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Abstract

We consider the problem of estimating the volatility of a financial
asset from a time series record of length T . We believe the underly-
ing volatility process is smooth, possibly stationary, and with potential
abrupt changes due to market news. By drawing parallels between time
series and regression models, in particular between stochastic volatility
models and Markov random fields smoothers, we propose a semiparamet-
ric estimator of volatility. Our Bayesian posterior mode estimate is the
solution to an `1-penalized likelihood optimization that we solve with an
interior point algorithm that is efficient since its complexity is bounded
by O(T 3/2). We apply our volatility estimator to real financial data, di-
agnose the model and perform back-testing to investigate to forecasting
power of the method by comparison to (I)GARCH.
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1 Introduction

Suppose we observe values yt of a financial asset (stock-returns, interest-rates
or exchange-rates) at regularly spaced times t = 1, . . . , T . Our goal is to es-
timate an important intrinsic characteristic of the financial asset of interest,
the evolution of the conditional variance of the stochastic return process, so
as to assess the past, present and future risk of the asset. To that aim, many
stochastic models have been proposed. Standard among them is to assume
a data generating process for yt. Most models assume yt = σtεt, where σt
is a measure of volatility, and εt is white standard Gaussian noise. With-
out additional assumption, the maximum likelihood estimate is σ̂MLE

t = |yt|,
which is practically useless due to its nonsmoothness (i.e., high variability).
A temporal structure for σt is assumed to regularize the maximum likelihood
estimation, so as to obtain a smoother estimate of σt while capturing the styl-
ized features (Rydberg 2000) observed in financial econometric, like heavy tails
of the marginal distributions, volatility clustering or evolution with possible
abrupt changes (e.g., peaks, discontinuities). The popular GARCH-type mod-
els (Engle 1982, Bollerslev 1986) are parametric and enjoy good estimation
properties. Stochastic volatility models (Taylor 1986, Taylor 1994) are power-
ful semiparametric alternatives which fit more flexibly the stylized features. In
particular, the log-normal stochastic volatility model seems to better capture
the leptokurticity of the marginal distributions of the financial data than the
standard GARCH model (Shephard 1996). Stochastic volatility models are the
empirical discrete-time analogs of continuous-time models in finance theory and,
in particular, option pricing (Hull and White 1987). They can also be viewed as
an Euler discretization of a diffusion. The general discrete model of Andersen
(1994) includes GARCH and stochastic volatility models as particular cases. It
defines the discrete polynomial stochastic autoregressive volatility process as:

yt = σtεt, (1)

σqt = ϕ (ht) , (2)

ht = ω + φht−1 + (γ + ψht−1) ηt, (3)

where q ∈ {1, 2}, ϕ(·) is a positive continuous and strictly monotone function,
the autoregressive process ht has positive coefficients ψ, φ, γ such that ψ+φ > 0
and ψ + φ > 0, the errors ηt and εt are i.i.d. and mutually independent with
mean-variance of

(
1, σ2

η

)
and (0, 1), respectively. This process includes, for

instance, the GARCH process (corresponding to q = 2, ϕ (ht) = ht, ηt = ε2t−1,
and γ = 0) and the stochastic volatility model (SVM), corresponding to ϕ (ht) =
exp (ht), q = 1 and ψ = 0. Often ηt and εt are assumed to be Gaussian.
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One challenge for these models has been how to infer the parameters (ψ, φ, γ, ω)
and how to estimate the hidden conditional volatility σt within the sample
(smoothing) and out of sample (forecasting). While parametric GARCH mod-
els have been relatively easy to fit owing to the small number of parameters, it
is not the case for semi-parametric SVM that represent the returns as a non-
linear hidden Markov chain. Several methods have been proposed to estimate
the latter data generating process, many of which are based on calculating or
estimating the conditional expectations

(ψ̂, φ̂, γ̂, ω̂) = E((ψ, φ, γ, ω) | y;σ2
η) and ĥt = E

(
ht|y;σ2

η

)
, t = 1, . . . , T, (4)

where y = (y1, ..., yT ) are the returns up to time T . For a linear and Gaussian
data generating process, the Kalman filter calculates a closed form expression for
the posterior means (4). The quasi-maximum likelihood approach of Harvey,
Ruiz and Shephard (1994) applies Kalman filtering to the logarithm of the
squared observations log y2

t = 2ht + ζt, where ζt = log ε2t . However, the data
generating process is non-Gaussian, and the poor approximation of ζt by a
Gaussian distribution leads to poor estimation of σt, particularly when the
variance σ2

η of the log-volatility ηt in (3) is small (Jacquier, Polson and Rossi
1994). Another possible approach is to generate by Monte-Carlo an ergodic
chain from the exact posterior distribution given the observations (Jacquier et
al. 1994) and calculate the componentwise averages to estimate the conditional
expectations (4). However, this may require generating long sample paths before
reaching convergence. The estimate of the variance σ2

η of the log-volatility
innovations also remains a difficult issue.

