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Abstract

Consider a problem of minimizing a linear function subject to linear constraints
and an additional constraint that the variables lie in the extreme rays of a nonempty
closed convex cone K. Dropping the extreme ray constraint yields a convex conic
program relaxation of this problem. We study approximation algorithms based on this
relaxation. Examples with K being the semidefinite cone or the Cartesian product of
second-order cones are studied.
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1 Introduction

For solving difficult nonconvex optimization problems, one approach that has gained much
attention in the last decade is based on relaxing certain constraints to obtain a convex
optimization problem and then modifying a solution of the convex problem to obtain an
approximately optimal solution of the original problem. This approach has been particu-
larly successful for certain NP-hard combinatorial optimization problems and nonconvex
quadratic optimization problems, which are formulated as a problem of minimizing a lin-
ear function subject to linear constraints and an additional constraint that the variables
form a rank-1 symmetric positive semidefinite real matrix [3, 4, 5, 8, 9, 10, 12, 14, 15, 17,
18, 20, 21]. Relaxing the rank-1 constraint yields a convex optimization problem, called
semidefinite program (SDP), which is known to be efficiently solvable [1, 11, 12]. Since
rank-1 matrices form the extreme rays of the semidefinite cone ST of n x n symmetric
positive semidefinite real matrices, it is natural to consider a general conic program with
extreme ray constraints and to seek analogous approximation algorithms based on relax-
ing the extreme ray constraint to obtain a convex conic program. This is the topic of our
study.

Let H be a finite-dimensional real Hilbert space endowed with the inner product (-, -).
Let K be a closed convex cone in H. Consider the following conic program with extreme
ray constraints:

Vgep = min (b0, z)
st. (bFz) <hE k=1,..,m, (1)
z € extrK,
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where h¥ > 0, b* € H for k = 0,1,...,m. By scaling the inequality constraints, we can
assume that h* € {0,1}. Here and throughout, extrK denotes the set of elements in the
extreme rays of K. This problem is NP-hard in general.

By relaxing the extreme ray constraints in (1), we obtain the following relaxation which
is a convex conic program:

Vep = min (b° z)
st (BF,z) <hkE E=1,..,m, (2)
z € K.
Clearly v, < wvp,p. We are interested in upper bounds on performance of the form
Upgp < € Ugp,

where C' > 0. Of particular interest is the case where K is a Cartesian product of second-
order cones, also known as Lorentz cones, for which (2) is a second-order cone program
(SOCP) and is known to be easier to solve than SDP; see [2] and references therein. Thus,
approximation algorithms based on SOCP relaxation can handle larger problems than
those based on SDP relaxation. Unlike SDP relaxation, SOCP relaxation has been little
studied thus far. Kim and Kojima [6], Kim, Kojima, Yamashita [7] considered alternative
approachs of relaxing SDP constraints to SOC constraints. However, it is unclear whether
performance bounds can be derived in their approach.

A key to approximation algorithms is the construction of a feasible but approximately
optimal solution of the original problem from an optimal solution of the relaxed problem.
For SDP relaxation, two approaches have been used to make this construction. One is
based on random separating hyperplane, as was proposed by Goemans and Williamson
[5] and used by many others. Another is based on decomposing a symmetric positive
semidefinite matrix into the sum of rank-1 matrices that lie on the same side of a given
hyperplane, as was proposed recently by Sturm and Zhang [15]. We will follow the second
approach of Sturm and Zhang. By Carathéodory’s theorem [13], any z € K can be
decomposed as the sum of a finite number of nonzero elements of extr K. We will call such
a decomposition a C-decomposition and call the number of nonzero elements the rank. We
make the following assumption on K.

Assumption 1 There exists an integer rankK > 0 such that, for any z € K, we can
construct a C-decomposition of x whose rank is at most rankK .

For K = 8%, we have rankK = n. This is because any symmetric positive semidefinite
real matrix of rank r can be decomposed into the sum of r matrices of rank 1. For K
being the Cartesian product of Lorentz/second-order cones of dimension 2 or greater, we
have rank K = 2. We consider a second assumption on K that in addition assumes that
the elements of the C-decomposition can be chosen to lie in the same halfspace as .



