Existence of Global Minima for Constrained
Optimization

November 10, 2004

Paul Tseng! and Asuman E. Ozdaglar?

Abstract

We present a unified approach to establishing the existence of global min-
ima of a (non)convex constrained optimization problem. Our results unify
and generalize previous existence results for convex and nonconvex programs,
including the Frank-Wolfe theorem, and for (quasi-)convex quadratically con-
strained quadratic programs and convex polynomial programs. For example,
instead of requiring the objective/constraint functions to be constant along
certain recession directions, we only require them to linearly recede along these
directions. Instead of requiring the objective/constraint functions to be con-
vex polynomials, we only require the objective function to be (quasi-)convex
polynomial over a polyhedral set and the constraint functions to be convex
polynomials or the composition of coercive functions with linear mappings.

Key words. Solution existence, global minima, constrained optimization, recession
directions, convex polynomial functions.

1 Introduction

Consider the constrained optimization problem

minimize fo(z) (P)
subject to fi(z) <0, i=1,...,r,

where f; : " — (—o0, ], i = 0,1,...,r, are proper lower semicontinuous (Isc)

functions. We are interested in conditions on fy, fi, ..., f under which a global
minimum of (P) exists. In what follows, we denote by D the feasible set of (P), i.e.,

D= domfo N Ca C= ﬂ;-:lcia Cz = {.’L' | fz(x) < 0}7 1= 07 ]-a - T (1)

with domf = {z | f(z) < oo} for any f: R" — (—o0, .
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The existence question has been studied extensively in the case where (P) is a
convex program, i.e., fo, f1,..., [y are convex [2], [6], [7], [10, Sec. 2.3.1], [13]. In
particular, it was shown by Luo and Zhang [13, Thm. 3| that (P) has a global
minimum whenever fi, ..., f, are convex quadratic and f; is quasi-convex quadratic
over a polyhedral set. By adapting the proof idea of Luo and Zhang, Auslender [6,
Thm. 2], proved existence of global minimum of (P) when fy, f1,..., f, are convex,
have the same effective domain, and each belongs to the class F defined in [6].
This result is further expanded in the books [7], [10]. The result of Luo and Zhang
was also extended by Belousov and Klatte [9] to the case where fy, fi, ..., f. are
convex polynomials. However, for nonconvex programs, the results have been less
complete [3], [5], [6], [8]; also see [7, Sec. 3.4]. Auslender [6, Thm. 3] (also see [7, Cor.
3.4.3]) showed that if fy belongs to F and the feasible set C' is asymptotically linear
and the horizon function of fy is nonnegative on the horizon cone of C, then (P)
has a global minimum. However, the assumption of C being asymptotically linear
excludes cases such as when fi,..., f. are convex quadratic. Thus, these existence
results for nonconvex programs do not generalize the aforementioned results for
convex programs.

In this paper, we present an approach to establishing the existence of global
minimum of (P) that unifies and generalizes some of the approaches in [6], [9], [10,
Sec. 2.3], [13] for convex programs and the approaches in [3], [5], [6], [7] for nonconvex
programs. In particular, in Sec. 3, we prove our main result, which asserts the
existence of a global minimum under key properties about the asymptotic behavior
of the functions f; along “directions of unboundedness” of the corresponding level
sets. In the following sections, we use this result to prove the existence of global
minima for many different classes of nonconvex and convex programs. In particular,
we consider nonconvex programs in which the functions f; have the form

where h; is an Isc function having certain coercivity properties. The above functions
may be viewed as nonconvex generalizations of convex quadratic functions. We next
consider several problem classes studied in [5], [9], [13] and prove existence under
more general assumptions. In particular, instead of requiring fy to be constant along
certain recession directions as in [5, Thm. 21], we only require f to linearly recede
along these directions. Instead of requiring f, to be quadratic over a polyhedral
set and fy, ..., f, to be quadratic as in [13], we only require f; to be quasi-convex
polynomial over a polyhedral set and fi,..., f, to have the form (2); see Sec. 5.
Instead of requiring fy to be a convex polynomial as in [9], we only require f; to
be quasi-convex polynomial over a polyhedral set; see Secs. 4 and 5. We also use
our main result to deduce, as a direct consequence, the Frank-Wolfe theorem [11];
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see Sec. 6. The notion of a function retracting along “asymptotically nonpositive”
directions will play a key role in our analysis.

Regarding notation, all vectors are viewed as column vectors, and 2”7y denotes
the inner product of the vectors z and 3. We denote the 2-norm ||z|| = (z7x)'/?
and oo-norm ||z||w = max; |z;|, where z; denotes the ith component of z. For any
proper Isc function f : R" — (—o0, 00, we denote, for each v € R, the v-level set as

levy(y) ={z | f(z) <~}

We write v | 0 when the sequence v* approaches 0 monotonically from above.

2 Functions Retracting Along Asymptotically Non-
positive Directions

The existence of a global minimum of (P) is closely related to properties of the
level sets of the functions f; and “directions of unboundedness” for these sets. In
particular, when (P) has a finite minimum value which we assume without loss of
generality to be zero, there exists a sequence z*¥ € C, k = 1,2, ...., with fo(z¥) |
0. Existence of global minima amounts to f; having certain asymptotic linearity
properties along each direction d that is a cluster point of {z*/||z*||} when ||z*| —
0o. We define these notions below. The first two definitions play a key role in the
analysis of Auslender, among others [3], [5], [6], [7].

Definition 1 For any set S C R", its horizon cone Sy [16, Sec. 3B], also called
asymptotic cone in [7], is defined to be

k
Soo:{d\ﬂ:rkeS, t* — o0, Withi—k%d}.

When S is a closed convex set, we have
Seo={d|3Fz€S, withe+ade SYa>0},
and moreover S, 1S convex.

