a cluster point & which, by
Proposition 3 is in X. Since M is positive semidefinite so that © = X is convex
and J = {1,2}, Proposition 3(a) with H = J implies either ;7 € VI(Xz, ps) or
2y € VI(X7,¢pj+ Gy) for some ¢ € Ny, where Ty = {(t,1-1¢): 0< ¢ < 1}
and py = [?] /V/5. In either case, we have Z5 > 0, so that the third equation in
(44) yields

w5 = Gy (= (25 + 25) /) = (¢/ (w5 + 25)) /7 o (c/22) 7.
Since 3 > 1, this shows x5/e — o0 so we are in the case of z7 € VI(X7,ps),
yielding # = (0,1,0) and J = {2}. Thus J\J = {1}. Now, subtracting the
second equation in (44) from the first equation and using Go(t) = —1/t yields
5+ e/x5 + eGi(x5) = 0, so that (cf. (22))
@) = Gy (= (a5 + e/e5) [e) m GTH(—(e/22)" P fe) = 7P [ (@5) 1170
Finally, the second equation in (44) implies

25— 1= —2f — 2§+ /s ng —emY/BI=1BY f(5,)P

Notice that G2 is locally Lipschitzian at 2 = 1 and satisfies (17) with some
o> 0,0 > 0,0 = 1. This illustrates parts (a), (c3) and (c4) of Proposition 3.
For part (c4), we have Hy = {1,2}, Hy = {2}. Correspondingly, for { = 1, the
decomposition (35) (with the subscript { restored) holds with ¢11 = Mn3 =
[211)7, af | = z§, yielding A{ = ¢/2§. For | = 2, (35) holds with ¢1 » = My; =
1107, af =z if B € (1,2);0r g0 = Mys =[21 17, af = z5if 8> 2,
etc.

(iv). Suppose 8 > 1 and (G, G5 are changed to G1(t) = Ga(t) = =1/t as in

11 2
(iii). Suppose we also change M to M = |1 1 2. It can be seen that this
0 0 1

does not change ¥. Moreover, M is positive semidefinite, so ¥ = ¥ is convex
and J = {1,2}. Using an argument analogous to that used in (iii), we have
that z¢ exists and is unique for all € > 0, and z¢ is bounded as € — 0. Also, M
satisfies the assumptions in Proposition 3(c2) for any I C N, so it follows that
any cluster point of ¢ is in VI(Z, &) = {(.5,.5,0)}. Thus z° - & = (.5, .5,0),
with J = J. Moreover, F(z¢) + ¢G(2) = 0 yields

v5 = ha() = M+
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(recall hs(¢) is the unique 5 > 0 satisfying —n/c = Gs(n) = —1/n°) and, using
symmetry, #{ — .5 = x5 — .5 = O(x§) = O(¢'/(P+1). This illustrates parts (c2)
and (c3) of Proposition 3. Compared to (iii), we see that changing M changes
both the limit point  and the convergence rate, even when G and the solution
set X are unchanged!

3 Summary and Open Questions

We have considered regularizing the mapping F' in a complementarity problem
by another mapping and we studied properties of any limit point of the so-
lution of the regularized problem. We have also derived error bounds on the
distance from the solution of the regularized problem to its limit point. These
error bounds are fairly complex, reflecting both the local growth rate of the reg-
ularization mapping and the linkage among solution components through the
complementarity condition.
There remain many open questions to be answered. We list a few below.

Q1. Can parts (c3) and (c4) of Proposition 3 be simplified/strengthened in the
case of G4 = - = G,7

Q2. TFor the G given by (5), the convergence result of McLinden [42] requires
I to be monotone and continuous, whereas our error bound result requires
F to be affine and satisfying the assumptions of either part (c2) or part (c4)
of Proposition 3. For this particular choice of (G, can an error bound result
analogous to Proposition 3(c2)—(c4) be obtained for non-affine F?

Q3. Consider higher-order regularization of the form F¢(x) := F(z)+eG!(x)+
2G*(x) + -+ + eGP (x), where p > 1 and G*,...,G? are suitable mappings.
What can we say about any limit point of z° € VI(R, I'*) as ¢ — 07 [See
[1, Section 4] for discussions in the optimization setting.] What kind of error
bounds can be derived?

Q4. Here we have considered the CP where the feasible set is ®7}. Can our
results be extended to variational inequality problems where the feasible set 1s
a polyhedral set or, more generally, a nonempty closed convex set of "7 How
about extension to spaces other than Rt”, such as the space of n x n symmetric
matrices (with R7 replaced by the convex cone of n x n symmetric positive
semidefinite matrices) or an infinite-dimensional space?
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