Based on a GARCH model, the estimated persistence of the conditional
volatilities of many financial time series is seemingly high, which also makes the
inference difficult. For example the second moment of an Integrated GARCH
(Engle and Bollerslev 1986) does not exist even if the stationarity conditions are
met. One also wonders whether the volatility process is really stationary, and
in fact, it is now believed that such strong persistence is due to misspecification
modeling. For instance Diebold (1986) argued that the persistence may be due
to the instability of the unconditional variance. Lastrapes (1989) observed that
the persistence of exchange-rate volatility depends on U.S. monetary policy
regimes. This statement is confirmed by Lamoureux and Lastrapes (1990) who
obtained a substantial lower persistence volatility measure (i.e. the sum of
the GARCH parameters, ψ + φ in equation (3)) when some dummy variables,
corresponding to some periods over which the volatility seems to be stationary,
are included in the GARCH model. Cai (1994) and Hamilton and Susmel (1994)
used Markov switching ARCH models to take into account the regime effect in
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the volatility, and in both cases, the persistence is captured by the stochastic
process which describes the state of the system, rather than by the GARCH
parameters. Another widely used approach (see for instance Chan and Maheu
(2002) and Chernov, Gallant, Ghysels and Tauchen (1999)) adds a jump process
to capture large discrete changes. However, the empirical evidence suggests that
the jump models capture less the persistence than additional extremes in the
returns marginal distribution. Starica (2003) shares the concerns early stated
by Diebold (1986) about persistence and misspecification, and discusses the
danger of assuming global stationarity. Starica and Granger (2005) proposed
a nonstationary approach to estimate volatility by considering the log-absolute
returns as a locally stationary process as defined in Dahlhaus (1997). Their
methodology considers the underlying process as a slowly and smoothly varying
process with sharp changes.

The aforementioned results motivate the features we aim to reproduce with
our proposed model and estimator, namely, that volatility evolves smoothly
except for occasional abrupt changes whose transient effect prevents the market
from returning quickly to the level before shock. However, while Starica and
Granger’s approach is based on successive stationarity tests over intervals of
varying width to identify the times of regime switching, our `1-based estimator
finds the desired segmentation via the selection of a single parameter. Moreover,
the solution of our `1-penalized likelihood optimization problem is calculated
with a fast algorithm. This paper is organized as follows. In Section 2.1 we
define our volatility estimator and discuss its link to wavelet and Markov random
field smoothing. In Section 2.2 we use the connection to smoothers to present a
selection rule for the smoothing parameter which guarantees smoothness of the
volatility estimate. In Section 2.3 we show that the volatility estimate can be
efficiently computed using an interior-point algorithm. Section 2.4 illustrates
the performance of the estimator on a simulated time series. In Section 3 we
apply our estimator to the DOW JONES and NASDAQ, analyze the results
and evaluate the forecasting performance. Section 4 draws some conclusions
and points to future extensions.

2 Smoothing the volatility

2.1 `1 penalized likelihood estimator (fSVM)

We consider a discrete time SVM with Laplace innovations ηt whose density
fη(x) = λ

2
exp(−λ|x|) has heavier tails than the Gaussian density to better re-

flect sudden changes of regime due to important market news. More precisely,
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this model corresponds to (1)–(3) with ψ = 0, q = 1, γ = 1 and ω = µ(1− φ).
Hence the variance of the log-volatility innovations is σ2

η = 2/λ2 and this SVM is
related to variance gamma (VG) models (Madan and Seneta 1990) for modeling
the non-Gaussian nature of stock market returns and future index prices. In-
deed the VG model can be expressed by equation (1), where σt follows a Gamma
process, which in its continuous version writes as S (t) = S (0) exp (L (t)), where
S(t) are the stock prices and L (t) is a Laplace motion (Kotz, Kozubowski and
Podgórski 2001). Hence, the Laplace motion is defined as a Brownian mo-
tion, denoted B(τ), evaluated at random time distributed as a Gamma process,
denoted γ (t). This Brownian is said subordinated to the process γ (t). There-

fore, the Laplace motion is defined as L (t)
d
= B (γ (t)). Another appeal of the

Laplace motion is it can be written as a compound Poisson process with inde-
pendent and random jumps. In this sense it is a pure jumps process able then
to capture abrupt changes. In addition to VG model, our model considers an
extra parameter to model and capture the persistence in volatility.

Using Bayes theorem with (1) for the noise model and (2)–(3) for the prior
assumption on the volatility process, we derive the posterior distribution of
the volatility given the returns y. More precisely, by considering the negative
log-posterior distribution, we define the maximum a posteriori estimate as the
solution to

min
φ,µ,h

T∑
t=1

logϕ(ht)− log{fε(yt/ϕ(ht))}+ λ
T∑
t=2

|ht − (µ+ φ (ht−1 − µ))|, (5)

where fε denotes the density function of the error term εt, (ht)
T
t=1 are the ϕ−1-

volatilities, µ is an average volatility measure, and φ is the persistence parame-
ter. The function ϕ(·) is a strictly monotone function that maps the estimand
ht to the volatility σt = ϕ(ht). For instance, the exponential function used by
the original stochastic volatility model conveniently maps R into R+ for a pos-
itive volatility. Our estimator has the advantage that the positivity constraint
is already active with the first logarithmic term in (5) which acts as a barrier
against negativity. Hence we can consider a broader class of links, for instance,
the power transform ht = (σδt − 1)/δ = ϕ−1(σt) (Box and Cox 1982) that in-
cludes as special cases the exponential link (take δ → 0) and the linear link
(take δ = 1).