Definition 2 For any function f: " — (—o0, 00|, let f, be the horizon function
[16, p. 88], also called the asymptotic function in [7], defined by

foo(d) = lim inf @

t— o0
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We say that d € R™ is a recession direction of f [5, p. 7] if

foold) <0.

The recession cone of f is defined to be Ry = {d | foo(d) < 0}.
We next introduce the notion of a direction along which a function asymptotically
approaches below zero. Such directions will play a key role in our analysis.

Definition 3 For any function f : R" — (—o00, 0], we say that d € R" is an
asymptotically nonpositive direction (AND) of f if there exists a sequence z* €
domf, k =1,2, ..., satisfying

k

klim sup f(z*) <0, |z*|| = o0, and — d.
—00

[[*]]
We refer to {z*} as a unbounded sequence (US) associated with d.

Notice that every AND is a recession direction of f with unity norm. If f is
convex and inf, f(x) < 0, then the converse is also true. This is because there exists
{y*} C R™ with limg_,. sup f(y*) < 0, so that, for any recession direction d of f
with unity norm, the sequence z* = y* +t*¥d, with t* = ||y*||>+k, is a US associated
with d.

We will develop conditions for each f;, based on its behavior along any AND d,
which collectively will ensure existence of global minima for (P). Thus, the question
of existence is decomposed into questions about whether each f; has certain proper-
ties along an AND d. In particular, the following two properties along an AND will
play a key role in our analysis.

Definition 4 For any function f : R" — (—o0,00] and any d € R", we say that
f recedes below 0 along d on a set S C domf if, for each x € S, there exists a > 0
such that

flz+ad) <0 Va>a

Definition 5 For any function f : R" — (—o0,00] and any AND d of f, we say
that f retracts along d on a set S C domf if, for any US {z*} C S associated with
d, there exists k£ such that

f(z¥ —d) < max{0, f(z¥)} Vk > k. (3)

In the case of S = domf, we say that f retracts along d. We define f to retract
strongly along d in the same way except that “max{0, f(z*)}” is replaced by “f(z*)”
in (3).



Roughly speaking, the above definition says that one can retract from z* along
d to stay in the level set whenever z* is sufficiently far from the origin. Notice that
any AND d of f is an AND of max{0, f} and vice versa. Moreover,

f retracts strongly along d = f retracts along d
& max{0, f} retracts strongly along d.

The next two examples show that neither of the preceding two notions implies the
other.

Example 1 Let
0 ifx>0andy=0,

flz,y) = {0 iftr=0andy=1,
1 otherwise.
Then f is proper, Isc, and d = (1,0) is an AND. Moreover, f retracts along d, but
f does not recede below 0 along d on lev;(0).

Example 2 Let

fla,y) = {(1) if 2> 0and [y| < vz,
otherwise.

Then f is proper, Isc, and d = (1, 0) is the only AND of f. f recedes below 0 along d

on dom f; however, f does not retract along d. In particular, the sequence {(k, vVk)}

is a US associated with (1,0) for which the relation (3) does not hold for any .

The notion of function retraction is closely related to the class F of functions
defined in [6, Def. 7], also called asymptotically level stable functions in [7, p. 94].
Specifically, a proper Isc function f : R" — (—o0, oo] belongs to F if, for any « > 0,
any convergent sequence {e} C R, any sequence {z¥} C R" and any d € R"
satisfying

k
o elevi(ed),  |l#t] w00, o —d,  fald) =0,

[|z*]]
there exists k such that
¥ — ad € levy (") V k> k.

Various examples of functions in F, such as convex piecewise linear-quadratic func-
tions and asymptotically linear functions, are given in [6]. The following lemma
shows that f € F implies f retracts along any AND whose horizon function value
is 0.



Lemma 1 If f € F, then, for any AND d of f, either f retracts along d or
feo(d) <O.

Proof. Fix any AND d of f. Then d # 0 and f.(d) < 0. If fio(d) < 0, the
proof is complete. Suppose that f.(d) = 0. For any US {z*} associated with
d, let € = max{0, f(z*)}. Then z* € lev;(é*) for all k and ¥ — 0, s0 f € F
implies there exists k such that, for all k > k, zF —d € levf(ek) or, equivalently,
f(z* — d) < max{0, f(z*)}. =

In general, fo(d) < 0 does not imply f retracts along d. In his earlier work
(3, p- 777], [5, Thm. 13], Auslender considered a larger class of functions which,
roughly speaking, allow different o for different k. However, this class is too large
to apply to the problem (P) since one needs a common « to work for the objective
function and the constraint functions. Hence the class F was introduced in [6] and,
analogously, we introduce the notion of a function retracting along an AND (which
uses a common « = 1). We will discuss the class F further in Sec. 7.

3 Main Existence Result

Define
L(v) = levy, (M nc,

where C is given by (1). Below, we prove our main result on the existence of a
global minimum of (P). This amounts to showing that L(y) # @ for all v > 0
implies L(0) # (. The proof, by induction on r, uses similar ideas as in the proof
of [13, Thm. 3] and [6, Thm. 1] (also see [10, Prop. 1.5.7]), but we deal with more
general functions than convex quadratic or convex functions belonging to F. The
following key assumption on the functions will be used:

Assumption 1
(a) For each i € {0,1,...,7} and each AND d of f;,

either (i) f; recedes below 0 along d on domf;,

or (ii) f; retracts along d and, in case r # 0, f; recedes below 0 along d on
C;.

(b) In case r # 0, Cy C domf; fori=1,...,r.



Proposition 1 (Existence of Global Minima of (P)) Suppose that f; : " —
(—o00,00], i = 0,1,...,r, are proper, Isc, and satisfy Assumption 1. Also, suppose
that L(y) # 0 for all ¥ > 0. Then L(0) # 0.

