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Abstract

We propose a novel and efficient computational scheme for capturing the mul-
tiplicity of solutions that may exist at any loading step of a quasibrittle fracture
analysis formulated as a linear complementarity problem (LCP). The algorithm
proposed is based on successively augmenting the current LCP by complementar-
ity contraints that effectively remove previously found solutions from the solution
set. We focus on the single-step or so-called holonomic analysis for mode T behav-
ior. The performance of the proposed approach is illustated by means of physically
meaningful benchmark problems.

1 Introduction

The computational analysis of structures made of quasibrittle materials is not only
an important task but also a challenging one in view of constitutive instabilities that
are present. In particular, such materials exhibit unstable local softening which can
result in such mechanically crucial and well-known global (i.e., at the structural level)
phenomena as bifurcation and snap-back, including lack of uniqueness of response to a
given loading history (see e.g. [1]-[3]).

A widely-used simulation for fracture processes is the one based on kinematic dis-
continuities endowed with an interface softening law. A simple, yet powerful, instance
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of such an idealization is the discrete fictitious or cohesive crack model which has its
genesis in the work of Dugdale [6], Barenblatt [7], Hillerborg et al. [8] and Carpinteri [9].
This model has the following key features: a locus of potential displacement discontinu-
ity (referred to as “craze” or “process zone”) ahead of the fully formed crack; a softening
law relating tractions to relative displacements across the discontinuity locus; and linear
elasticity outside the process zone.

Complementarity is a particularly elegant and powerful mathematical structure that
can be used to describe such softening laws [10, 11, 12]. The implied perpendicularity
of two sign-constrained vectors is not surprising since contact-like conditions apply at
the crack interfaces. For instance, the stress is zero at an open crack and nonnegative
(compression is assumed positive) at a closed crack. In mode I fracture, as is essen-
tially assumed in the present work, piecewise linearity of the softening laws is a good
assumption that is corroborated by experimental evidence (e.g. [13]).

One of two types of fracture analyses needs to be performed: holonomic or nonholo-
nomic. Holonomic behavior (analogous to the deformation theory of plasticity), it must
be recalled, implies path-independence and reversibility. This applies, for instance, to
engineering situations where the main actions are monotonically increasing in time and
manifestations of irreversibility (i.e., local elastic unloading) can be a priori deemed to
play a minor role on the essential behavior of the structure. Nonholonomic behavior
(analogous to the flow theory of plasticity), on the other hand, involves significant elas-
tic unloading phenomena so that a time-stepping scheme based on a rate formulation
is required, instead of a formulation in total quantities.

Notwithstanding whether holonomy or nonholonomy is more appropriate, one (single-
step holonomic analysis) or more (multi-step nonholonomic analysis) linear complemen-
tarity problems (LCPs) must be solved if piecewise linear softening laws are adopted.
We recall that the LCP is a mathematical programming problem [14] which consists of
finding a vector, in a finite-dimensional real vector space, that satisfies a system of in-
equalities and certain complementarity conditions. In standard form, this is represented
as

0<f=Mx+q L x>0 (1)

where the vector ¢ € R” and the matrix M € R"*" are given. It is required to find a
vector x € R" satisfying (1) or to show that no such z exists. We adopt the symbol L to
denote complementarity; for nonnegative vectors f and x this implies the componentwise
condition fjz; = 0 for all ¢; and, for brevity, we will henceforth refer to (1) as LCP(M, g).

After more than three decades of research, the study of the LCP by the mathematical
programming community [14] has become in its own right a well-established and fruitful
discipline within mathematical programming. In addition to the expected desire by
mathematical programmers to develop robust and efficient algorithms for solving such
problems, much of the research effort has been concentrated on the theoretical study of
various matrix classes to which M belongs. Indeed, almost all the proposed algorithms
for numerical solution are based on the assumption that A belongs to a particular
matrix class.



Unfortunately, in the presence of constitutive instabilities as would be the case for
our fracture problem, the LCP which needs to be solved is computationally challenging
for two reasons. Firstly, M turns out to be in general nonsymmetric and indefinite with
the consequence that there are currently no known algorithm guaranteed to process
successfully this class of LCPs. Secondly, for a typical step of either a holonomic or
nonholonomic analysis, we would like to numerically capture all solutions or to show
that none exists. This largely open problem of obtaining efficiently and robustly all
solutions to the often large-size LCPs that arise in fracture analyses forms the focus of
the present paper. In essence, we propose a novel scheme to achieve this. We further
note that the solutions to the LCP are expected to be isolated and we assume in our
algorithm that they are indeed so.

Essential to our approach is the availability of an LCP solver capable of providing a
solution to the often large-size LCPs arising in fracture problems. In spite of the above
statement regarding the lack of algorithm guaranteed to solve our particular LCP, we
have had complete success with the industry-strength mixed complementarity problem
solver PATH [15] which, moreover, is only designed to solve for one solution. We have
found PATH to be extremely fast and robust, even for large-size LCPs—an essential
requirement for our purposes.

