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Abstract: We propose a first-order interior-point method for linearly con-
strained smooth optimization that unifies and extends first-order affine-scaling
method and replicator dynamics method for standard quadratic program-
ming. Global convergence and, in the case of quadratic program, (sub)linear
convergence rate and iterate convergence results are derived. Numerical ex-
perience on simplex constrained problems with 1000 variables is reported.
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1 Introduction

Consider a linearly constrained smooth optimization problem:

max f(x), (1)

xEA

where A = {x € R*" | Ax = b, x > 0} is polyhedral with A € R™*",
b € R™, and f : R® — R is continuously differentiable. We assume without
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loss of generality that A has rank m. This problem has been well studied and
many iterative methods have been proposed for its solution, such as active-set
methods and interior-point methods; see, e.g., [1, Chapter 2], [10, Chapter
5], [6, 9, 11, 19]. In what follows, riA = {x € R” | Ax = b, x > 0} denotes
the relative interior of A and || || denotes the Euclidean norm (2-norm). Bold
letters without subscript denote vectors, with z; denoting the jth component
of a vector x. For each index subset J C {1,...,n}, we denote by xs the
vector composed of those components of x € R* indexed by j € 7.

An important special case of (1) is the standard quadratic program (StQP),
where A is the unit simplex and f is homogeneous quadratic, i.e.,

A=e', b=1, flx)= %XTQX,

with @) € R™*" symmetric and e € R" a vector of ones. Applications of StQP
include maximum clique, portfolio selection, graph isomorphism [2, 23]. By
adding a nonnegative multiple of ee’ to @ (which changes f by only a
constant on A), we can assume that

i >0 and ¢; >0 Vi,j (2)

so that @x > 0 componentwise for all x € A. In [2, 3, 4, 23, 24], a remarkably
simple interior-point method called replicator dynamics (RD) was used for

solving StQP:

k ok
xk“:Xig, k=0,1,..., x? € riA, (3)
(xF)Tg*

where gF = Qx*, X*¥ = Diag(x¥). The assumption (2) implies that g¥ > 0
and x* € ri A for all k. In fact, (2) is necessary and sufficient for @x > 0 and
x"Qx > 0 for all x € A. This method is reminiscent of the power method
for finding the largest (in magnitude) eigenvalue of a square matrix, with the
unit Euclidean sphere replaced by the unit simplex. Starting the RD method
in ri A is essential. If it is started at an x° in the relative boundary of A,
then all x* will stay in the relative interior of the face of A that contains x°.
The RD method has a long history in mathematical biology, and it con-
nects three different fields: optimization, evolutionary games, and qualitative
analysis of dynamical systems; see [3] and references therein. It arises in pop-
ulation genetics under the name selection equations where it is used to model
time evolution of haploid genotypes, with @ being the (symmetric) fitness
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matrix, and z¥ representing the relative frequency of allele i in the population
at time & (see, e.g., [20, Chapter III]). Since it also serves to model replicating
entities in a much more general context, it is often called replicator dynamics
nowadays. The continuous-time version of the RD method is known to be a
gradient system with respect to Shahshahani geometry; see [12]. This sug-
gests that the method may be useful for local optimization. In fact, (3) has
the remarkable property that, under assumption (2), the generated sequence
of iterates {x*} converges [15] (i.e., has a unique cluster point) and, given
that we start in ri A, the limit X is a first-order stationary point of (1). Ad-
ditionally, the objective values f(x*) increase with k, ||x* — %|| = O(1/Vk),
and convergence rate is linear if and only if strict complementarity holds
at X. This contrasts with other interior-point methods for solving (1), for
which additional assumptions on ) are required to prove convergence of the
generated iterates; see [6, 11, 19, 27, 29, 31]. In [4], the RD method (3)
was applied to solve medium-sized test problems from portfolio selection and
was shown to be superior in performance to classical feasible ascent methods
using exact line search, including Rosen’s gradient projection method and
Wolfe’s reduced gradient method. A variant of the RD method that uses
exact line search was also considered. Recently, some of the aforementioned
results were extended to the case where A is a product of simplices, under
the name of multi-standard quadratic program (MStQP); see [5].

However, in practice the RD method seems slow on large instances of both
StQP and MStQP. Can this method be improved and extended to the general
problem (1) while retaining its elegant simplicity? Denoting, as always in the
sequel, X* = Diag(x*), we can rewrite (3) as

¢ XHgE— (x5)Tgh)e)
x)gh

k+1

X — X

so we can interpret the numerator as the search direction and 1/(x*)"gk as
the stepsize; see [4, Equation (15)]. What if we do a line search along this
search direction instead? This motivates the following interior-point method
for solving the special case of (1) where A is the unit simplex (f need not be
homogeneous quadratic):

xF = xP 4+ ofd*, dF = XFr(xb), k=0,1,..., x’ i,  (4)
with 0 < af < —1/min; r;(x*), where

r(x) = Vf(x) - x'Vf(x)e = [I — ex'|Vf(x)
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and r; denotes the jth component of r. The restriction on o ensures that

x¥ € riA for all k. Note that, for x € A, we have x'r(x) = 0 and hence
min; r;(x) < 0 unless x is a stationary point of (1).

Among existing interior-point methods, the RD method (4) is most closely
related to the first-order affine-scaling (AS) method of Dikin [7] for quadratic
programming and extended by Gonzaga and Carlos for linearly constrained
smooth convex minimization [11]. Their method, when specialized to (1),
has the form

xF = xF 4+ oFd*, dF = (XF)?r(xY), k=0,1,..., x" eriA,  (5)

where o” is chosen by a limited maximization rule on (0, —1/(min; d%/z¥)),

r(x) = Vf(x) -

X XVf(x) [1 -

[1xI?

exTX] Vf(x),

[1x]?

and X = Diag(x). They showed that every cluster point of {x*} is a station-
ary point of (1) when f is concave. The proof extends an idea of Dikin [8]
and makes use of a constancy property of Vf on each isocost line segment.
Subsequently, Bonnans and Pola [6] and Monteiro and Wang [19] proposed
first- and second-order AS trust-region methods based on generalizations of
this search direction. In [6, Theorem 2.2], o is chosen by an Armijo-type
rule and it is shown that every cluster point of the generated iterates is a
stationary point provided a certain relaxed first-order optimality system has
a unique solution or has isolated solutions, and an additional technical condi-
tion holds. In [19], the analysis in [11] is extended to show every cluster point
of the generated iterates is a stationary point provided f is either concave
or convex. In general, global convergence analysis for these kinds of interior-
point methods, including (4), is nontrivial due to the search direction being
componentwise proportional to the current iterate.

Upon comparing (4) with (5), we see that they differ mainly in that one
scales its direction by X* while the other scales by (X*)2. Also, r(x) is
obtained by subtracting from V f(x) componentwise a weighted average of it
components. In fact, the two methods (4) and (5) belong to a general class
of first-order interior-point methods for the general problem (1) that has the
form

xF =xb 4 ofdF,  dF = (XF)Pre(xb), k=0,1,..., x" eriA, (6)



where v > 0, 0 < o* < —1/(min; d}/z%), and
r(x) = Vf(x) — AT(AXTAT)TAXPV f(x)

T 2 Ty—1 2 (7)
= [T — AT(AXPAT)TAXVV f(x) .