Proof. Take any sequence of scalars {y¥};—; ... | 0. By assumption, L(7*) # 0 for
all k. Since f; is Isc for all 4, L(7¥) is closed. Let

2% € argmin{||z|| | € L(v*)}.

If 2% has a convergent subsequence, then the limit point of this subsequence would,
by Isc of f; for all i, be in L(0). Thus, it suffices to consider the case of ||z¥|| — oc.

Since {z*/||z*||} is bounded, it has a subsequence converging to some limit d # 0.
By passing to a subsequence if necessary, we can assume that z*/||z*|| — d. Since
fo(zF) < 4% while f;(z*) <0 for s = 1,...,r, this implies that d is an AND of f; for
i =20,1,...,7. Then, by Assumption 1(a), for each i € {0,1,...,7}, either f; recedes
below 0 along d on domf; or f; retracts along d. Moreover, if r # 0, then f; recedes
below 0 along d on C; for 7 € {0,1,...,7}.

If fy recedes below 0 along d on domfy, then for any € D # (), we have
Z € domfy so that fo(Z + ad) < 0 for all « sufficiently large. In case r # 0, for each
i € {1,...,7} we have € C; and hence f;(Z + ad) < 0 for all « sufficiently large.
Thus, T + ad € L(0) for all « sufficiently large, implying L(0) # (). Thus, it remains
to consider the case of f; retracting along d. If f; retracts along d for all 7 =1,...;r,
then for each i € {0, 1,...,7}, there exist k; such that

¥ —d elevy,(v¥) Vk >k,

where 70 = v¥ and v%¢ = 0 for ¢ = 1,...,7. Then, for all £ > max ki,
i=0,1,...,7

would satisfy z¥ € L(+*). Then, by z*/||z*|| — d, we would have d*z*/||z*|| — ||d||?,
which implies d”z* — oo and hence

125" = [|="]* — 2d"2* + 1 < ||=*|]"

for all k sufficiently large, contradicting z* being an element of L(v*) of least 2-
norm. Thus, either L(0) # ) or else 7 > 1 and f; recedes below 0 along d on dom f;
for some i € {1,...,7}.

We now complete the proof by induction on r. The above argument shows that
Prop. 1 is true when r = 0. Suppose Prop. 1 is true for r = 0,1, ...,7 for some
7 > 0. Consider r = 7 + 1. We showed above that either L(0) # @ or there exists
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some AND d of fy, f1, ..., f- such that f; recedes below 0 along d on domf; for some
1€ {1,...,r}. Let us drop f; from L(7) to obtain

L) =lev ()N mc

it

Then L(v*) D L(*) # 0 for all k. Also, Assumption 1 is still satisfied upon dropping
f;. Thus, by the induction hypothesis, L(0) # . For any Z € L(0), since f; recedes
below 0 along d on C; for all i € {0,1,...,7}\ {7}, we have Z+ad € L(0) for all & > 0
sufficiently large. Moreover, Assumption 1(b) implies Z € levy,(0) = Cp C domf; so
f; receding below 0 along d on domf; implies f;(Z + ad) < 0 for all « sufficiently
large, yielding # + ad € L(0). =

Prop. 1 shows that when fy, fi, ..., f, satisfy Assumption 1 and the minimum
value of (P) is finite which we assume without loss of generality to be zero, a global
minimum of (P) exists. We discuss Prop. 1 and its assumptions in more detail below.

1. It can be seen from its proof that Prop. 1 still holds if we relax Assumption 1(b)
so that Cy C domf; holds only for those i € {1,...,r} for which there exists
some AND d such that f; does not retract along d. For instance, if every
constraint function f; is polyhedral, then it can be shown that f; retracts
along every AND of f;, so that Assumption 1(b) can be dropped altogether.
In general, Assumption 1(b) cannot be dropped as we will show in Example
5.

2. Prop. 1 still holds if we relax the assumption on f; within Assumption 1(a) to

For each AND d of fy, there exists F' C domf such that

(i) fo recedes below 0 along d on domfy \ F,
(ii) fo retracts along d on F,
(iii) In case 7 # 0, fo recedes below 0 along d on Cj.

[The assumption on fy within Assumption 1(a) corresponds to F =) or F =
dom fy.] This is because in the proof we can analogously divide into two cases:
If D\'F # 0, then for any T € D\ F we have fy(Z+ad) < 0 for all « sufficiently
large. Otherwise D C F', and the proof proceeds as before. This seemingly
technical generalization of Prop. 1 is needed for Secs. 5 and 6.

The following example shows that the assumption on the constraint functions
fi,-.-, fr cannot be relaxed in the same way.
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Example 3 Let

Iylﬁ_% if |y <1 and z >0,
fo(z,y) =40 if ly] > 1 and z > 0,
o0 otherwise,

0 ifjly<l—e®andz>0,
fl(l“,y):{l if lyf>1—e"® and z > 0,

oo otherwise.
Then, both fy and f; are proper, Isc. Any d with ||d|| = 1 and d; > 0 is an
AND of fy. It can be seen that for any AND d of fy, fo retracts along d, and
also fo recedes along d on Cy. The only AND of f; is d = (0,1), and f; does
not recede below 0 along d on dom f;. Moreover, the sequence {(k,1—e %)} is
a US associated with d = (0, 1), which does not satisfy (3), hence f; does not
retract along d. But f; does satisfy the following relaxed assumption (which is
analogous to the relaxed assumption on fy): Let [} = {(z,y) | z > 0, |y| > 1}.
Then f; recedes below 0 along d on domf; \ F}, retracts along d on Fi, and
f1 recedes below 0 along d on Cy. Although the point (z*,y*) = (k,1 — e7¥)
satisfies f1(z¥,y*) = 0 and fo(z*, y*) — 0, there is no solution to fi(z,y) <0
and fo(z,y) < 0.