The first sum in (5) is the negative log-likelihood for (1)–(2) and the second
sum stems from the autoregressive process prior (3) with Laplace η-innovations.
The estimator is akin to a Tikhonov regularization (Tikhonov 1963) of the er-
ratic maximum likelihood estimate, but using an `1-based penalty and suffi-
ciently large penalty parameter λ > 0 to enforce smoothness. The `1 penalized
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likelihood formulation of the estimator (5) draws connection to two nonpara-
metric function estimation techniques: One is Markov random field smoothing
(Geman and Geman 1984, Besag 1986, Sardy and Tseng 2004), which solves a
similar problem

min
h
−l(h; y) + λ

T∑
t=2

|ht − ht−1|,

where −l(·; ·) is the negative log-likelihood of a noisy signal/image and h =
(h1, . . . , hT ). Another is wavelet smoothing (Donoho and Johnstone 1994). For
instance, soft-Waveshrink for a wavelet matrix Φ, solves

min
h=Φα

1

2
‖y − h‖2

2 + λ‖α‖1,

where α are the wavelet coefficients (Donoho, Johnstone, Hoch and Stern 1992).
The main appeal of soft-Waveshrink is that it has near minimax properties for
a class of loss functions and smoothness classes (Donoho, Johnstone, Kerky-
acharian and Picard 1995) for a simple selection of λ that only depends on T ,
the so-called universal rule (Donoho and Johnstone 1994). We exploit this con-
nection to propose in Section 2.2 a selection rule for λ that leads to a smooth
estimation of the volatility process.

How does our smoothing approach differ from existing approaches? We
aim at estimating a smooth evolution of volatility in time with possible abrupt
changes of regime which seems more realistic for finance applications, while the
latter aims at estimating the true coefficients of some assumed erratic volatility
data generating process. To that aim we propose a selection of λ (hence of σ2

η)
borrowing ideas from wavelet smoothing. Our estimator also differs in the way
the estimator is computed since we solve a convex optimization problem (5)
(see Section 2.3) instead of solving an integration problem (4) approximately
by sampling an ergodic Markov chain.

2.2 Selection of the smoothing parameter λ

The `1-regularization parameter λ ≥ 0 in (5) controls the smoothing: When λ =
0, the solution is the wiggly maximum likelihood estimate σ̂MLE

t = |yt| for t =
1, . . . , T , while when λ tends to infinity the estimates ht tends to either a linear
function for φ = 1 or a function that is asymptotically constant for φ < 1. We
see that selection of λ (or equivalently σ2

η in (3)) is crucial. In Gaussian wavelet

smoothing, the universal penalty λwave
T =

√
2 log T is a simple but surprisingly

efficient choice as it endows the `1-penalized likelihood wavelet estimator with
near minimax properties for a class of loss functions and smoothness measures
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(Donoho and Johnstone 1994, Donoho et al. 1995). Borrowing from wavelet
smoothing, we derive a universal penalty λfSVM

T for the maximum a posteriori
estimator (5) such that the estimated volatility is a smooth fit to the data.
With λ selected by the universal rule, our stochastic volatility model (1)–(3)
can be seen as a functional data generating process in the sense that it leads to
an estimated volatility process which is a smooth rather than erratic function
of time that fits the volatility of the financial asset. Hence our estimator is
derived from a functional stochastic volatility model (fSVM).

In wavelet smoothing, the universal parameter is chosen such that, when the
underlying signal is piecewise constant, the estimate is also piecewise constant
with probability tending to one as the sample size tends to infinity. Likewise
here, we set the universal parameter so that, when the true volatility is piecewise
constant (i.e., persistence with φ = 1 on each interval) on KT successive times,
the volatility estimate is also piecewise constant with probability tending to one.
In Appendix A we derive the universal parameter λfSVM

T =
√
KT log(nT log nT )

with nT = T/KT for standard Gaussian ε-innovations, φ = 1, KT ∼ log T and
the link ϕ(·) = exp(·). Deriving the universal parameter for φ = 1 is valid
since we expect strong persistence in practice, and this avoids the derivation of
a φ-dependent universal parameter.

2.3 Optimization issues

We study here how to solve (5) to obtain the proposed estimate. To solve (5)
in (φ, µ,h), we use a decomposition approach that alternately solves in (µ,h)
with φ held fixed, and in φ with (µ,h) held fixed. This alternating minimization
approach, though not guaranteed to converge to a global minimum, works well
in practice. How to solve each subproblem? For a fixed (µ,h), the objective
function of (5) is convex piecewise-linear in φ and the minimum can be found
by, e.g., sorting the breakpoints. In what follows, we focus on solving in (µ,h),
with φ held fixed. The resulting subproblem can be written compactly as

min
h,µ

T∑
t=1

gt(ht) + π(Bφh+ µ(φ− 1)1), (6)

where 1 denotes the T−vector of ones, gt(ht) = logϕ(ht) − log{fε(yt/ϕ(ht))},
(Bφh)t = ht+1 − φht for t = 1, . . . , T − 1 and π(·) = λ‖ · ‖1. We will focus on
the link ϕ(·) = exp(·), and it can be seen that gt(ht) = ht + 1

2
y2
t exp(−2ht)+

constant is strictly convex for a Gaussian ε-innovations. Hence (6) is a convex
optimization problem.
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The case of φ = 1 can be solved efficiently using the IDM algorithm. Specif-
ically, Theorem 3 of Sardy and Tseng (2004) applies with g∗t (ut) = 1

2
(1 −

ut)(log(1−ut

y2
t

) − 1) for Gaussian ε-innovations, so that a dual coordinate de-

scent algorithm can be employed on the dual problem in u = (u1, ..., uT ). We
consider below the more challenging and interesting case of φ 6= 1, for which
the IDM algorithm is impractical. As we show below, in this case (6) can be
efficiently solved by a primal-dual interior-point algorithm.