(Here X2 denotes X raised to the power 27, in contrast to X*. The meaning
of the exponent should be clear from the context.) Thus, v = 1 yields the
first-order AS method while v = 1/2 yields the RD method. Since A has
rank m, AX?' A" is positive definite and hence invertible whenever x > 0.
We will discuss (inexact) line search strategies for choosing the stepsize
o so as to achieve fast global convergence. We will show that if o* is chosen
by either an Armijo rule or a limited maximization rule, then every cluster
point of {x*} is a stationary point of (1) under a primal nondegeneracy as-
sumption and additional assumptions such as f being concave or convex; see
Theorem 1(c). Thus if f is concave, then every cluster point would be a global
maximizer. In the special case where f is quadratic, we show that {f(x*)}
converges at a sublinear rate or, specifically, v — f(x*) = O(1/k!/ max{7.27-1})
where v = limy_, o, f(x¥); see Theorem 2. To our knowledge, this is the first
rate of convergence result for a first-order interior-point method when the
objective function f is nonlinear. Moreover, we extend the result in [15] to
show that, for v < 1, {x*} converges sublinearly and, under primal nonde-
generacy, its limit X is a stationary point of (1). If in addition v < 1 and x
satisfies strict complementarity, then {f(x*)} and {x*} converge linearly. On
the other hand, if % < v < 1 and x does not satisfy strict complementarity,
then {x*} cannot converge linearly. Why are we interested in a first-order
method if its convergence rate can be sublinear? They have much simpler
iterations compared to second-order interior-point methods [9, 29, 33] and
hence may be suited for solving very large problems (n > 10000). The case of
multiple simplex constraints is a good example. In this case, AX?YAT has a
block-diagonal structure corresponding to the simplices and r(x) decomposes
accordingly. In general, if m is small or AAT has a nice sparsity structure,
then r(x) can be inexpensively computed from V f(x). Our analysis and nu-
merical experience suggest that a value of v < 1 is superior to values of v > 1.
Our main contributions are: a unified algorithmic framework, practical step-
size rules, a comprehensive global convergence analysis and, for quadratic f,
convergence rate analysis, and implementation and testing of the method.
Our results can be extended to handle upper bound constraint x < u by
working with Diag(min{x, u — x}); see, e.g., [29]. For simplicity we do not
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consider this more general problem here.

After the initial writing of this paper, Takashi Tsuchiya informed us that
the method (6), (7) had previously been studied by Saigal [26] for linear
programming. It is shown in [26, Theorems 6 and 24] that {x*} converges to
a stationary point of (1) assuming f is linear, v > 1, o* = —a/(min; d¥ /%),
and either (i) 0 < a < 1 and primal nondegeneracy (Assumption 1 in Section
2) or (ii) 0 < /(1 —)?’ < 2/(2y—1). It is remarked in [26, pages 378, 415]
that its analysis can be extended to % < v < 1 though no detail is given. In
contrast, we show convergence of {x*} to a stationary point assuming f is
quadratic, v < 1, o is chosen by line search, and primal nondegeneracy; see
Theorem 2(b).

2 Properties of search direction
The following lemma shows key feasible ascent properties of the search di-
rection d¥.

Lemma 1 For any v > 0 and x € riA, let X = Diag(x) and d = X?'r(x),
where t is given by (7). Then we have Ad = 0 and

Vi) d=[X74d)? = [Xr(x)]*
Moreover, d solves the following subproblem

max {V/(x)Tu | Au=0, | X "] < |Xr(x)]} ®)

Proof. Let g =V f(x) and denote by
P,=1-X"AT(AX*"AT)"'AX"

the matrix of orthogonal projection onto the null space of AX?. Then PJ =
P, = (P,)?. We have from (7) that

X7'd =X"r(x) = P,X"g,

so X 77d is in the null space of AX” and hence Ad = (AX7)(X 7d) = 0.
Also,

I

g'd=(X"g)"(X7d)
=(X"g)'P,X"g
= |, X"g|?

= [|xd|P?,



where the third equality uses P, = Pf. The minimum-norm property of
orthogonal projection implies that d solves the subproblem (8). m

We will make use of the following primal nondegeneracy assumption,
which is standard in the analysis of AS methods, especially when the ob-
jective is nonquadratic; see [6, 7, 11, 19].

Assumption 1 For any x € A, the columns of A corresponding to {j | z; #
0} have rank m.

Assumption 1 is satisfied when A is the unit simplex or a Cartesian prod-
uct of simplices. The following result is well known; see [7, 11].

Lemma 2 Under Assumption 1, AX?AT is nonsingular for all x € A and
r is a continuous mapping on A, where X and r are given by (7).

3 Stepsize rules

For general f, we propose to choose o* by an Armijo-type rule [1, Section
2.2.1]: oF is the largest o € {af3¢}e—0,1,... satisfying

f(x* +ad®) > f(x*) + oa(g”) 'd", (9)

where gf = V f(x¥), 0 < 3,0 < 1 are constants and

. o0 if d* > 0;
0<ag < . else. (10)

Notice that if d¥ = 0, then (9) is satisfied by any o > 0 and the Armijo rule
yields af = af. Since dF is a feasible ascent direction at x* by Lemma 1 and
af > 0, we know that of is well defined and positive.

In the special case where f is a quadratic or cubic function, we can choose
o by the limited maximization rule:

o € argmax f(x* + ad®). (11)
0<a<ak



4 Global convergence

In this section we analyze the global convergence of the first-order interior-
point method (6), (7). The proof uses ideas from [1, Section 1.2] and [11],
[19, Appendix A]. As with RD and AS methods, the proof is complicated
by the fact that the direction mapping x — X?'r(x) is undefined on the
relative boundary of A. Even when it is defined and continuous on the
relative boundary of A, as is the case under Assumption 1, it may be zero at
a non-stationary point.

Theorem 1 Assume A° = {x € A | f(x) > f(x°)} is bounded. Let {x*}
be generated by the method (6), (7) with {a*} chosen by the Armijo rule (9)
and {af} satisfying (10). Then the following results hold with g* = V f(x*).

(a) x* € riA for all k, {f(x*)} is nondecreasing, and {xF}, {d*} are
bounded.

(b) Assume infyaf > 0. Then {(g¥F)Td*} — 0, {(X*)r(x*)} — 0, and

every cluster point X of {x*} satisfies
Diag(X)(Vf(X) — A'p) =0 for some p € R™. (12)
If sup,, a’g < o0, then iterate change goes to zero, i.e., {xFt1 —x*k} — 0.

c) Suppose inf, of > 0, sup, af < oo, Assumption 1 holds, and either (i

S infy af >0 e A tion 1 hold d either (i) f
is concave or convez or (ii) Ae consists of isolated points or (iii) every
X € A satisfies strict complementarity (i.e., x; —rj(x) # 0 for all j),
where

A = {x € A | Diag(x)r(x) = 0, f(x) = lim f(x*)}.

k—o00

Then every cluster point of {x*} is a stationary point of (1). Under
(ii), {x*} converges.