Assumption 2 For any b € H and any z € K satisfying (b,z) < 0, we can construct

z!l, ..., 2P € extrK, for some p > 1, satisfying

p
T = ija <b’$]> < Oa .7 = 17 < D (3)
7j=1

Not all closed convex cones satisfy Assumption 2. For example, the orthant 5)?3_ does
not. However, it was shown by Sturm and Zhang [15] that this assumption is satisfied
by the semidefinite cone ST (n > 2). They proposed a construction procedure requir-
ing O(n?) iterations, with each iteration executable in a polynomial number of arith-
metic/root operations. We will see that Assumption 2 is also satisfied by the product of
Lorentz/second-order cones of dimension 3 or greater.

We will further make the following assumptions:

Assumption 3 (a) b* belongs to the dual cone K* := {y € H : (y,z) > 0 Vz € K}, for
k=1,...,m.

(b) (2) has an optimal solution z*.

Assumption 3(a) is motivated by the SDP relaxation of minimizing a nonconvex
quadratic function subject to ellipsoid constraints [9, 16, 20, 19]. In the case where the el-
lipsoids have a common center, the SDP relaxation has the form (2) with bF € 87 = (87)*,
kE = 1,..,m. Assumption 3(b) is mild. If, in addition to Assumptions 2 and 3(a),
{d € extrK : (b¥,d) <0,k =0,1,...,m} = {0}, then (feasible set of (2)) N {z : (?°,z) < 0}
is nonempty and bounded so that Assumption 3(b) holds.?

Theorem 1 Under Assumptions 1, 2 and 3(b), we can construct from an optimal solution
z* of (2) a C-decomposition of rank at most min{m — 1,rankK}.

Proof. The proof is nearly identical to the proof of Ye [19, Theorem 2| for the case of
K=§8" =

Theorem 2 Under Assumptions 1, 2 and 3, we can construct from an optimal solution
x* of (2) a feasible solution = of (1) satisfying

1
0

< —
(b°, x) -

S|

Uop < —Upgps (4)

where 7 = min{m — 1,rank K }.

’In particular, z = 0 is a feasible solution of (2) with (8°, z) < 0. Thus, X° := (feasible set of (2))N{z :
(8%, ) < 0} is n'onempty. For any = € XO? Assumption 1 yields that z = Z;":l 2’ for some @J € extrK
satisfying (°,27) < 0. Since Z§;1<bk:$]) = (b*,x) < h*, Assumption 3(a) impl?es (b*, 27y < h* for
j=1.,p k=12.,m If 2’ is unbounded for some j, then dividing by [|z’||> and taking limit
yields a cluster point d € extrK of z’/||27||» satisfying ||d||l> = 1, (b*,d) < 0, k = 0,1,...,m. Thus, if
{d € extrK : (b* d) <0,k =0,1,...,m} = {0}, then X° is bounded.



Proof. The proof is nearly identical to the proof of Ye [19, Theorem 3| for the case of
K=§8" =

Throughout, R™ denotes the space of n-dimensional column vectors, S™ denotes the
space of n x n real symmetric matrices, and 7 denotes transpose. For z € R", z; denotes

7

1/2
jth component of z and ||z, = (Ej |:1:j|p) / . Also, “:=” means “define”.

2 Semidefinite Cone

Suppose
H=5" K=8% (zy)=trlz"yl. (5)

As is well known, K* = K, extrK = {z : x = uu’ for some u € "}, and rankK = n.
Lemma 1 If (5) holds, then Assumption 2 is satisfied.