. If, for each 7 = 1, ..., r and each AND d of the constraint function f;, f; retracts
along d and recedes below 0 along d on Cj, then Prop. 1 still holds if the second
part of Assumption 1(a)(ii) on the objective function fy, namely “in case r # 0,
fo recedes below 0 along d on Cy”, is dropped. In fact, in this case, (P) can be
reduced to the case of r = 0 by working with the extended objective function

folz) = {fo(x) ifxe D,

o0 otherwise

It can be shown that, for this equivalent problem, Assumption 1(a) is satisfied.
This trick will be used in the proof of Lemma 7.

The following example shows that the second part of Assumption 1(a)(ii) on
fo cannot be dropped in general.

Example 4 Let

—— ifz >0 and |y| < 2z
— ! ’
folz,y) { Oy otherwise,



= {0 2= 1 < v
otherwise.

Then, both fy and f; are proper, Isc. Moreover, any d with ||d|| = 1 is an
AND of fy and fj retracts along d. The only AND of f; is d = (1,0) and f;
recedes below 0 along d on domf;. Also, the point z¥ = k, y* = V/k satisfies
fi(z*, y*) = 0 and fy(z*,y*) = 1/(vVk+1) — 0. However, there is no solution
to fi(z,y) < 0and fo(x,y) < 0. The problem is that fy does not recede below
0 along d = (1,0) on C.

If the objective function f, retracts strongly along each AND d of fy, fi,...f. and
each constraint function f; retracts along d, then the existence of a global minimum
of (P) can be deduced without assuming its minimum value is finite. This result
generalizes an existence result of Auslender [3, Thm. 2.4]; see Prop. 5.

Proposition 2 Consider the problem (P). Suppose that D # () and, for each AND
d of fo, f1,...fr, we have that f, retracts strongly along d and f; retracts along d for
i=1,...,7. Then (P) has a global minimum.

Proof. Let v* denote the minimum value of (P), which we assume without loss of
generality to be either 0 or —oo. Then, for any sequence v* | v*, L(7*) # 0 for all k.
Let z* be an element of L(7*) of minimum 2-norm. We claim that {z*} has a cluster
point, which would be a global minimum of (P). We argue this by contradiction.
Suppose that ||z¥|| — co. By passing to a subsequence if necessary, we assume that
z¥ /||z*|| converges to some d. Then d is an AND of fy, fi,..., f,. Since f, retracts
strongly along d, fo(z* — d) < fo(z*) < ~* for all k. For each i € {1,...,7}, since f;
retracts along d and z* € C;, fi(z*F — d) < max{0, f;(z*)} < 0 for all k sufficiently
large. Thus x¥ —d € L(~¥) for all k sufficiently large. But also ||z* —d||? < ||z¥||? for
all k sufficiently large (see the proof of Prop. 1), contradicting z* being of minimum
2-norm. =

4 Linearly Receding Functions

In this section we introduce an important class of functions that satisfy Assumption
1(a). We say that f linearly recedes along d if there exists § € R (depending on d)
such that # <0 and

flz+ad)=fz)+al VaeR, Vzedonf. (4)

We say that f is constant along d if we can take # = 0 in the above expression.
Consider the following assumption on a proper Isc f : R" — (—o0, 00
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Assumption 2 For any AND d of f, f linearly recedes along d.

Assumption 2 says that f is affine on each line intersecting dom f and parallel to an
AND of f. This assumption is weaker than f belonging to the class F; defined in
[6, Def. 3], namely, f is convex and f linearly recedes along any recession direction
of f. [Recall that any AND of f is a recession direction of f.] This assumption
is also weaker than f being asymptotically directionally constant [7, p. 86], namely,
f is constant along any recession direction of f. We will show in Lemma 4 that
there is a large class of nonconvex functions f that satisfy Assumption 2 but are not
asymptotically directionally constant nor in F;.

The following lemma shows that it suffices to verify Assumption 2 for each f; in
lieu of Assumption 1(a).

Lemma 2 If fy, f1,..., f- each satisfies Assumption 2, then they satisfy Assumption

1(a).

Proof. Consider any proper Isc f : R" — (—o0, 0] satisfying Assumption 2. Fix
any d € R" that is an AND of f. By Assumption 2, f linearly recedes along d, i.e.,
there exists § € R such that § < 0 and (4). If # < 0, then for any x € domf, we
have from (4) that f(z + ad) - —oc0 as @ — o0o. Thus f recedes below 0 along d
on domf. If § = 0, then for any x € domf, we have from (4) that f(x — ad) = f(z)
for all & € R. It follows that f retracts along d and f recedes below 0 along d on
lev;(0).

Applying the above result to fo, fi,..., fr, We see that they satisfy Assumption
1(a). =

Using Lemma 2, we give below an example showing that Prop. 1 is false if
Assumption 1(b) is dropped.

Example 5 Define
(t) = {—lnt—ln(l—t) ifo<t<l,

00 otherwise.
Let
fo(w1,29) = 1, fi(z1,2) = d(21) — 22

Then f, is linear, so fy satisfies Assumption 2. Since ¢ is Isc, then f; is Isc and, in
fact, convex. Since ¢ has bounded support, it is not difficult to see that, for any
d = (di,ds) € R? that is an AND of f;, we have d; = 0 and dy > 0. Then f; linearly
recedes along d. Thus fy, f; each satisfies Assumption 2. By Lemma 2, they satisfy
Assumption 1(a).

11



Asz; — 07 and setting o = @(x1), we have that fo(z1,22) — 0and fi(z1, x9) <
0. However, there is no x € R? satisfying fo(z) = 0 and fi(x) < 0 (since fi(z) <0
implies z; > 0). Here, the problem is that domf; is not contained in the 0-level set
of fy (in fact, the two sets are disjoint), thus violating Assumption 1(b).?