(d) Ifinf,af > 0 and Vf is Lipschitz continuous on A, then infy o > 0.

Proof. (a). Since x° € ri A, by using (6) and Lemma 1 and an induction
argument on k, we have that x* € ri A and of > 0 for all k. Also, o satisfies
(9), so (6) implies

f(xk+1) _ f(Xk) > O’Ozk(gk)Tdk _ O_ak”(Xk)—'ydk”? Vk, (13)
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where the equality uses Lemma 1. Thus {f(x*)} is nondecreasing. Then
x# € A for all k. Since A is bounded, this implies {x*} is bounded. Also,
(6) implies

1]l = (X F)* e ()] < max ()| (XF)r(x")]

and (7) implies
IXF) eI = [P (XF) 8" < I(X*) 8",

where Pf is the matrix of orthogonal projection onto the null space of
A(X*)7. Since {x*} is bounded and Vf is continuous so that {gF} is
bounded, this shows that {d*} is bounded.

(b). Suppose infyaf > 0. Let X be any cluster point of {x*}. Since
x* € AY for all k and A° is closed, ® € A°. Since f is continuous and, by
a), {f(x*)} is nondecreasing, we have {f(x*)} 1 f(X) and hence {f(x**!) —

(
f(x*)} — 0. Then (13) implies
{o*(g")"d"} — 0. (14)

Consider any subsequence {x*},cx (K C {0,1,...}) converging to X. Let
g = Vf(x). By further passing to a subsequence if necessary, we will assume
that either (i) infrex o > 0 or (ii) {a¥}rex — 0. In case (i), we have from
(14) that {(gF)"d*}rex — 0. In case (ii), we have from infy of > 0 that
of < of for all k € K sufficiently large, implying that the ascent condition
(9) is violated by a = o*/3, i.e.,

Fxk 4+ 2a¥) - f(xb)
ak/B
Since {d*} is bounded, by further passing to a subsequence if necessary, we

can assume that {d*};cx — some d. Since {*}1cx — 0 and f is continu-
ously differentiable, the above inequality yields in the limit that

< o(gh)"d". (15)

g'd<og'd.

Since 0 < o < 1, this implies g"'d < 0. Thus limsupyex 4,0 (%) Td* < 0.
Since (g¥)"d* > 0 for all k, this implies {(g*)"d*}1ecx — 0. Then Lemma 1
implies

{(X)r(") }ee = 0,
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and hence {rz.(x*)}rex — 0, where J¢ = {j | Z; > 0}. By (7), the system
of linear equations in p € R™:

(8°—ATp); =r;(x") VjeJge

has a solution. Let p* be its least 2-norm solution. Since the coefficient
matrix in this system does not change with k, it follows from {gF}icx —
Vf(%) and {rze(x*)}rex — 0 that {p*}rex converges to some p satisfying
(Vf(x)—ATp); =0 for all j € J¢. Thus (12) holds.

Since {x*} is bounded by (a), the above argument shows that {(g*)"d*} —
0 as well as {(X*)r(x¥F)} — 0, and every cluster point X satisfies (12).

By (13), for all &,

(g")Td* = ||(XF) | = 1 109 (1 b 2 > 1 [Jxk+t — xk||2'
(a¥)? ~ (of)? max;(zh)?

If sup,, af < oo, then since {(g*)"d*} — 0 and {x*} is bounded by (a), this
implies {x*™! —x*} — 0.

(c). Suppose that infy af > 0, that sup, af < oo, and that Assumption 1
holds. Let x be any cluster point of {x*}. Let X = Diag(x) and r = r(X).
We have from {(X*)7r(x*)} — 0 in (b) that XT = 0 or, equivalently,

X(g-A'p)=0,

where g = Vf(%) and p = (AX?'AT)"!AX?'g. Thus X belongs to A, and
X is a stationary point of (1) if and only if ¥ < 0.

Suppose that f is concave or convex. We show below that ¥ < 0. The
argument is similar to one used by Gonzaga and Carlos [11]; also see [19,
Section 3.3]. First, we have the key result that

{r(x*)} — T (16)

Its proof is given in Appendix A. If r £ 0, then there would exist some
j €{1,...,n} such that 7; > 0. Then Xt = 0 implies Z; = 0. By (16), there
exists k such that r;(x*) > 0 for all k£ > k, so that d;—? > 0 for all k£ > k and
hence x;—“ > x¥ > 0 for all k¥ > k. This contradicts z; = 0.

Suppose that, instead of f being concave or convex, A consists of iso-
lated points. Since {x*™! — x*} — 0 so the set of cluster points of {x*} is
connected, (b) implies {x*} — %X. Then (16) holds and the same argument
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as above yields ¥ < 0. Suppose instead that every x € A satisfies strict
complementarity. Let

A = {x €A |17(x) =0, r7(x) >0, r7 (x) < O},

where Jo = {j | 7, =0}, I = {j | 75 > 0}, I = {j | 7; < 0}. Since
every X € A satisfies strict complementarity, A is isolated from the rest
of A, i.e., there exists a § > 0 such that (Ae + 0B) N A = Ay, where
B denotes the unit Euclidean ball centered at the origin. Since the set of
cluster points of {x*} is connected and, by (b), is contained in A, this set
must in fact be contained in A. Hence for every j € J, we have r;(x*) > 0
for all £ sufficiently large, so d;? > 0 for all £ sufficiently large, implying
lim inf}, xf > 0, a contradiction to Z; = 0. Thus J; =0, i.e.,, r <0.

(d). Suppose that infy aff > 0 and Vf is Lipschitz continuous on A with
Lipschitz constant L > 0. Then it is readily shown using the mean value
theorem that

L
VIR =% = Fly —xIP < fy) - fx)  ¥xyeA
(see [1, page 667]). For each k € {0,1,...}, either o = of or else (9) is
violated by a = %k, i.e., (15) holds. In the second case, we apply the above
inequality to x = x* and y = x* + %kdk, so that using (15) we obtain
k kY 2 K k

Q" kT gk L(“) k|2 ko, Qg k o E\T 1k

—(g") d"— = | — d°|I" < fx"+—=d" ) - f(x") < —o(g") d”.