Proof. This is a result of Sturm and Zhang [15, Procedure 1, Proposition 3]. |

3 Norm-Epigraph Cones

Suppose
H=R", K=K x---xKj, (z,y)=2"y. (6)

where n =n1+---+ny,
Kj = {(z1,72) € RX R 1 31 > ||z2llp, 1,

and nj > 2and 1 < pj; < oo, for j =1,...,J. [||z]|, denotes the p-norm of z.] Thus, K; is
the epigraph of the p;-norm function. If p; = 2 for all j, then K is the Cartesian product
of Lorentz/second-order cones. It can be verified that K* = K{ x --- x K} with

K; = {(z1,22) € Rx R 1 a1 > [|lzallg;

where 1/p; +1/g; = 1. Also, extrK = extrK; x -+ x extrK;, with extrK; = {(z1,22) €
R x R~z = |lzalp,}- It is not difficult to see that rankK7 = 2 for all j, so that
rankK = 2. Also, the following result can be shown.

Lemma 2 If (6) holds and n; > 3, 1 < p1 < oo for all j, then Assumption 2 is satisfied.
Proof. Fixany b= (b!,..,07) € R" x--- xR™ and any z = (2!, ...,27) € K1 x --- x K

satisfying (b,z) < 0. For each j € {1,..,J}, write 2/ = (:1:{,:1:%) € N x R~ and
W= (bl,b)) € R x RW~L



Case 1. Suppose z{ > ||z3]|,,. Since ni > 3, there exists nonzero dy € R™ ! such that
b%ng = 0. Then, there exists A\; € R, satisfying z1 = ||z} + A\1d2||p, and there exists
Ao € Ry, satisfying 2} = |21 — Aods||p,. Then,

1 A2

A

1 1 1

ro = —— (x5 + d + T5 — Aod

2 Al AQ( 2 >\1 2) ( 2 2 2)’

A+ A

implying ! = y! + 2!, where

_ . . A
yl = Azl 2 + Mdy), 2l = (1= N)(zl,zd — dadp), A= —2 .
A1+ A2

Moreover, y! € extrK; and
)Tyt = M(bloy + BT (2d + Mdo)) = ABlzy + b8 29) = A(B) Tzl

Similarly, we have that 2! € extrK; and (b')T2! = (1 — X)(b})Tz!.
Case 2. Suppose 7} = ||x%||£,1, then z! € extrK;. Let y' := 21/2, 2! := 2'/2, A :=1/2.
In both cases, we have A € (0,1) and
yl —I—Zl — 131, (bl)Tyl _ S\(bl)TZEl, (bl)Tzl — (1 _ X)(bl)T.Il.
Let ' o o
yvo=xd, A= (1 =N Vi £, yi= (. y)), 2= (2., 20).

Then y and z satisfy

r=y+z <y CextrKy, (b,y)=Xbz)<0, (bz)=(1-A){bz)<O0.

Now we repeat the above decomposition for y and z separately, working with b? =
% 1Y
(b%,b3) and K, instead. This yields 2, u?,v%, w? € extrK, and ji,7 € (0,1) satisfying

£t =yt 7R =AY, ()7 = (- )y
v +w? =22, () Tv? =072, (0H)Tw? = (1 -0)(?)T22

Let
o=y, W= 1 -y Vi#2, t:=t,...,t7), u:=(ul,...,ul).

vi=vd, Wl =1 -0V £2, vi= (.0, wi= (..., w!).

Then ¢, u, v and w satisfy

y=ttu, thu'€extrKy, t?,u® € extrKy, (bt) = fu{b,y) <0, (bu)= (1—f)(b,y) <O0.

z=v4+w, v,w' €extrKy, v’ w® € extrKy, (b,v)=0(bz) <0, (bw)= (1-2)(b,z) <O0.



Then we repeat the above decomposition for ¢, u,v,w separately, working with % =
(b3,b3) and z® = (z3,23) instead, and so on. Continuing in this manner, we obtain a
C-decomposition of = of rank at most 27, with the elements of the decomposition making
an obtuse angle with b. |

The proof of Lemma, 2 is constructive and the construction procedure requires O(2”)
iterations, with each iteration executable in a polynomial number of arithmetic operations.
Thus, the procedure is polynomial time if J = O(logn + logm). This lemma is illustrated
in the figure below.