The following lemma shows that the assumption 6 < 0, implicit in Assumption
2, is redundant whenever f does not tend to —oo at a superlinear rate. In particular,
convex functions have the latter property.

Lemma 3 Suppose that f: R" — (—o0, 00| is proper, and
Foold) > —00 ¥ deRm (5)
If an AND d of f and 6 € R satisfies (4), then 6 < 0.

Proof. Fix any AND d of f and § € R that satisfies (4). If # = 0, then clearly
0 < 0. If 8 #0, then fix any T € domf, which exists since f is proper. Since d is
an AND of f, there exists an associated US {z*}. For each k, let t* = ||z¥ — Z|| and
d* = (¥ — 7)/||z* — z||. Then d* — d and

o =¥ +tkd,  with % =z + 5 (d* — d).
For each k, since zF € domf, (4) implies y* € domf and
f(a*) = fly* +t5d) = f(yF) + 140
Thus

tk
Notice that {f(z*)} is bounded above and, by ||d* — d|| — 0 and f satisfying (5),
we have i g g
tim inf L) = i g LEFC@ D) s
AT = e g

If d* = d for k along a subsequence, then y* = 7 so f(y*)/t* — 0 along this
subsequence. Then the limit superior of the right-hand side of (6) as k — oo is
nonpositive, implying § < 0. m

3We can make these two sets have nonempty intersection by redefining ¢(t) to have the value
1 (instead of oo) for all ¢ < —1, say. However, the resulting f; is no longer convex. If fo, f1,..., fr
are convex, can Assumption 1(b) be relaxed to Co N (Ni—;domf;) # @? This is an open question.
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If f:R" — (—o0,00] is convex and inf, f(z) < 0, then we saw in Sec. 2 that
disan ANDof f & de€ Ry.

In this case, the assumption that f is constant along any AND d of f (i.e., f can be
taken equal to 0 in (4)) is equivalent to Ry C Ly, where Ly = Ry N (—Ry) denotes
the constancy space of f. Since Ly C Ry, this is equivalent to

Ry = L.

Similarly, it can be seen that f linearly recedes along d at rate # if and only if
(d,0) € Lepis, where epif denotes the epigraph of f and Lg = Se, N (—S) denotes
the lineality space of a set S C R"*!. Thus, Assumption 2 is equivalent to

Ry C Projgn Lepiy,

where Projg. (z,() = z for all (z,{) € R" x R. Some related conditions are given in
[10, Prop. 2.3.4].

We now give examples of functions that satisfy Assumption 2. Consider the
following assumption on f.

Assumption 3
f(z) = h(Az) +b"z + ¢, (7)

where A € R™*" b e R",c€ R and h : R™ — (—o0, 0] is a function satisfying (5)
and

either (i) b=0and lim infh(y) =00 or (ii)b#0and lim infM

llyl|— o0 lyl=oo |yl

Assumption 3 is satisfied by, for example, convex quadratic functions and the
function g(Az — b) in [5, p. 13] with g coercive (i.e., goo(d) > 0 for all d € R"). We
show below that Assumption 3 implies Assumption 2.

Lemma 4 Let f: R" — (—00,00] be a proper Isc function that satisfies Assump-
tion 3. Then f satisfies Assumption 2.

Proof. First, we claim that
disan ANDof f = Ad=0, b'd<O0. (8)

To see this, fix any AND d of f and let {*} be an associated US.
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If b = 0, then f(z*) = h(Az*) is bounded above, so that ||Az*|| is bounded.
Hence {||Az*||/||z*||} — 0, implying Ad = 0. Since b = 0, we also have b"d < 0.
If b # 0, then we have

, h(Az*)  bTak+c f(zF)
lim sup k - = p
koo "] [ N |

k
Thus (Az”) is bounded from above. If ||[Az*|| — oo along a subsequence, then

]|
h(Ax*) h(Ax®) || Az*|| h(Ax*) )
boundedness from above of = an — oo imply
ok [J*]] [[AzF]| [|*]] || Az]]
“” i”” — 0 along this subsequence. If ||Az*|| is bounded along a subsequence, then
x

||z*|| — oo implies ||Az*||/||z*|] — O along this subsequence. In either case, we
see that ||Az¥||/||z*|| — 0 and hence Ad = 0. Also, we have from {f(z*)} being
bounded above (by, say, ) that

[ 1 (I E I

b7 zk h(Az*) k—c
<

which, together with klim inf h(Az")/||z*|| > 0,* yields klim sup b” z¥/||z¥|| < 0, so
—00 —00
that b7d < 0. Thus d satisfies

Ad=0, bd<o.
It follows from (7) and (8) that f satisfies Assumption 2. =

Thus, if each of fy, fi, ..., f- satisfies Assumption 3, then it satisfies Assumption
2. By Lemma 2, they collectively satisfy Assumption 1(a). So, if they in addition
satisfy Assumption 1(b), then Prop. 1 yields that a global minimum of (P) exists.
To our knowledge, this existence result is new.

*Why? If ||A2*|| is bounded along a subsequence, then h(Az*) is bounded below along this
h(Az*

subsequence (since h is lsc and nowhere equal to —oo) and hence W — 0. If [|[Az*|| - oo
h(Az*
| Az il

A

— 0 implies lim inf M =

k00 [|z*]]

along a subsequence, then the assumption of he(d) > —oo for all d € R™ implies

|| Azt
[l

bounded below along this subsequence, which together with

.o h(Az”) [|Az*]]
lim inf ——~——— > 0.
k—oo  ||Azk|| [|zF|| —
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5 Quasi-Convex Polynomial Functions over Poly-
hedral Sets

Consider the following polynomial assumption on f, generalizing the quadratic as-
sumption of Luo and Zhang [13, Sec. 4].