5 (g") >\ 3 |47 5 (x*) 5 (g")
Dividing both sides by %k and rearranging terms yields

Lok

_ Tk < 22 1a*112.
(1-o0)(g") d _25||d |
By Lemma 1,
|d*[” ey k2 o L e
1— <(1- XH7d®|” < ——||d"|]”.
(1= )iy < (1= D)7 < S

Since of # of, we have d* # 0, so this yields (1 — ¢)/ max;(z%)*" < L%.
Thus in both cases we have

akZmin{o/g,M}. (17)

L max;(zk)>
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Since inf o > 0 and {x*} is bounded, this shows that inf;a* > 0. =

The assumption in Theorem 1(c)-(d) of (10) and inf; af > 0 is reasonable
since, by (a), {d*} is bounded, so the right-hand side of (10) is uniformly
bounded away from zero. Theorem 1(d) will be used in the convergence
rate analysis of the next section. Similar to the observation in [1, page 45],
Theorem 1(a)-(c) extend to the limited maximization rule (11) or any stepsize
rule that yields a larger ascent than the Armijo rule at each iteration.

Corollary 1 Theorem 1(a)-(c) still hold if, in the interior-point method (6),
(7), of more generally satisfies
0< ak S aga f(xk + akdk) Z f(xk + a/:rmijodk))

k

where a5, 15 chosen by the Armijo rule (9).

Proof. Theorem 1(a) clearly holds. Theorem 1(b) holds since (13), (14), (15)
in its proof still hold with o replaced by o, This yields {(g*)"d*} — 0

and {d*} — 0. The proof of Theorem 1(c) is modified accordingly. =

Theorem 1(c) under condition (i) is similar to [11, Section 3] and [19,
Theorem 3.14] for the case of AS methods (7 = 1). Theorem 1(c) under
condition (ii) is similar to [6, Theorem 2.2], [33, Theorem 3] for the case
of AS methods. In particular, Assumption 1 is equivalent to (H3) in [6],
and condition (i) and A are refinements of, respectively, (H1) and (OS);
solutions in [6]. When f is quadratic, A consists of isolated points if and
only if it is a finite set.

The convergence of {x*} for AS methods has been much studied. In the
case of linear f, convergence has been shown for first-order AS methods; see
[14, 18, 26, 30, 32] and references therein. In the cases of concave quadratic
f or a more general class of quadratic f and box constraint, convergence
has been shown for second-order AS methods [17, 27, 29, 31]. For more
general f, convergence has been shown for AS methods under Assumption 1
and condition (ii) in Theorem 1 [33, Theorem 3|, [6, Theorem 2.2|, and for
second-order AS methods, assuming f is concave or convex and V2f has a
constant null space property [28], [19, Theorem 4.12].
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5 Sublinear convergence when f is quadratic

In this section we show that, in the special case where f is quadratic, { f(x*)}
generated by the first-order interior-point method (6), (7) converges sublin-
early. The proof, which uses Lemma 1 and Theorem 1, adapts the linear
convergence analysis of a second-order AS method with line search [29, The-
orem 1]. To our knowledge, this is the first rate of convergence result for a
first-order interior-point method when f is nonlinear, and it does not assume
primal nondegeneracy (Assumption 1). Moreover, by adapting the proof of
[15, Theorem 3.2], we show that the generated iterates {x*} converge sublin-
early for v < 1 and, under primal nondegeneracy, the limit is stationary for
(1). If in addition v < % and strict complementarity holds, then convergence
is linear. But if sup, af < oo, % < v < 1 and strict complementarity fails,
then convergence cannot be linear. This suggests v < 1 may be preferable
to v > 1, which is corroborated by the numerical results in Section 6.

Theorem 2 Assume f(x) = %XTQX + c¢'x for some symmetric Q € R**"
and c € R*. Assume A° = {x € A | f(x) > f(x°)} is bounded. Let {x*} be
generated by the method (6), (7) with {a*} chosen by the Armijo rule (9) and
{ak} satisfying (10) and infy af > 0. Then the following results hold with
w=1/(7—1) and ¥ = max{1 + v, 2v}.

(a) There exist v € R and C > 0 (depending on x°) such that

0<v—f(xH<Ck™ VE>1. (18)

(b) Assume v < 1. Then there exist x € A° and C" > 0 (depending on x°)

such that .
lx —x*|| < C'k™ 5 Vk > 1.

Suppose Assumption 1 also holds. Then X is a stationary point of (1).
Moreover, if v < § and X—r(X) > 0, then { f(x*)} converges linearly in
the quotient sense and {||x — x*||} converges linearly in the root sense.
If instead sup, af < oo, v > = and X — r(X) # 0, then {||x — x|}
cannot converge linearly.

Proof. We have from Theorem 1(a) and its proof that {f(x*)} is nonde-
creasing and (13) holds or, equivalently,

FEMY) = F(xF) > oo |n*|” v, (19)
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where we let
n* = (X*)r*  with rf =r(xF).

Thus {f(x*)} converges to a limit v and {f(x*™1) — f(x*)} — 0. Since V f
is Lipschitz continuous on A, Theorem 1(d) implies infy & > 0. Then (19)
implies {n*} — 0.

For any J C {1, ...,n}, let

7 S Il vied, } (20)

Ky = {k‘E{O,l,...} J

i< nfli Vi e g
where J¢={1,...,n}\ J. Since (z5)7|r¥| = [1¥| so that either 2 < |77;“|ﬁ
or else |rF] < |nf|ﬁ, it follows that each k¥ € {0,1,...} belongs to exactly
one set s for some J (because evidently J # J' C {1,...,n} implies
K7NKz =0). Since the number of subsets J is finite, there is at least one
J such that IC7 is infinite.

Consider any J such that 7 is infinite. For each k£ € K7, consider the
following linear system in (x, p):

x7g=x5, q/x—a/p=—¢+r¥ VjeJ? x>0, Ax=b. (21)

This system has at least one solution, namely (x,p) = (x*, p¥) with p* =
(A(X*)PAT)"LA(X*)>gk. Here q; and a; denote the jth column of ) and
A, respectively. Now, let || - ||, denote the v-norm. (We drop the subscript v
for the Euclidean norm where v = 2.) By the definition (20),

(16T, x5) )™ < NIl VE € Ko, (22)

so {n*} — 0 yields {(x%,r%:)}rex, — 0. Thus, the right-hand side of (21)
is uniformly bounded for k£ € K7, so an error bound of Hoffman [13] implies
that (21) has a solution, say (y*,t¥), that is uniformly bounded for k € K.
Since {(x¥, %) brex, — 0, any cluster point (y, t) of {(y*, t*) }rex, satisfies

yr =0, quy—ajth—cj VieJ¢ y>0, Ay=hb. (23)

Thus, this linear system has a solution. Let X denote the set of solutions for
(23). Since (x*, p¥) is a solution of (21), Hoffman’s error bound [13] implies
there exists (x*, p*) € £ satisfying

I&", %) — (*, POl < Cull(x, x5e) sy VK € Ko, (24)
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where ('] is a constant depending on v, @, A, and J only.
We claim that f is constant on each X 7. If (y, t) and (y’, t') both belong
to X7, then (23) yields

f) = fy) =

_|

QY —-y)+Qy+¢o) (¥ —y)
QY —y)+(Qy+c—ATt) (¥ —y)
RY —v),

!