2.3.1 Dual formulation

Using ϕ(·) = exp(·), we derive in Appendix B the dual of the primal subproblem
(6). It has the general form

min

Q∑
t=1

qt(xt) s.t. Ax = b, x ≥ 0, (7)

where x is the dual vector, the matrix A has Q = 3T − 2 columns and
qt(·) is a function assumed to be convex, twice differentiable on (0,∞) with
limξ→0 qt(ξ) = qt(0), with q′t(·) concave and which satisfies

(ξ + δ) (q′t(ξ + δ)− q′t(ξ)− q′′t (ξ)δ) ≥ −κq′′t (ξ)δ2 whenever
|δ|
ξ
≤ ρ, (8)

for some κ > 0 and 0 < ρ < 1. In particular, Appendix C shows that (8) is
satisfied with κ = 1

2(1−ρ)
for Gaussian noise and exponential link. Specifically,

we can take qt(xt) = xt log(xt) + ctxt with ct = −(1 + log(y2
t )), t = 1, . . . , T .

2.3.2 Log-barrier problem

The log-barrier problem, parameterized by ε > 0, is

min

Q∑
t=1

qt(xt)− ε log(xt) s.t. Ax = b, x > 0,

with Karush-Kuhn-Tucker condition

Ax = b, x > 0, q′(x)− εX−11− A>u = 0,

where q′(x) = (q′t(xt))
Q
t=1 and X = diag(x1, . . . , xQ). This can be rewritten as

Ax = b, x > 0, s = q′(x)− A>u, Xs = ε1. (9)
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The exact solution of (9) traces the central path as ε ranges over (0,∞). The
primal-dual interior-point algorithm solves the equations approximately using
damped Newton method and decreases ε after each iteration. Specifically, (x,u)
is an approximate solution of (9) if it belongs, together with ε, to the following
so-called “wide neighborhood” of the central path:

N (τ) =

{
(x,u, ε) | Ax = b, x > 0, s = q′(x)− A>u, min

t
xtst ≥ τε, ε =

x>s

Q

}
,

with 0 < τ < 1; see (Wright 1997) and references therein.

2.3.3 Primal-dual interior-point algorithm

The algorithm begins with any (x,u, ε) ∈ N (τ). Then it solves the Newton
equation

Xds + Sdx = δε1−Xs, (10)

Adx = 0, (11)

q′′(x)dx − A>du = ds, (12)

for (dx, ds, du), where s = q′(x)− A>u, and 0 < δ < 1. Let

x[α] = x + αdx, u[α] = u + αdu, s[α] = q′(x[α])− A>u[α] ∀α > 0.

Let ν and ᾱ be given by (26) and (27) in Appendix D. Then, beginning with
α = 1, it checks if

(x[α],u[α]) ∈ N (τ), ε[α] =
x[α]>s[α]

Q
≤ (1− ᾱν)ε, (13)

and if not, it decreases α by some factor 0 < % < 1 and repeat, until (13) is
satisfied. Then we update

(x
new

,u
new

, ε
new

) ←− (x[α],u[α], ε[α]),

and re-iterate, until ε ≤ ε
final

. In our implementation, we use τ = 10−4, δ = 0.5,
% = 0.7, ρ = 0.99, we initialize by h = 1

α
1− c, w = αλ1, where c = (c1, ..., cT ).

(which uniquely determine u and x), s = q′(x) − A>u, and ε = x>s
Q

, with

0 < α < 1 chosen so that (x,u, ε) ∈ N (τ).
Our code is available from the authors and is fast since its complexity is

bounded by O(Q3/2), as we now show.
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2.3.4 Iteration complexity

Appendix D shows that (13) is satisfied when α = ᾱ given by (27) in Ap-
pendix D. Thus ε decreases by a factor of at most 1 − ᾱν after each iteration
so that, after k iterations, ε ≤ (1 − ᾱν)kε

init
. Thus ε ≤ ε

final
whenever k ≥

log
(
ε
init

εfinal

)
1

− log(1−ᾱν)
. Since log(1−ᾱν) ≤ −ᾱν and, by (27), 1

ᾱ
= O(κQ3/2 +Q),

this shows that the number of iterations until termination is at most

log

(
ε

init

εfinal

)
1

ᾱν
= O

(
(κQ3/2 +Q) log

(
ε

init

εfinal

))
,

where Q = 3T − 2 and T is the length of the time series. While there have
been previous studies of path-following algorithms for entropic optimization of
the form (7) and (8) (Potra and Ye 1993, Tseng 1992), these algorithms use
the so-called “narrow neighborhood”, which is not practically efficient. To our
knowledge, this is the first study of a path-following algorithm for entropic op-
timization that uses the wide neighborhood and is practically and theoretically
efficient. Specifically, when (7) is a linear or a convex quadratic program, i.e.,
κ = 0 in (8), the above complexity result is the best known for an algorithm
using the wide neighborhood; see Wright (1997, Theorem 5.11).