X 2 1%k

Xy
%
KMNH
7 extr KINH

Figure 1: Illustration of Lemma 2 for J =1, p1 =2, n1 =3. H = {z = (z1,292) : (b,x) =
0}. Any z € K can be expressed as the sum of some y, z € extrK lying on the same side
of H as z.

4 SOCP Relaxation

Consider the following problem

o
min 357y el + ()T
st Yy allledlls + (@) s <bi, i=1,..m,



where ¢f,a¥ € R and d,dy € R satisfy a? > ||a¥ ||, for all 4,j. This problem is
nonconvex. It can be written in the form (1) by substituting =] = ||z}]|2:

min Y7, (b%)7ad
st Y (09) 2l <b,  i=1,..,m, (8)
z) € extrKJ, i=1..J

where b% = (c],c}), b9 = (a,ay), 27 = (z1,2}), K/ = {(z1,22) € R x R~ : 2y >
||lz2||2}. Moreover, b € K/ = (K7)* for alli = 1,...,m, j = 1, ..., J, so Assumption 3(a)
is satisfied, where K = K; x --- x K;. The corresponding relaxation (2) is a SOCP.

If n; > 3 for all j, then Lemma 2 implies that Assumption 2 is satisfied. Thus, if
the relaxed problem (2) has an optimal solution, by Theorem 2 and rankK = 2, we can
construct a feasible solution z of (8) whose objective value is within a factor of

1
min{m — 1,2}

of the optimal objective value of (8). If n; > 2 for all j, then the performance bound
worsens to 1/2. Notice that the above result still holds if 2-norm is replaced by p-norm
with 1 < p < co. However, the relaxed problem may be more difficult to solve.

5 Further Extensions

An important variant of (1) entails the addition of a normalization constraint:

= min (% )

Vg
s.t. (BF,z) <hE E=1,..,m, (9)
T €extrKNL,

where b™! € K* and
L:={z: (™ 1) =1}.

This class of problem arises, for example, in minimizing a nonconvex quadratic function
subject to ellipsoid constraints, where the ellipsoids do not have a common center [16].
Suppose the relaxation of (9), namely

:= min (b°, z)
st (WF,z) <hE, k=1,..m,
re KNL,

UCP’

has an optimal solution z*. We have from (b"™*1 z*) =1 that (8° — v, o™, z*) = 0.
Under Assumption 2, we can find 27 € extrK, j =1, ..., p, such that

bm+1,$j> <0,7=1,..,p.

CP/

P
= ij and (B —w
j=1



[In fact, the inequalities are satisfied with equalities.]
As in [16], this yields the existence of j € {1,...,p} such that

- k ,.j
m+1l j <b » T )
(™t 27) >0 and k:h2k2:17<bm+law3> < K,

where £ := Card{k € {1,...,m} : k¥ = 1}. Thus, letting & := z7/(b"™1", 27), we obtain
that

geexttKNL, (MF,2)=0 ifrF =0, > @) <k @¢°3)<v
k:hk=1

(10)

cP/ "

Since Assumption 3(a) implies (b, &) > 0 for k = 1,...,m, (10) yields (b*, %) < k. Then
# is a feasible solution of (9) except that (b¥,Z) might exceed 1 by a factor of x for those
k with h* = 1. We need to modify # to obtain a feasible solution of (9) whose objective
value is not too far from that of .

In the case of (5) and

bt = el e, = nth coordinate vector in R”,
for which (9) corresponds to minimizing a nonconvex quadratic function subject to ellipsoid
constraints, if there exists a feasible solution z of (9) with (°,z) < 0 and (*,z) < 1
whenever h¥ = 1, then we can construct from # and Z a feasible solution z of (9) satisfying

1— 2
0, z) < (A-v@) v,
(it V) "o
where w = kn}:ax1<bk,a_:) [16].
NEp=
In the case of (6), we are currently studying ways to analogously construct a feasible
solution of (9) from & and a known strictly feasible solution of (9).