' -vy)
' -vy)
' -vy)

NI N N
+H

where the second equality uses A(y'—y) = 0 and third equality uses y'; = y s
and quy — ajTt = —c; for all j € J°. A symmetric argument yields

fy)— ) =iy -y)'Qy -y

Combining the above two equalities yields f(y') = f(y)-
For any k € K7, we have

(Qx" +¢)"(x" —x*) = (Qx* + ¢ — ATP") T (x* -

X
=2 (/%" + ¢~ afp")a]

JjET

=3 (4f & —x*) - af (p — p) + 7)o,

JjET

where the first equality uses A(x* — x*) = 0, and the second equality uses
(xk,p*) € ¥7. If v < 1, then this together with

FxF) — f(&) = L(x" — )T Q(x" — &%) + (QF* +¢) " (xF — %)
and the definition of n* = (X*)7r* yields

]EJ

—x*) —a] (6" — p¥)ak| + (2)! |t

< Gyl - '“||2+2(|| aj, ;)| |5 ) — (< Bl +(25)' 7 Inf )

JjET
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_2 1
< GOt + 3 (e, —a)ll Calln* 157725 + () 1nf)
JjET
2 = 1 2
< GO I +Cr Y (g ag) | I I 5 + 5 )
JET

where C is a constant depending on Q only; the first inequality uses z¥|r¥

(z¥)"=7|nf]; the third inequality uses (22) and (24); the last inequality uses
(20), v <1, and k € K7. It follows that

PR — FE)] < Collnt T vk € Ky, (25)

where C7 is a constant depending on v, @, A, and J only. If v > 1 instead,

k kl-1/v
[

then by using % |r¥| = [n¥["/7|rk "=/ and sup, ||r < 00, we similarly
2

J

obtain (25) but with “||n*||/™” replaced by “||nk||}/7” (also using ﬁ > %)
Let C5 be the maximum of C; over all J such that 7 is infinite.

Since { f(x*)} 1 v and {n*} — 0, it follows from (25) that {f(X*)}rexc, —
v. Since X* € ¥ for all k € K; and f is constant on ¥, this implies
f(x*) = v for all k € K. This, together with (25), the subsequent remark,
and C; < (s, yields

v = f(x) = fF(®¥) = f(x*)
< Gyt
= Cs|ln*[I3" (26)
<k (FH) — f(xF)1

for all £ € K5 with some constant « > 0, where the second inequality
uses (19) and inf; of > 0. The above inequality yields, upon letting A*F =
v — f(x¥) and rearranging terms,

AFN7
AR < AR (?> : (27)

This holds for all £ € K7 and all J such that K is infinite. Since each
k € {0,1,...} belongs to s for some J, then (26) and (27) hold for all k
sufficiently large, say k > K.
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(a) Take C' > KT sufficiently large so that (18) holds for k =1,..., K.
Then an induction argument shows that (18) holds for all £ > 1. In par-

ticular, if (18) holds for some k£ > 1, then we have from C > k71 that
(C/k)Y > C and hence (27) yields

AN, oY 11 C

AL Ar () <« Z (L)) <0o|—=- — )< —2L

= ( K ) = e (mkw) SUAR T ) S e

where the last inequality holds since wy =1+ w and (1 - £5)* > 1— =55
(using w < 1). This proves (18).

(b) Assume v < 1. Then ¥ = 14+ < 2. Using (6), we have for all £ > K
that

[ — xF|| = o®||(X*) "]
< oP|Ix*||7[1n"|]
k|2
kil<k ||71 ||
= o"[|x"||3
* Im*||

o|In
< x| v/n——
> |11

Ak — AR+ Oy B
< |I<FI—m—— [ ==
< IRt (5)
where the last inequality uses (19) and (26) which holds for all £ > K as

explained above. Since x* lies in the bounded set A° so that supy, [|x*]|o < oo,
this implies

k:||2

||Xk+1 . Xk” < C4(Ak B Ak—l—l)(Ak)—g

Ak B
< 04/ todt

Ak+1
Cy ky1—
T 1-1 ((A )

R

_ (Akﬂ)l*%)

for all £ > K, where C; > 0 is some constant. Thus for any ky > k1 > K,
we have

ko _ }
Z ||Xk+1 _Xk” < 104 <(Ak1)1—g . (Ak2+1)1—%) < Cy

_ 2
k=k; 2

(AF)1=3,



Since A" — 0 as k; — oo, this shows that the sequence {x*} satisfies
Cauchy’s criterion for convergence and hence has a unique cluster point X.
Moreover, the triangle inequality yields

ko ko C -

3

||Xk:2+1 _ XkIH — E :(Xk+1 — xk < § : ||Xk+1 k“ < — (Akl) 2,
k:kl k:kl 2

so taking ks — oo and then using (18) yields ||x — x*1|| = O ((kf“’)l_%).
Moreover, 7 =1+ and w =1/, s0 w(l — 1) = 1;—77
Assume also that Assumption 1 holds. Then {r*} converges to r = r(x)

(since r is continuous by Lemma 2) and it readily follows from (6) and {x*} —
x that r < 0. Suppose x — 1 > 0, i.e., there exists J C {1,...,n} such that

r;<x;=0 and Xz >Tz7=0.
Then {(x*,r*)} — (%,F) and n* = (X*)"r* imply
zi = O(f['") VieJ and |rj|=0(nf) VieJ".

Repeating the preceding argument yields (25) with “ﬁ” replaced by “min{2, %r}”
and (27) with “3” replaced by “max{1,2v}”. The latter in turn implies that,
for v < %

AFL < (1 —1/k)AF
for all k sufficiently large, so that {A¥} — 0 linearly in the quotient sense
and, by the above argument, {||x*¥ — %||} — 0 linearly in the root sense.
Suppose instead sup,, af < oo, as well as v > % and 7; = 7; = 0 for some j.
Then sup, o* < oc and (6) yields

e¥H 2l =14+ aP (@)Y = L

Thus {x;—“} cannot converge linearly to 0 in the quotient or root sense, and
hence neither can {||x* —%||}. =

As 7y decreases, w increases while the proof of Theorem 2(a) suggests that

C increases (since K771 —5 00 as 4 — 1). This cautions against taking -y too
small. Theorem 2(b) shows 7 = 1 is a good choice in theory. However, the
numerical results in Section 6 suggest the resulting method may be prone to
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roundoff errors. The convergence of {x*} for 7 = 1 remains an open question.
Since the proof of Theorem 2(a) is adapted from that of [29, Theorem 1],
why can we prove only sublinear convergence and not linear convergence?
This is because the amount of ascent f(x**1) — f(x*) is only guaranteed to
be in the order of ||(X*)r*||? (see (19)) instead of || X*r*|| (see [29, Lemma
1]). To prove linear convergence, we would need to establish not a constant
lower bound on o, as in Theorem 1(d), but a lower bound in the order of
1/||(X*)7r*||. This may be the price we pay for the simpler iterations of
a first-order interior-point method. The linear convergence results in [19,
Lemma 4.11] and [29, Theorem 1] hold for second-order AS methods only.