2.4 Simulated time series

We simulate data from a smooth volatility function with periods of abrupt
changes of regime and volatility peaks, as one may expect in the financial mar-
kets. To that aim we take the sum of two classical functions in wavelet smooth-
ing, the blocks and bumps functions (Donoho and Johnstone 1994), rescaled
to have a range of volatility σt ∈ [0.1, 10]. The log of the volatility function
σt for t = 1, . . . , 5000 is the curve plotted on Figure 1 (b), where the dots are
the maximum likelihood estimates log σ̂MLE

t = log |yt|. Figure 1 (a) shows the
simulated returns yt, and (b) shows the empirical autocorrelation function (acf)
of the absolute returns, which reflects potential phenomena observed on real
financial time series, such as volatility clustering, nonstationarity or long mem-
ory. Figure 1 (e) shows the fSVM penalized likelihood estimated log-volatilities
solution to (5) with ϕ(·) = exp(·), using the universal penalty λT derived in
Section 2.2, while (d) shows the acf of the fitted absolute residuals |yt/σ̂t| and
(f) shows the quantile-quantile plot of the fitted residuals. We see with these
simulated data that the estimation of the underlying volatility captures the
important features of the true volatility, and that the fitted residual process
matches well the i.i.d. standard Gaussian distribution.
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Figure 1: Volatility simulation with T = 5000. Top: simulated returns yt (dots),
and empirical correlation function (acf) of |yt|; Middle: true log-volatilities
σt (line) with log-absolute-returns log |yt| (dots), and acf of residuals |yt/σ̂t|;
Bottom: log-volatilities (line) estimated with the universal penalty λfSVM

T with
log |yt| (dots), and Gaussian qq-plot of residuals.
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3 Applications

We illustrate our methodology on the DOW JONES and NASDAQ stock index
returns. Data are the T = 4846 daily closing prices Pt between 29 December
1989 until 23 march 2009. Stock returns yt are computed as 100 log (Pt/Pt−1).
Figures 2 and 3 display the log-returns for both indices on their top-left graphs.
In Section 3.1 we first consider the entire sequence of returns, apply our volatility
estimator to it and analyze the result. Note that the estimation for such time-
series took less than 2 minutes running a Matlab code on a standard computer.
In Section 3.2 we evaluate and compare the forecasting performance of our
method to that of GARCH and IGARCH for short and long horizons.

3.1 Volatility smoothing

The volatility clustering feature is reflected by the strong autocorrelation in the
absolute values of the returns on Figures 2 and 3 (b). Results of our volatil-
ity estimation is presented in graphs (d) on log-scale, and graphs (e)-(f) are
diagnostics plots on the residuals. As expected the autocorrelation in the ab-
solute rescaled residuals, |yt/σ̂t|, has been removed (see graphs (e)). And the
normality holds quite well, except in the negative extreme tail (see graphs (f)).
This asymmetry is certainly due to the fact that our methodology does not yet
model the leverage effect on the volatility (Nelson 1991, Glosten, Jagannathan
and Runkle 1993), i.e. the responses of the volatility to the negative shocks
(bad news) are stronger than the ones to the positive shocks. To capture this
asymmetry, model (1)-(3) can be modified as in Omori, Chib, Shephard and
Nakajima (2007).

The persistence parameter estimates for both indices are φ̂ = 1.0003 and
φ̂ = 1.0001, for the DOW JONES and the NASDAQ, respectively. These high
values of φ lead to conclude that the volatility may be nonstationary. However
in the out-of-sample forecast exercise presented below, the estimates φ̂ are less
than 1.00 and quite stable over the period from November 2001 until just before
the recent subprime crisis, where the estimate of φ rises dramatically. Therefore,
the fact that the full sample estimate of φ reaches above unity is probably
due to the instability related to the recent crashes (see Figure 4). To derive
the variance-covariance matrix of the vector of parameters and in particular of
φ, we observe that for given λ and (ht)

T
t=1, the second term of the objective

function (5) is a least absolute error regression problem of (ht)
T
t=2 on (ht)

T−1
t=1

with slope φ and intercept µ̃ = µ(φ − 1). Bassett and Koenker (1978) provide
asymptotic theory for least absolute fit. Hence the asymptotic covariance is
given by V((ˆ̃µ, φ̂)>) = 1

λ2Q
−1 with λ = λfSVM

T of Section 2.2, where Q = X>X
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Figure 2: DOW JONES: (a) returns yt from 29 december 1989 until 23 march
2009; (b) empirical autocorrelation function (acf) of |yt|; (c) acf of yt; (d) log-
absolute-returns log |yt|; (e) acf of standardized absolute residuals |yt/σ̂t|; (f)
Gaussian qq-plot of standardized residuals.
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Figure 3: NASDAQ: (a) returns yt from 29 december 1989 until 23 march 2009;
(b) empirical autocorrelation function (acf) of |yt|; (c) acf of yt; (d) log-absolute-
returns log |yt|; (e) acf of standardized absolute residuals |yt/σ̂t|; (f) Gaussian
qq-plot of standardized residuals.
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with X = (1,h−1), and h−1 = (h1, ..., hT−1)′, and with the standard assumption
limT→∞

1
(T−1)

X>X is positive definite. Here the vector h−1 is not observable,
but is estimated by our estimator. So we compute the matrix Q with the
estimated log-volatilities to provide an approximate covariance matrix for the
two estimated parameters of the model. For the time series considered the
estimated standard deviations of φ̂ are 0.0055 for the DOW JONES and 0.0045
for the NASDAQ.