Assumption 4
_[g(zx) ifzeX,
f) = {oo otherwise,

with g : " — R a polynomial function and
X ={z | Bz < b},

for some B € R™*™ b € R™. Moreover, g is assumed to be quasi-convex on X [14,
Chap. 9].

Any convex polynomial f satisfies this assumption. A nonconvex example is
9(x1,22) = 129, X = [0,00) X (—00,0]. The following lemma shows that f satisfies
the relaxed assumption in Remark 2 following Prop. 1.

Lemma 5 Let f : R" — (—o0, o] satisfy Assumption 4. Then, for any AND d
of f, there exists F C X such that (i) f recedes below 0 along d on X \ F, (ii) f
retracts along d on F, (iii) f recedes below 0 along d on lev(0).

Proof. Fix any AND d of f. Let {z¥} be a US associated with d. Let

7* = sup max{0, f(z)} V k.
>k

Then {y*} | 0 and, for each k, z* € lev;(y*) for all £ > k. Since g is lsc quasi-
convex on X, the level sets of f are closed convex. Since lev;(7*) is closed convex
and z°/||z%|| — d, d is in the horizon cone of lev;(y*) [15]. Thus, d is in the
intersection of the horizon cones of lev;(y*) for all k. Since the horizon cones of
lev;(7¥), k = 1,2, ..., are nested, this implies that d is in the horizon cone of lev ()
for all v > 0.

Fix any x € X. Then z € levs(y) for some v > 0, so that z + ad € levs(y)
for all @ > 0. Thus, B(z + ad) < ¢ and g(z + ad) < v for all @ > 0. The former
implies Bd < 0, i.e., d € X4. Since g(z + ad) is a polynomial function of «, the
latter implies that

either g(r+ ad) - —c0 asa— 00 or g(rz+ad) =gz) YaeR (9)

15



Define
F={ze X |g(r+ad) =g(x)Vaeci}

Then, for any z € X \ F, we have from Bd < 0 that z + ad € X for all & > 0, so
that (9) yields
flz+ad) =g(x+ad) > —c0 as a— oco.

This shows that f recedes below 0 along d on X \ F. Fix any US {z*} C F
associated with d. For each i € {1,...,m}, let B; and b; denote the ith row of B and
c. If B;d = 0, then B;(z* — d) = B;z* < b; for all k. If B;d < 0, then it follows from
Biz*/||z*|| — B;d and ||z*|] — oo that there exists k; such that

Bi(zF —d) <b; Vk>k.
Let k = max;|B;d<0} k;. Since z* € F, this yields
fa* —d) = g(a* — d) = g(a*) = f(a)

v
implying that f retracts along d on F'. By Bd < 0 and (9), for any z € lev(0),
there exists & > 0 such that

k> k,

r+ade X, gx+ad) <g(z) <0 Va>a

Thus f(x + ad) <0 for all @ > @, so f recedes below 0 on levy(0).

We note that the above proof generalizes to any continuous function g that is
either constant or tends to oo or —oo on each line. In the case where g is quadratic,
ie, g(z) = %mTQ:v + ¢Tz for some symmetric Q@ € R**" and ¢ € R", it can be
seen that, for any AND d of f, either d’Qd < 0, in which case F = (), or else
d'Qd = 0,(Qr + ¢)Td < 0, in which case F is the set of maxima of the linear
program

max (Qz +¢)"d subject to =z € X.

Thus, F'is a face of X in this case. In the special case where f is a convex polynomial
function on R”, Lemma 5 can be further sharpened as is shown below.

Lemma 6 Let f: R" — R be a convex polynomial function. Then, for any AND
d of f, either (i) f recedes below 0 along d on R™ or (ii) f retracts along d on R"
and f recedes below 0 along d on lev,(0).

Proof. Fixany AND d of f. Then d is a recession direction of f. Since f is convex,
this implies that, for any z € R", f(z + ad) < f(z) for all @ > 0 [10, 15]. Since
f(z + ad) is a polynomial function of «, this implies that

either lim f(z+ad)=—-oc0 or f(z+ad)=f(z) VaeR
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If limy oo f(x + ad) = —oo for every x € R", then clearly f recedes below 0
along d on R". Thus, it remains to consider the case where, for some z € R",
f(Z + ad) = f(z) for all o € R. Since f is convex, this implies d € L; and hence,
for every x € R",

flz+ad) = f(z) VaeR

Thus, f retracts along d on R™ and f recedes below 0 along d on lev;(0) (which may
be empty). =

Suppose that fy satisfies Assumption 4 and f1, ..., f each satisfies Assumption
3. By Lemma 5, f; satisfies the relaxed assumption in Remark 2 following Prop.
1. By Lemmas 4 and 2, fo, fi, ..., fr satisfy Assumption 1(a), subject to the above
modification. Thus, if they also satisfy Assumption 1(b), then by Prop. 1 and
Remark 2 following it, (P) has a global minimum whenever its minimum value is
finite. This result generalizes Cor. 2 and Thm. 3 in [13] which further assume g and
fi, .-, [ are quadratic. Even in the special case of f; being convex polynomial and
fi, .-, [ being convex quadratic, our result appears to be new. Unlike the proof
in [13], our proof does not rely on the canonical form of a quasi-convex quadratic
function over a convex set.

Suppose that f, satisfies Assumption 4 and fi, ..., f, are convex polynomial func-
tions on R". By Lemma 5, fj satisfies the relaxed assumption in Remark 2 following
Prop. 1. By Lemma 6, fy, f1, ..., f» satisfy Assumption 1, subject to the above mod-
ification. Thus, by Prop. 1 and Remark 2 following it, (P) has a global minimum
whenever its minimum value is finite. This result generalizes Thm. 3 in [9], which
further assumes fy to be convex on R".