When 7 < 1, the ellipsoid associated with d* (see (8)) tends to be rounder
(since (z;)” < z; when z; > 1 and (z;)” > x; when z; < 1). This may give
some intuition for the better convergence behavior of {x*}.

T2 v<1
A =1

< v>1

Z1

Figure 1: The ellipsoid associated with d*, centered at x* (n = 2).

6 Numerical Experience

In order to better understand its practical performance, we have implemented
in Matlab the first-order interior-point method (6), (7), with o* chosen by the
Armijo-type rule (9), to solve (1) with simplex constraint (4 =e', b = 1)
and large n. In this section, we describe our implementation and report our
numerical experience on test problems with objective functions f from Moré
et al. [21], negated for maximization.
In our implementation, we use six different values of v (y = .5, .8,.9,1,1.1,1.2).

We use the standard setting of § = .5, 0 = .1 for the Armijo rule (9), and
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we choose

Q— 0.95
k : k 5 Yk—1 k
0 = min {afeas, max {10 }} Ol

,— ———
B — min; df /2%

with ™! = oco. Since e'd* = 0, we have af,, > 0 whenever d* # 0. Thus
{ak} satisfies (10) and infz of > 0. Moreover, if o' is small, then so is
af. This can save on function evaluations since often af ~ of71. In our
experience, this choice of af yields much better performance than the choice
af = .99/|| X*r(x*)|| used in [6, Algorithm 1].

For f, we choose 9 test functions with n = 1000 from the set of nonlinear
least square functions used by Moré et al. [21] and negate them. These func-
tions, listed in Table 1 with the numbering from [21, pages 26-28] shown in
parentheses, are chosen for their diverse characteristics: convex or nonconvex,
sparse or dense Hessian, well-conditioned or ill-conditioned Hessian, and are
grouped accordingly. The first three functions ER, DBV, BT are nonconvex,
with sparse Hessian. The next two functions TRIG, BAL are nonconvex,
with dense Hessian. The sixth function EPS is convex, with sparse Hessian.
The seventh function VD is strongly convex with dense Hessian. The last
two functions LR1, LR1Z are convex quadratic with dense Hessian of rank
1. The functions ER and EPS have block-diagonal Hessians, and VD, LR1,
LR1Z have ill-conditioned Hessians. Upon negation, these convex functions
become concave functions. The functions and gradients are coded in Matlab
using vector operations.

Since the starting points given in [21] may not satisfy the simplex con-
straint, we use the starting point

1

x’=e/n
for the first-order interior-point method. We terminate the method when the
residual || min{x*, —r*}|| is below a tolerance tol > 0. Note that r* depends
on 7. We set tol = 107% for all problems except DBV, BT, EPS, and LR1Z.
For DBV, BT and EPS, this is too tight and tol = 107%, tol = 10~% and
tol = 1072 are used instead. For LR1Z, this is too loose and tol = 1077 is
used instead. Roundoff error in Matlab occasionally causes this termination
criterion never to be met, in which case we quit. In particular, we quit at
iteration k if the Armijo ascent condition (9) is still not met when « falls
below 1020,

Table 1 reports the number of iterations (iter), number of f-evaluations
(nf), cpu time (in seconds), final objective value (negated), final residual
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(resid), final stepsize (step), and strict complementarity measure min;(z; —
rj(z)) (sc). All runs are performed on an HP DL360 workstation, running
Red Hat Linux 3.5 and Matlab (Version 7.0). We see from Table 1 that iter
and nf vary with v but the best performance is obtained at v = .8, with
lower nf and iter on average. The ratio of nf/iter is typically below 4, sug-
gesting that the Armijo rule typically uses few f-evaluations before accepting
a stepsize. For a simple first-order method, the number of iterations looks
quite reasonable on all problems except BT (whose Hessian is tridiagonal),
for which interestingly v = .5 yields the best performance. However, the
method seems prone to roundoff error when v = .5. The final stepsize tends
to increase with . This is consistent with the lower bound (17), which in-
creases with ~ (since max; 2% < 1). When v > 1, a smaller residual may be
needed to achieve the same accuracy in the final objective value; see LR1
and LR1Z.

For comparison, we ran MINOS (Version 5.5.1), a well-known Fortran
implementation of an active-set method for constrained smooth optimization
[22], on the same workstation to solve the same 9 test problems. MINOS
was compiled using the Gnu F-77 compiler (Version 3.2.57). Default settings
and initialization were used. Table 2 reports the number of iterations (iter),
number of f-evaluations (nf), cpu time (in seconds), and final objective value
(negated) for MINOS. Comparing Tables 1 and 2, we see that the first-order
interior-point method with v = .9 has better performance (lower nf, cpu,
and obj) on 5 of the problems (ER, TRIG, BAL, EPS, VD) while MINOS has
better performance on 3 of the problems (BT, LR1, LR1Z). Thus the first-
order interior-point method might complement existing methods by being
more efficient at solving certain classes of problems.

The sc values in Table 1 suggest that strict complementarity holds for
all problems. To see how the method performs on a degenerate problem, we
test it on f(x) = —(e'x)? — Z;L;ll z3, for which (1) has a unique stationary
point x = (0, ...,0,1)" that violates strict complementarity at all except one
component. On this problem, v = .5 yields the best performance, e.g., when
tol = 1075, it terminates with iter = 7, nf = 8, cpu = .01, and sc = 2-108.

7 Monotonely Transformed Methods

In [23, 24, 25, 4] an interesting exponential variant of (4) is studied for solving
the special case of (1) with homogeneous quadratic f and simplex constraints.
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We extend this variant to allow for general f and general monotone trans-
formation as follows. Suppose A is the unit simplex. Consider the method
(6) but, instead of (7), we use

e’ X*"Y(Vf(x))
e’ X?e

r(x) = ¢(Vf(x)) -

e with X = Diag(x), (28)

where ¢ : R — R is any strictly increasing function, and v (y) means applying
Y toy € R* componentwise. Taking ¢)(7) = €” yields the exponential variant
when v = 1/2. Taking ¢(7) = 7 yields the RD method (4) when v = 1/2 and
the first-order AS method (5) when v = 1. To avoid numerical overflow, we
can replace the exponential by a polynomial when £ exceeds some threshold.
This monotone transformation, which is related to payoff monotonic game
dynamics [24, Eq. (8)], seems to apply only in the case of simplex constraints.

Lemma 3 Suppose A is the unit simplex, i.e., A = e', b = 1. For any
x € A, let X and r(x) be given by (28) with ¢ any strictly increasing function.
Then the following results hold.

(a) Xr(x) = 0 if and only if X(Vf(x) — p(x)e) = 0 and r(x) < 0 if and
only if Vf(x) — p(x)e < 0, where

TXYIIE)

el X2e

plx) = ! (

(b) d = X?'r(x) satisfiese'd = 0 and Vf(x)'d > 0. Moreover, Vf(x)'d =
0 if and only if Xr(x) = 0.