Figure 4 compares the evolution of both estimated log-volatilities for the
DOW JONES and the NASDAQ. As expected the NASDAQ is more volatile
than the DOW JONES, except for the recent crashes of Autumn 2008 which
affected all economic sectors. Some important market turbulence periods have
been identified, and correspond to the main abrupt changes estimated by fSVM.

DOWJONES and NASDAQ estimated log−volatilities
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Figure 4: DOW JONES and NASDAQ’s estimated log-returns from 29 decem-
ber 1989 until 23 march 2009.
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3.2 Volatility forecasting

To evaluate the forecasting performance of various models, we calibrate on time
series running from day one until day t = 3000 + (k − 1)H/2, k = 1, 2, . . .
and forecast the volatility out-of-sample from day t + 1 until day t + H, for a
short horizon H = 20 business days (one month) and long horizon H = 120
days (six months). The calibration up to time t provides parameter estimates
for forecasting the volatility beyond time t using the following formulas for the
different models, with the notation σ2

t+j = E(ϕ(ht+j)|y1, ..., yt):

for fSVM:
σ2,fSVM
t+j = exp(2(µ+ φj(ht − µ))), j = 1, . . . , H,

for GARCH:

σ2,GARCH
t+j = (ψ + φ)jσ2

t + ω

j−1∑
k=0

(ψ + φ)k, j = 1, . . . , H

and for IGARCH:

σ2,IGARCH
t+j = σ2

t + jω, j = 1, . . . , H.

For each model, we then calculate the median absolute error (MAE) forecasting
measure between the forecasted volatilities and the realized volatilities

MAE∗(H) = median{|
H∑
j=1

σ̂2,∗
t+j−

H∑
j=1

y2
t+j|, t = 3001+(k−1)H/2, k = 1, 2, . . .},

where “*” stands for fSVM, GARCH or IGARCH. We report in Table 1 the
relative MAE with respect to that of fSVM (i.e., MAE(I)GARCH/MAEfSVM), so
that a ratio larger than 1 means better forecasting for fSVM. The results show
that fSVM outperforms GARCH for forecasting, especially for a long horizon.
Consequently our methodology appears better for the purpose of option pricing
or portfolio management.

4 Conclusion

This paper proposes an original and complete new way to estimate returns
volatility. Our approach combines the dynamic proposed by the well known
SV models and the Markov random field smoother in order to estimate hid-
den Markov chains. The proposed estimator is based on Bayesian posterior
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Table 1: Volatility forecast based on relative median absolute errors (MAE) for
a short (H = 20) and long (H = 120) horizons.

DOW JONES NASDAQ
Horizon H = 20 H = 120 H = 20 H = 120

MAE GARCH/fSVM 1.1 1.9 0.8 1.8
MAE IGARCH/fSVM 1.2 3.0 0.8 2.7

mode estimation. Its performance is illustrated through smulations and empir-
ical applications based on the Dow Jones and Nasdaq. Our volatility forecast
outperforms GARCH’s forcast, especially on long horizon, and therefore our
methodology looks more suitable for option pricing models or portfolio man-
agement which require long term forcast. As a major topic for future research,
the multivariate extension is probably the one which is most promising, espe-
cially given our selection of the smoothing parameter, the speed of our algorithm
and the good forecasting performance. Another natural extension would consist
in capturing leverage effect or asymmetry in the marginal distribution of the
returns.

APPENDIX

A Universal penalty

Assuming for simplicity T is a multiple of K, let BK be the matrix operating fi-
nite differences skipping every other K, i.e., BKh = 0 iff h is piecewise constant
taking identical values at K successive points:

hK(i−1)+1 = . . . = hK(i−1)+K , i = 1, . . . , nT = T/K. (14)

The Karush-Kuhn-Tucker first-order optimality conditions for (5) with φ = 1
and skipping every other K differences in the penalty are

1− y2
t exp(−2ht) + (B>Kw)t = 0 t = 1, . . . , T (15)

‖w‖∞ ≤ λ, (16)

where ‖w‖∞ = max (|w1|, ..., |wT |). The solution w to (15)-(16) subject to K
successive identical values has entries

wK(i−1)+k = k −K
∑k

j=1 y
2
K(i−1)+j∑K

j=1 y
2
K(i−1)+j

, i = 1, . . . , nT , k = 1, . . . , K (17)

17



provided λ is large enough. The smallest possible λ allowing a solution is
λy = ‖w‖∞ for w given in (17). The goal of the universal penalty λT is to

control the extremal behavior of λy so that P(‖w‖∞ ≤ λT )
T→∞→ 1 when the

true underlying volatility is constant σ0, i.e., yt i.i.d. N(0, σ2
0). The vector w

can be broken into nT = T/K independent blocks wi = (wi1, . . . , wi(K−1)) each
of which converging to a Brownian bridge process. To see this, consider the first
block for which