Notice that, because g is quasi-convex only on X, we cannot treat Bx < c as
constraints but, rather, must incorporate it into the objective function. Then we
exploit the fact that a recession direction for a polyhedral set can be retracted from
points in the set that are sufficiently far out.

6 The Frank-Wolfe Theorem

In this section we assume that f; is a quadratic function over a polyhedral set, as
was studied by Frank and Wolfe [11] and many others; see [9] and [13] for more
detailed discussions.

Assumption 5

g(z) ifzxeX,
00 otherwise,
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with g(z) = 327 Qz + ¢"z for some symmetric @ € R"*" and ¢ € R", and
X ={z | Bz < b},
for some B € R™*" b € R™.

The following lemma shows that f; satisfies the relaxed assumption in Remark
2 following Prop. 1 for » = 0.

Lemma 7 Let f : R" — (—o0, 0] satisfy Assumption 5. Then, for any AND d
of f, there exists F' C X such that (i) f recedes below 0 along d on X \ F, (ii) f
retracts along d on F'.

Proof. Fix any AND d of f. Let {z*} be a US associated with d. Then z* € X
for all k and limy_,., sup g(z*) < 0. Then

g(z*)

3(")7Q2" + ¢"a*
. _ 2
0> kll)rgosup IE3E kllglo sup ||z 1|2

Thus d"'Qd < 0. Also, d € X, (see the proof of Lemma 5).
Define

1T
= 5d'Qd.

F={reX|Vg(x)d>o0}.
For any x € X \ F, since df'Qd < 0, we have

1
g(z +ad) = g(z) + aVg(z)"d + §a2dTQd — —00 as a — oo.

Since d € X, we also have x + ad € X for all « > 0. Thus f recedes below 0 along
don X \ F.
Also, we have using d¥Qd < 0 that

gz —d) =g(z) — Vg(z)"d + %dTQd <g(x) VzeF

Since X is polyhedral, we have that =¥ — d € X for all k sufficiently large (see the
proof of Lemma, 5). This implies that if {z*} C F, then f(a* —d) < f(z¥) for all k
sufficiently large. Thus, f retracts alongdon F. =

Suppose that fy satisfies Assumption 5 and » = 0. By Lemma 7, f; satisfies the
relaxed assumption in Remark 2 following Prop. 1. Thus, by Prop. 1 and Remark 2
following it, (P) has a global minimum whenever its minimum value is finite. This
is the classical Frank-Wolfe theorem [11].

In Sec. 1 of [9], it is mentioned that Andronov et al. [1] had extended the Frank-
Wolfe theorem to the case of a cubic function over a polyhedral set. [It is known
that the result does not extend to polynomial of degree 4 or higher [11].] Can this
result be deduced from Prop. 1 similarly as the Frank-Wolfe theorem?
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7 Further Applications

In this section, we present further applications of Prop. 1 and Lemma 2 and indicate
their connection to existing results.
Following [6], [7], we say that a closed set S C R™ is asymptotically linear if

0s € F,

where dg is the indicator function for S, i.e.,

(55(.’1)):{0 1f$€5’,

oo otherwise.

An example of such a set S is the Minkowski sum of a compact set with a finite
collection of polyhedral sets. The level set of a convex quadratic function is generally
not asymptotically linear. We have as a corollary of Prop. 1 and Lemma 1 the
following refinement of [6, Thm. 3] and [7, Cor. 3.4.3].

Proposition 3 Consider any proper Isc f : R* — (—o0, 00| and any closed asymp-
totically linear set S C R™ such that S N domf # (). Suppose that inf,cs f(z) =0
and

fo(d) >0 Vde Sy.

Suppose also that either f € F or f is constant along any AND of f. Then there
exists an z* € S with f(z*) = 0.

Proof. Define
fol@) = f(z) + ds(z) VzeR"

Then fy is proper, Isc, and inf, fy(z) = 0. Moreover, (fo)oo(d) > foo(d) for d € Sy
and (fo)oo(d) = oo otherwise. Thus, our assumption on fu(d) implies

(fo)oo(d) >0 V deR" (10)

Also, for any € € R, z € levy(e) if and only if z € levy(e) and =z € S. For any
nonzero d € R", (fo)oo(d) = 0 implies foo(d) = (d5)o(d) = 0.

Suppose that f € F. Since f and ds are in F, the above observations show that
foisin F. Then, by Lemma 1, (10), and Prop. 1 with » = 0, there exists an z* € R"
with fo(z*) = 0.

Suppose instead that f is constant along any AND of f. Fix any AND d of f,
and any associated US {z*}. Then d is an AND of f, so that f is constant along d.
Also, z* € S for all k, implying (d5)e(d) = 0. Since dg € F, this implies that there
exists a k such that ¥ —d € S for all k > k. Also, f(z* —d) = f(«*) for all k. Thus
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fo(z* —d) = fo(x*) for all k > k. This shows that f, retracts along any AND of f;.
By Prop. 1 with » = 0, there exists an z* € R with fo(z*) =0. =

If S is further assumed to be asymptotically multipolyhedral, then instead of f
being constant along any AND of f, it suffices that f linearly recedes along any
AND of f (see Sec. 4). The next lemma shows that if fo, fi, ..., f» are convex and in
F, then they satisfy Assumption 1(a).

Lemma 8 Consider any proper Isc f : R" — (—o0, 00| such that f € F and f is
convex. Then, for each AND d of f,

either (i) f recedes below 0 along d on dom f

or (ii) f retracts along d and f recedes below 0 along d on lev(0).

Proof. Fix any AND d of f. Then f,(d) < 0. Since f is convex, this implies that
[ recedes below 0 along d on lev(0). If f,(d) < 0, then the convexity of f implies
that f recedes below 0 along d on domf. If f,(d) = 0, then Lemma 1 implies that
f retracts along d. =

Lemma 8 and Prop. 1 together yield the following existence result of Auslender
[6, Thm. 2].