Proof. (a). This follows from (28) and the strictly increasing property of

.
(b) For any x € A, the direction d = X%'r(x) satisfies e'd = 0 and
Ty2
T1_ T v2 e X)(g)

gd=g X7<¢(g)—me
= (g —re) X*4(g)
= (g —re)' X7 (¥(g) — ¥(p)e)
>0,
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where we let g = Vf(x) and p = E:;(ZZ We used monotonicity of ),

which implies (y — 2)(¥(y) — ¥(2)) > 0 for any two y,z € R. Moreover,
the inequality is strict unless g; = p for all j with z; # 0. In this case,
X9(g) = ¥(p)x and X*)(g) = ¢(p)X*7e, so that

e’ X%e
el X2e

Xr() = X (0lg) = o) Sryzmee ) = vlpx ~ v(p)x =0,

The converse implication Xr(x) =0 = g'd = 0 follows similarly. =

Remark 1 In the case of ¥ (1) = exp(07) with § > 0, we have

Vi(x)Td > 4]|X7 (exp (4g) — exp (4p) ) ||”

(cf. Lemma 1). This follows from the inequality (y — z)(exp(y) — exp(z)) >
4 (exp(¥) — exp(%))z, which holds for any y,z € R.

Extension of the above analysis to the case of multiple simplices is straight-
forward.

Lemma 4 Let A be a Cartesian product of m unit simplices of dimensions
Ni, .oy Ny (S0 that Y 00 i =n), corresponding to b € R™ being a vector of
ones and A € {0,1}™" satisfying A'b = e, Ae = (ny,...,nm) . For any
x €A, let g =V [f(x) and

r(x) =[I — AT(AXPAT)PAX?oh(g) with X = Diag(x), (29)

where ¢ : R — R is any strictly increasing function. Then the following
results hold.

(a) Xr(x) =0 if and only if X(g — ATp(x)) = 0 and r(x) < 0 if and only
if g — ATp(x) < 0, where

p(x) =y~ (AX"AT)TTAX"Y(g)). (30)

(b) d = X?'r(x) satisfies Ad =0 and g'd > 0. Moreover, g'd =0 if and
only if Xr(x) = 0.
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Proof. The proof of (a) is as in Lemma 3 above. For the proof of (b),
we analogously let s = (AX?7AT)1AX?'g. Furthermore we observe that
AT(s) = (ATs) by the properties of A, and obtain

g d=g" X” (¥(g) — AT(AX”AT) TAX)(g))

( TS) X2'y,¢

= (g—A"s)" X¥ (y(g _Aw(s))

= (g—A"s) X¥ (p(g) —(ATs))
>0,

where the inequality is justified as in the proof of Lemma 3. Again, the
inequality is strict only if X (1)(g) — AT+ (s)) = 0, which can be used to show
that Xr(x) =0ifand only if g'd =0.

Lemma 4 remains true if different v functions are used for different sim-
plices. Lemmas 3 and 4 generalize [4, Theorem 3] for the special case of
v = 1 and ¢(7) = exp(f7) with § > 0. By Lemma 4(b), d = X?'r(x) is a
feasible ascent direction at every x € riA. Using Lemma 4, we can extend
Theorem 1(a)-(c) and Corollary 1 to the monotonely transformed method,
assuming furthermore that v is continuous.

Theorem 3 Assume A is a Cartesian product of m unit simplices, with A
and b given as in Lemma 4. Then Theorem 1(a)-(b) still holds. Moreover,
Theorem 1(c) under condition (ii) or (iii) still holds if r is instead given by
(29) with v any continuous strictly increasing function. This remains true
when the Armijo rule is replaced by any stepsize rule that yields a larger
ascent as described in Corollary 1.

Proof. It is readily verified that Assumption 1 holds so that, by Lemma 2
and continuity of v, the mapping r given by (29) is continuous on A. It is
then readily seen from its proof that Theorem 1(a) still holds.

The proof of Theorem 1(b) yields that {(g*) "d*}rex — 0, where {x*} ek
(K € {0,1,...}) is any subsequence of {x*} converging to some %x. Since
r is continuous on A, this yields in the limit that g' X*'r(x) = 0, where
g = Vf(x) and X = Diag(x). By Lemma 4(b), Xr(x) = 0. Assuming
sup, af < oo, we prove that {x**! — x*¥} — 0 as follows: Since {x*} is
bounded and every cluster point X satisfies X7r(X) = 0, the continuity of r
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implies {d*} = {(X*)?'r(x¥)} — 0. Since sup, af < oc so that sup, o* < oo,
we obtain {x**! —x*F} — 0.

The proof of Theorem 1(c) under conditions (ii) or (iii) still holds. The
proof shows that every cluster point X of {x*} satisfies r(X) < 0 as well
as Xr(X) = 0. By Lemma 4(a), X satisfies X(g — A"p(X)) = 0 and g —
ATp(X) < 0, where p is given by (30). Thus X is a stationary point of (1).
]

It is not known if Theorem 1(c) under condition (i) or Theorem 2 can be
extended to the monotonely transformed method.

8 Appendix A

In this section we assume f is concave or convex and prove (16) following
the line of analysis in [11] and [19, Appendix A]. Let J = {j | 7; = 0},
Je=A{1,...,n}\ J, and

A={xeA|xz =0, f(x) = f)}.
Lemma 5 A is conver.

Proof. Since XT = 0, the point % satisfies the Karush-Kuhn-Tucker (KKT)
optimality condition for the restricted problem

optimize {f(x) | Ax =b, x; > 0,x7 =0},

where “optimize” means “maximize” when f is concave and means “min-
imize” when f is convex. Thus X is an optimal solution of this restricted
problem and A is its optimal solution set. Since this problem is equivalent
to a convex minimization problem, its optimal solution set is convex. m

Lemma 6 If f is constant on a convex subset of R", then V[ is constant
on this subset.

Proof. See, e.g., [16]. =

Using Lemmas 5 and 6, we have the following lemma.

Lemma 7 r(x) =T for all x € A.
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Proof. For any x € A, Lemmas 5 and 6 imply Vf(x) =g =+ A'p. Thus
(7) yields

r(x) = [I-AT(AXPAT)TAXY)(34+ATp) = [I-AT(AXP AT TAXY]f =T,
where the last equality uses r; = 0 and x 7. = 0, so that X*’r=0. =

Using Theorem 1(b) and Lemma 7, we have the following lemma.
Lemma 8 Every cluster point of {x*} is in A.

Proof. We argue by contradiction. Suppose there exists a cluster point x
of {x*} that is not in A. Since X € A and f(X) = f(X), this implies &; > 0
for some 5 e J.