P (‖w1‖∞ ≤ λ) = P

(
max

k=1,...,K−1
|k −K

∑k
j=1 Z

2
j∑K

j=1 Z
2
j

| ≤ λ

)

where Zj = yj/σ0 is i.i.d.N(0, 1). Note that Z2
j +Z2

j+1 =d El, with j = 2(l−1)+1
and l = 1, . . . , K/2, where El is i.i.d. Exp(1/2), so∑k

j=1 Z
2
j∑K

j=1 Z
2
j

d
=

∑k/2
l=1El∑K/2
l=1 El

d
= Ul,

where 0 ≤ U1 ≤ . . . ≤ UK/2 ≤ 1 are distributed as Uniform(0, 1) order statistics
from a sample of size K/2 (Shorack and Wellner 1986, p.496). Moreover the
uniform quantile process converges to a Brownian bridge process W (r), so

P(‖w1‖∞ ≤ λ)
·

= P( sup
r∈[0,1]

|W (r)| ≤ λ/
√

2K)

= 1− 2
∞∑
k=1

(−1)k+1 exp(−2k2(λ/
√

2K)2)

≥ 1− 2 exp(−2(λ/
√

2K)2).

Consequently

P(‖w‖∞ ≤ λT ) ≥
(

1− 2 exp(−2(λ/
√

2K)2)
)nT ·

= exp(−2/ log nT )

with λfSVMT =
√

2K
√

1
2

log((nT log nT )), which tends to one with a slow rate as

T grows. We choose K = KT ∼ log T for the blocks size to slowly grow with T .

B Derivation of the dual problem

Letting θ = (h, µ), the primal problem (6) has the form of

min
θ
g(θ) + π(Bθ),

18



where g(θ) =
∑T

t=1 gt(ht) + g0(µ), g0(µ) = 0, B = [Bφ (φ − 1)1]. Thus the
Fenchel dual (Rockafellar 1970) has the form

min
w
g∗(B>w) + π∗(−w),

with g∗(η) =
∑T

t=1 g
∗
t (ηt) + g∗0(η0). Here ∗ denotes the convex conjugate,

i.e., g∗(η) = supθ θ
Tη − g(θ). Straightforward calculation yields g∗t (ut) =

1
2
(1 − ut)(log(1−ut

y2
t

) − 1) when gt(ht) = ht + 1
2
y2
t exp(−2ht) (Gaussian noise)

and g∗t (ut) = (1 − ut)(log(1−ut

yt
) − 1) when gt(ht) = ht + yt exp(−ht) (Laplace

noise), for t = 1, . . . , T . Moreover, g∗0(η0) = 0 if η0 = 0 and otherwise equals
∞. Similarly, π∗(−w) = 0 if ‖w‖∞ ≤ λ and otherwise equals ∞. This yields
the dual problem

min
T∑
t=1

g∗t (ut) s.t. u = B>φ w, 1>w = 0, −λ1 ≤ w ≤ λ1.

Then letting z = 1−u and w1 = λ1−w, w2 = λ1+w, and ct = −(1+log(y2
t ))

or ct = −(1 + log(yt)), and upon eliminating w, the above dual problem is
equivalent to

min
w1,w2,z

T∑
t=1

zt log(zt) + ctzt

s.t.

{
B>φ w2 + z = 1 + λB>φ 1, 1>w2 = λ(T − 1), w1 + w2 = 2λ1,
z ≥ 0, w1 ≥ 0,w2 ≥ 0.

where x = (z,w1,w2) are the dual variables. This has the form (7) with

A =

 I 0 B>φ
0 0 1>

0 I I

 , b =

 1 + λB>φ 1
λ(T − 1)
2λ1

 , qt(xt) =

{
zt log(zt) + ctzt if t ≤ T ;

0 else.

C Checking the condition (8)

It is easily seen that the condition (8) with κ = 1
2(1−ρ)

is satisfied by qt(xt) = 0 for

any 0 < ρ < 1. Below we show that it is also satisfied by qt(xt) = xt log(xt)+ctxt.
We have q′t(xt) = log(xt) + 1 + ct and q′′t (xt) = 1/xt. Since |δ|/ξ ≤ ρ < 1, we
have the series expansion

log(ξ + δ)− log ξ − δ

ξ
=
∞∑
k=2

(−1)k+1 δ
k

kξk
.
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When δ < 0, we have 0 < ξ+δ ≤ ξ. Moreover, all terms in the series are negative

and the series can be bounded from below by
∑∞

k=2−
δ2

ξ2
ρk−2

2
= − 1

2(1−ρ)
δ2

ξ2 . Thus

(ξ + δ)

(
log(ξ + δ)− log ξ − δ

ξ

)
≥ − ξ + δ

2(1− ρ)

δ2

ξ2
≥ − δ2

2(1− ρ)ξ
,

implying (8) with κ = 1
2(1−ρ)

. When δ ≥ 0, we have 0 < ξ + δ ≤ ξ(1 + ρ) ≤
ξ

1−ρ . Moreover, the series alternates in sign and can be written as − δ2

2ξ2 +∑
k=3,5,...

(
1
k
− δ

(k+1)ξ

)
δk

ξk ≥ − δ2

2ξ2 . Then we again obtain (8) with κ = 1
2(1−ρ)

.