References

[1] Alizadeh, F., Interior point methods in semidefinite programming with application
to combinatorial optimization, SIAM J. Optim., 5 (1995), 13-51.

[2] Alizadeh, F. and Goldfarb, D., Second-order cone programming, Math. Program.,
95 (2003), 3-51.

[3] Bomze, I. M. and de Klerk, E., Solving standard quadratic optimization problems
via linear, semidefinite and copositive programming, J. Global Optim., 24 (2002),
163-185.

[4] Goemans, M. X., Semidefinite programming and combinatorial optimization,
Proc. Intern. Congress Math., Vol. III (Berlin, 1998), 657-666.



[5]

[6]

[7]

8]

[9]

[10]

[11]

[12]

[13]
[14]

[15]

[16]

Goemans, M. X. and Williamson, D. P., Improved approximation algorithms
for maximum cut and satisfiability problems using semidefinite programming, J.
Assoc. Comput. Mach., 42 (1995), 1115-1145.

Kim, S. and Kojima, M. Exact solution of some nonconvex quadratic optimization
problems via SDP and SOCP relaxation, Report B-375, Department of Mathe-
matical and Computing Sciences, Tokyo Institute of Technology, Tokyo, Japan,
January 2002; revised July 2002.

Kim, S., Kojima, M., and Yamashita, M., Second order cone programming re-
laxation of positive semidefinite constraint, Report B-381, Department of Math-
ematical and Computing Sciences, Tokyo Institute of Technology, Tokyo, Japan,
July 2002.

Lovész, L. and Schrijver, A., Cones of matrices and set-functions and 0-1 opti-
mization, SIAM J. Optim., 1 (1991), 166—190.

Nemirovski, A., Roos, C., and Terlaky, T., On maximization of quadratic form
over intersection of ellipsoids with common center, Math. Program., 86 (1999),
463-473.

Nesterov, Y., Semidefinite relaxation and nonconvex quadratic optimization, Op-
tim. Methods Software, 9 (1998), 141-160.

Nesterov, Y. and Nemirovskii, A., Interior Point Polynomial Algorithms in Con-
ver Programming, SIAM, Philadelphia, 1994.

Nesterov, Y., Wolkowicz, H., and Ye, Y., Semidefinite programming relaxations
of nonconvex quadratic optimization, in Handbook of Semidefinite Programming,
edited by H. Wolkowicz, R. Saigal, and L. Vandenberghe, Kluwer, Boston, 2000,
360-419.

Rockafellar, R. T., Convex Analysis, Princeton University Press, Princeton, 1970.

Shor, N. Z., Quadratic optimization problems, Soviet J. Comput. Systems Sci.,
25 (1987), 1-11.

Sturm, J. F. and Zhang, S., On cones of nonnegative quadratic functions, Report,
Department of Systems Engineering and Engineering Management, The Chinese
University of Hong Kong, Hong Kong, December 2000; to appear in Math. Oper.
Res.

Tseng, P., Further results on approximating nonconvex quadratic optimization by
semidefinite programming relaxation Report, Department of Mathematics, Uni-
versity of Washington, Seattle, October, 2001; revised October, 2002; to appear
in STAM J. Optim.



[17]

[18]

[19]

[20]

[21]

Ye, Y., Approximating quadratic programming with bound and quadratic con-
straints, Math. Program., 84 (1999), 219-226.

Ye, Y., Approximating global quadratic optimization with convex quadratic con-
straints, J. Global Optim., 15 (1999), 1-17.

Ye, Y., Semidefinite programming for global quadratic optimization, Report, De-
partment of Management Sciences, University of lowa, Iowa, September 2001.

Ye, Y. and Zhang, S., New results on quadratic minimization, Report, Department
of Systems Engineering and Engineering Management, The Chinese University of
Hong Kong, Hong Kong, April 2001; to appear in STAM J. Optim.

Zhang, S., Quadratic maximization and semidefinite relaxation, Math. Program.,
87 (2000), 453-465.

10