Since f(X) > f(x°), the set A lies inside the bounded set A°, so A is
compact. Then, by Lemma 2, r is uniformly continuous over A. Lemma 7
implies that, for all 6 > 0 sufficiently small, we have

Irj(x)| > |7|/2 VjeJ, VxeA+0B, (31)

where B denotes the unit Euclidean ball centered at the origin. Take  small
enough so that § < ;. Then X & A + 6B (since |&; — ;] = &; > § for all
x € A). By Theorem 1(c), {x**! — x*¥} — 0, so the set of cluster points of
{x*} is connected. Since there exists a cluster point in A and another not
in A + 6B, there must exist a cluster point X in A + 6B but not in A. Since
x € A and f(x) = f(X), the latter implies X 7. # 0. Since X isin A+0B, (31)
implies |r;(%X)| > |7;|/2 for all j € J°. Thus Xr(%X) # 0, where X = Diag(%),
a contradiction of Theorem 1(b). m

Since A is compact and r is a continuous mapping on A, Lemmas 7 and
8 imply {r(x*)} — r. This proves (16).
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Problem | ~ [ iter ] nf [ cpu [ obj [ resid [ step [ sc |

ER (21) 5 6 7 0.03 498.002 | 3.4-10 7 0.47 .001
.8 5 6 0.01 498.002 | 5.2-10~7 7.9-10° .001

k) 5 6 0.01 498.002 | 6.8-10~ 7 4.4.10% .001

1 7 8 0.03 498.002 | 2.6-10~7 3.5-10° .001

1.1 8 9 0.02 498.002 | 8.4-10~7 5.6-107 001

1.2 10 11 0.03 498.002 | 3.7-10~7 3.5-10°7 .001

DBV (28) 5 117 352 0.4 4.5-10"% [ 9.8.10°° 59.3 .0003
.8 99 299 0.42 49108 | 9.8-.107° 1.8-10° .0003

.9 107 323 0.45 4.7-10-8 | 9.7.1075 7.4-10° .0003

1 146 440 0.52 451078 | 9.8:107° 2.9-10% .0003

1.1 191 575 0.82 4.3-10~8% | 9.9-107° 1.1-10° .0003

1.2 240 722 1.02 4.0-10~8 | 9.9-10°° 4.7.10° .0003

BT (30) 5 3893 3894 4.25 999.030 | 9.9-10~ % 0.15 .007
.8 9146 27409 20.68 999.031 | 9.9-10~ % 0.50 .006

9 38124 114346 87.05 999.033 | 9.9-10—% 0.69 006

1 17559 52665 23.31 999.055 | 9.9-10~ % 0.45 .01

1.1 83209 249222 191.06 999.077 | 9.9-10~ % 0.65 .01

1.2 | 527757 | 1.58-10° | 1192.55 999.081 | 9.9-10~% 1.14 .01

TRIG (26) 5 41 121 0.11 1.1.107% | 9.0.10~7 623.6 .0006
8 39 115 0.14 9.5-10—7 | 9.9-10— " 3.6-10% .0006

.9 73 214 0.24 9.0-10—7 | 9.8-10—" 8.6-10% .0006

1 95 271 0.22 9.7-10~7 | 8.3-10—" 5.3-10° .0006

1.1 52 143 0.17 8.8-10—7 | 8.1-10— 2.3-10°% .0006

1.2 86 223 0.27 1.1-10=% | 9.9-1077 6.4-10° .0006

BAL (27) 5 i 63 0.02 0.98998-10° | 1.9-10~° | 6.5.10~ 2! .001
8 T8 84 0.02 9.98998-10° | 1.4-10~° | 6.0-10~ 2! .001

9 6 7 0.01 9.98998-10° | 6.1.10~7 113.648 .001

1 7 8 0.03 0.98998-10° | 3.6-10~° 1947.55 .001

1.1 o 94 0.03 0.98998-10% | 1.0-10=% | 6.4.10~ 2! .001

1.2 8 9 0.02 0.98998-10° | 3.7-10~7 123466 .001

EPS (22) 5 120 313 0.43 1.3-107° | 9.9-10~% 39.23 .0001
8 424 1269 1.89 1.3-10~% | 9.9.10~% 1503.22 .0002

K 644 1929 2.85 2.4-10=% | 9.9-10~% 5984.43 .0002

1 987 2958 3.52 3.9-10-°% [ 9.9-107% 23824.5 .0003

1.1 870 2608 3.81 5.9-10~° | 9.9-10~% 474234 .0003

1.2 1963 5887 8.76 8.0-10°° | 9.4.10~% 188796 .0004

VD (25) .5 | T17503 17505 18.78 | 6.22504-1022 2.9-10" | 9.5-10722 [ -2-107°
.8 22 74 0.04 | 6.22504-10%2 | 2.4-107° | 9.5-10 1% 1

K 19 43 0.03 | 6.22504-1022 | 1.6-10—% | 3.7.10— 17 1

1 19 46 0.04 | 6.22504-102%2 | 2.6-10~% | 6.3-10— 19 1

1.1 20 86 0.04 | 6.22504-1022 | 8.8-10°8 | 2.1-10 20 1

1.2 18 50 0.05 | 6.22504-1022 | 5.7.10=° | 6.5.10~ 17 9

LR1 (33) .5 | T30595 30624 50.12 3.32834-10° | 1.5-10~% | 1.4.10712 .9
.8 20 21 0.04 3.32834-10° | 9.5-10~7 2.0-10~ 2 .9

.9 19 20 0.04 3.32834-10° | 9.5-107 2.3-10—° 9

1 19 20 0.03 3.32839.10° | 3.5-10~ 7 0.031 1

1.1 19 20 0.03 3.32911-10° | 5.9.10~7 0.16 9

1.2 20 21 0.03 3.33481-10° | 9.9-10—7 0.77 .9

LR1Z (34) 5 73454 3538 3.96 251.125 145.94 | 8.8-10~ 21 7.9
8 To1 88 0.05 251.125 119.46 | 9.9-10 21 -6.5

) T34 129 0.07 251.125 | 3.7-10~° | 8.8.10~ 21 .01

1 T25 102 0.05 251.125 170.84 | 8.8-10— 2! -9.3

1.1 T30 119 0.06 251.125 | 5.8-10~ 7 7.35 .008

1.2 T65 224 0.13 251.125 | 3.7-10~7 41.94 .01

Table 1: Behavior of first-order interior-point method with inexact line search
on 9 test functions from [21], with x° = e/n and n = 1000.

t Quit due to roundoff error causing Armijo ascent condition not met when
a <1072,
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| Problem | iter | nf | cpu | obj |

ER (21) 1049 | 2105 [ 2.49 498.00
DBV (28) 10 [ 48 01| 5.961072
BT (30) 11 24 [ .00 999.03
TRIG (26) | 2023 | 4051 | 27.23 1.3-1076
BAL (27) 2 32 1.9 | 9.9899-10°
EPS (22) | 3199 | 6534 | 10.08 3.0-1077
VD (25) i 6 .01 | 6.2749-10%
LR1 (33) 0 5 .00 | 3.3283-10°
LR1Z (34) 2 8 .00 251.12

Table 2: Behavior of MINOS on 9 test functions from [21], with x° chosen
by default initialization procedure and n = 1000.
f MINOS exits due to problem being badly scaled.
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