D Iteration complexity analysis

Fix any (x,u, ε) ∈ N (τ). Let (dx, ds, du) be the solution of (10)–(12), where
s = q′(x) − A>u, and 0 < δ < 1. We show that (13) is satisfied when α = ᾱ,
where ᾱ and ν are given by (27) and (26).

As in the proof of Wright (1997, Lemma 5.10), we first bound ‖Dxds‖.
Letting D = X−1/2S1/2, we rewrite (10) as

D−1dx +Dds = (XS)−1/2r,

where for simplicity we denote r = δε1−Xs. Left multiplying (12) by d>x and
using q′′t (xt) ≥ 0 (since qt(·) is convex) and (11) yields 0 ≤ d>x q

′′(x)dx = d>x ds.
Then, by Wright (1997, Lemma 5.3), we have

‖Dxds‖ = ‖(D−1Dx)(Dds)‖
≤ 2−3/2‖D−1dx +Dds‖2

= 2−3/2‖(XS)−1/2r‖2

= 2−3/2‖(XS)−1/2δε1− (XS)1/21‖2

= 2−3/2

(∑
t

δ2ε2

xtst
− 2σεQ+ x>s

)

≤ 2−3/2

(
Q
δ2ε2

τε
− 2δεQ+ εQ

)
= ϑQε, (18)

where we let ϑ = 2−3/2
(
δ2

τ
− 2δ + 1

)
.

Let d̄x = X−1dx. We next bound ‖d̄x‖. We have from left multiplying (10)
by d̄>x and using d>x ds = d>x q

′′(x)dx that

d>x q
′′(x)dx + d̄>x SXd̄x = d̄>x r,
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where for simplicity we denote r = δε1 − Xs. Since (x,u, ε) ∈ N (τ) so that
xtst ≥ τε for all t, this and the Cauchy-Schwarz inequality yields τε‖d̄x‖2 ≤
‖d̄x‖‖r‖ so that

‖d̄x‖ ≤
‖r‖
τε

. (19)

Since z = Xs
ε

satisfies z ≥ 0 and 1>z = Q, we have

‖r‖ ≤ max
z≥0
{ε‖δ1− z‖ | 1>z = Q} = ε

√
(Q− δ)2 + (Q− 1)δ2 ≤ εQ, (20)

where the equality is due to the maximum of a convex function being attained
at an extreme point, which in this case is a Q multiple of the unit coordinate
vector.

Fix any α > 0 with α‖d̄x‖∞ ≤ ρ. By (19) and (20), this occurs whenever

α ≤ ρτ

Q
. (21)

We have Ax[α] = Ax + αAdx = b and

X[α]s[α]

= X[α](q′(x + αdx)− A>(u + αdu))

= X[α](q′(x + αdx)− q′(x)− αq′′(x)dx) +X[α](s + αq′′(x)dx − αA>du)
= X[α](q′(x + αdx)− q′(x)− αq′′(x)dx) +Xs + αSdx + αXds + α2Dxds

= X[α](q′(x + αdx)− q′(x)− αq′′(x)dx) + (1− α)Xs + αδε1 + α2Dxds

≥ −κα2q′′(x)Dxdx + (1− α)τε1 + αδε1 + α2Dxds

≥ −κα2‖q′′(x)Dxdx‖11 + ((1− α)τ + αδ)ε1− α2‖Dxds‖1
= −κα2d>x ds1 + ((1− α)τ + αδ)ε1− α2‖Dxds‖1
≥ −κα2ϑQ3/2ε1 + ((1− α)τ + αδ)ε1− α2ϑQε1, (22)

where the third equality uses (12); the fourth equality uses (10); the first in-
equality uses x[α] > 0, (8), and xtst ≥ τε for all t (since (x,u, ε) ∈ N (τ)); the
last inequality uses d>x ds ≤ ‖Dxds‖1 ≤

√
Q‖Dxds‖ and (18). Similarly, we have

x[α]>s[α] = x[α]>(q′(x + αdx)− q′(x)− αq′′(x)dx)

+(1− α)x>s + αδεQ+ α2d>x ds

≤ (1− α)εQ+ αδεQ+ α2ϑQ3/2ε, (23)

where the inequality uses the concavity of q′t(·) as well as d>x ds ≤
√
Q‖Dxds‖

and (18). Comparing the two bounds (22) and (23), we see that X[α]s[α] ≥
τ
Q
x[α]>s[α]1 whenever

−κα2ϑQ3/2 + ((1− α)τ + αδ)− α2ϑQ ≥ τ(1− α + αδ + α2ϑQ1/2)
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or, equivalently,

α ≤ δ(1− τ)

ϑ(κQ3/2 +Q+ τQ1/2)
. (24)

Moreover, by (23), we have

ε[α] =
x[α]>s[α]

Q
≤ (1− α(1− δ − αϑQ1/2))ε ≤ (1− αν)ε

whenever

α ≤ ρ(1− δ)
ϑQ1/2

, (25)

where
ν = (1− δ)(1− ρ). (26)

The minimum of the three bounds (21), (24), and (25) is

ᾱ = min

{
ρτ

Q
,

δ(1− τ)

ϑ(κQ3/2 +Q+ τQ1/2)
,
ρ(1− δ)
ϑQ1/2

}
. (27)
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