Proposition 4 Suppose that f; : " — (—o0,00], i = 0,1, ...,r, are proper, lsc,
convex, and belong to F. Also, suppose that domf, = domf;, « = 1,...,r, and
L(v) # 0 for all v > 0. Then L(0) # 0.

If a proper Isc function f : R" — (—o00, 00| satisfies Assumption 2 and (5), then
the indicator of its O-level set,

o v [0 if f(z) <O,

flo) = {oo otherwise,

satisfies (5) (since (f°)(d) > 0 for all d € R™) but may not satisfy Assumption 2.
In particular, take f(z) = ||Az||*> + "z for some A,b with b # 0. Then, we know
from Sec. 4 that f satisfies Assumption 2 and (5). However, for any d € R" such
that Ad = 0 and b'd < 0, it is easily seen that d is an AND of f°, but f° does not
linearly recede along d (since f°(z + ad) = 0 for all @ > 0 while f°(z + ad) = oo
for all « sufficiently negative). Thus, we cannot incorporate constraints into the
objective by means of an indicator function and still satisfy Assumption 2 for the
objective function fj.
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In [3, Thm. 2.4] (also see [5, Thm. 21]), Auslender considered the following
problem
minimize g(x) subject to z € X, (11)

where X is an asymptotically multipolyhedral set in " and g : R" — (—o0, 00| is
a proper Isc function. Auslender showed that if

domg N X # ), Joo(d) >0 Vde Xy, (12)

and either (i) g is constant along each d € X, N R, or (ii) epig is an asymptotically
multipolyhedral set or (iii) g is weakly coercive, then (11) has a global minimum.
Notice that (iii) implies (i). This is because g being weakly coercive means that
Joo(d) > 0 for all d € R" and, for any d € R,, g is constant along d.

Auslender’s existence result generalizes one of Rockafellar [15, Thm. 27.3] for
the case where X is a polyhedral set, g is convex, and ¢ is constant along each
d € XooNRy. In the case where g and X are convex, it can be seen that (11) having
finite minimum value implies (12), but not conversely (e.g., g(z) = —In(z) if z > 0
and g(r) = oo otherwise satisfies goo(d) > 0 for all d € R). Thus, in this case,
the assumption (12) is weaker than assuming (11) has a finite minimum value. In
general, neither implies the other. We show below that Auslender’s result may be
viewed as a special case of Prop. 2.

Proposition 5 Consider the problem (11). Suppose that (12) holds and either (i)
g linearly recedes along each d € X, N R, or (ii) epig is an asymptotically multi-
polyhedral set. Then (11) may be reformulated in the form of (P) while satisfying
the assumptions of Prop. 2. Hence (11) has a global minimum.

Proof. Suppose that g linearly recedes along each d € X, N R,. Since X is
asymptotically multipolyhedral, X = S + K, where S is a compact set in " and
K = UleKj with each K7 being a polyhedral cone. Then, z € X if and only if
T =21+ with z; € S and x5 € K, so (11) is equivalent to

minimize fy(z1,22) subject to fi(z1,z2) <0,

where
fo(ﬂﬁl, xz)
filz,m2) = {

g(iL‘l + .’L'Q) if x1 € S,
{ 00 otherwise,
0 ifzyeK,
oo otherwise.
Notice that fy and f; are proper, Isc. We now verify that this problem satisfies the
assumptions of Prop. 2, and hence it has a global minimum. By (12), domgNX # 0,
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so that D = domfy, N C; # 0. Fix any AND (dy,ds) of fy, fi. Then d is a recession
direction of f;, i.e., (fi)oo(d1,d2) <0, for i =1,2. We have

f fo(td, tdy)

(fo)oo(dr,d2) = o, t
t— o0
t(d} + d
= d} —0,d},—dy 3
t—o0
0 otherwise,
{ goo(dQ) if dl = 0’
00 otherwise.
Similarly,
0 ifdy e K,

(f1)oo(dn, d2) = {oo otherwise.

This implies d; = 0, do € K, and gx(d2) < 0. Thus, dy € X N R,y and our
assumption on g implies go(ds) > 0 and g linearly recedes along dy. The latter
implies there exists # < 0 such that

gz +ady) = glz)+al VaeR Vzedomg.
Since goo(dz) > 0, then 6 = 0. This and d; = 0 imply that

fo((ZEl, 1‘2) + O!(dl, dg)) = g(:r1 + ) + adg)
= g(z1 + z2)
= fo(z1,22) VaeR, vV (r1,1) € domf.

Thus fy is constant (and hence retracts strongly) along (di, ds). Since (dy,ds) is an
AND of fi, there exists a US {(z%, 2%)} such that z% € K for all k, ||(z¥, z%)|| — oo,
and (2%, 28) /||(2%, z%)|| — (d1, d2). Since d; = 0, then ||z%|| — occ and z&/||z%|| — ds.
Since dy € K and K is the union of polyhedral cones, there exists & > 0 such that

¥ —dye K Vk>k
(see the proof of Lemma 5). Then
fl((.’lfllc,.fﬂg) — (dl, dg)) = fl(l'llc,.’lig - dg) =0 Vk 2 I;'

Thus f; retracts along (dy, ds).
Suppose that epig is an asymptotically multipolyhedral set. Then (11) is equiv-
alent to
minimize h(z,p) subject to (z,p) €Y,
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where h(z, ) = pand Y = epigN (X xR). The assumption (12) implies domhNY #
0 and heo(d,d) = 6 > 0 for all (d,0) € Y. Also, 6 < 0 for any (d,d) € Ry, which
implies § = 0 so that A is constant along (d, §). It can be shown that the intersection
of two asymptotically multipolyhedral sets is also asymptotically multipolyhedral.
Thus case (ii) reduces to case (i). =
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