Our previous attempts to capture solution multiplicity have been partially successful
[16, 17]. For instance, our implementation of the enumerative method of Judice and
Mitra [18] could only process LCPs of sizes up to about n = 50. This is not unexpected
since it requires exhaustive exploration of a binary tree with 2”1 — 1 nodes, albeit
with the provision of various heuristics to fathom nodes (leading to a termination of the
relevant branches). Larger size problems (up to about n = 150) were solved by simply
starting PATH from different initial vectors z, judiciously chosen from a knowledge of
expected crack patterns (and number of solutions). For problems with unknown crack
patterns, this approach is not satisfactory as solutions can easily be left out. We have
also observed that, with an increase in robustness of the PATH solver after each revision,
there is more tendency for the same solution to be found with the different trial vectors,
with some solutions again being missed. Interestingly, a recent paper by von Stengel et
al. [19], in the context of Nash equilibria of two-person games, suggests precisely the
same technique of varying the starting points of the adopted LCP solver to capture the
several equilibria that may exist. A third scheme we have attempted but without any
success on LCPs of more than about n = 20 is the method proposed by De Moor et
al. [20] who implicitly generate all solutions to LCPs arising in piecewise linear resistive
electrical circuits. Their method essentially alternates the construction of vertices of
the polytope describing the constraints with a verification of their complementarity. A
partial enumeration method, based on solving a series of set covering problems, was
proposed by Murty to find all solutions of a certain type of LCP [21, Section 11.3]. This
method has not been computationally tested.

The idea underpinning the method we propose in this paper is simple: by adding
suitable constraints we successively eliminate each solution from the original LCP so-



lution set as it is detected. We thus need to solve a series of LCPs of increasing sizes,
until no solution is found. The requirement of a robust, fast and large-scale solver is
thus evident.

This paper is organized as follows. In the next section, we review key concepts
related to the discrete fracture model leading to a standard LCP(M,q) formulation;
without any loss of generality, as discussed previously, we deal with the holonomic case.
Section 3 then describes and provides a proof for the proposed algorithm. We present, in
Section 4, some computational results to highlight its efficiency and robustness, before
concluding in Section 5.

2 The discrete holonomic fracture problem

Consider the 2-dimensional body shown in Fig. la which provides a generic definition
of our fracture problem. The domain is subdivided into two homogeneous, linear-elastic
and isotropic zones by a known locus or interface I along which the assumed pure mode 1
crack will propagate. As usual, the boundary of the body consists of a constrained part
and of an unconstrained part for which displacements and tractions are prescribed,
respectively. The loading p is assumed to be governed by a monotonically increasing
parameter.

We adopt a cohesive crack model which assumes that I' is the locus of potential dis-
placement discontinuities characterized by a softening constitutive law relating tractions
t to displacement jumps w across the interface. Thus ' can be conceived as the union
of cracks I, (where ¢t = 0), process zone I', (where ¢ # 0 and w # 0) and undamaged
material I'e (where w = 0). Clearly, in the fracture process zone, the damaged material
is still able to transfer stresses, albeit at a reduced level as compared to the intact ma-
terial. These stresses are, as expected, decreasing functions of the relative displacement
discontinuities (cracks) and become zero when a crack is fully developed.

A (two-zone) discrete model of the structure can easily be constructed from either
finite elements [10] or boundary elements [22, 23]. As is well known, a boundary element
approach is computationally more attractive than a finite element approach as it involves
variables on the boundary and on the locus only. However, in either case, the formulation
simply consists of condensing all variables to the ¢ node pairs on I.

We first state the mathematical description of a piecewise linear holonomic cohesive
law for mode I processes as it would apply to a generic node ¢ on the interface. Assuming
a three-branch softening law (as in Fig. 1b), the relevant constitutive relationship can

then be expressed in the following complementarity format [12]:

ST = tqu1 + tyva + tevg + (M My + ha My + haM3)2' + nt', (2)
0<f L >0 (3)

where f' € ®* and 2' € R®* are nonnegative vectors; f' actually collects the softening
functions in the order: horizontal branch, first softening branch, second softening branch



and third softening branch. More explicitly, z/1 = [zi,z%,zé,zfl] with z} physically
representing the final crack width (Fig. 1b).

The model is characterized by six constant (nonnegative) parameters tq, tp, tc, b1,
he, hs (which obviously represent key values of tractions and absolute softening slopes
at all ¢ nodes), and by the following constant vectors and matrices:

_0_ _0_ _1_ _—1_
0 -1 1
v = ; V2 = ; v3 = y n= y
—1 1 0 0
1 0 0 0
[ 2110 0] [0 11 0] (00 -1 1]
-1 1 0 0 0O 0 00 00 0 O
Ml_ ) M2: ) M3: (4)
0O 0 0 O 0O -1 1 0 00 0 O
0O 0 0 O 0O 0 00 00 —1 1

It is easy to verify, for instance, that, for any given traction 0 < #* < t., precisely
two solutions for w' exists (one corresponding to the elastic w® = 0 vertical branch and
the other due to activation of a softening mode) and their values are as predicted by
simple geometry of the piecewise linear model. Similarly, for, say, any given crack width
0 < w' < w, there exists only one solution to the LCP.

Next, we can conceive (see [23] for details) the nonlinear response of the structure as
being governed by the following discrete counterpart (appropriately condensed to cover
only the nodes pertaining to the crack locus) of an integral equation:

t=1t"+Zw (5)

where, for ¢ node pairs on the interface, {* € R¢ represents the elastic normal tractions
of the uncracked structure (i.e., in the absence of displacement discontinuities) caused
by the applied load parameter, and Z € R°*¢ is a matrix of influence coeflicients which
operates on w € RN to give the normal tractions caused by unit crack openings in the
otherwise unloaded structure.

All elements of the vector t € R® of total tractions must in turn satisfy the softening
laws given by (3) collected for all points ¢ on the interface.

We choose to assemble the various quantities as follows: f{ = [fi...[f{], 21 =
[21...2], etc. so that f; € RE gathers the softening functions complementary to the
real crack widths w = z; € R (see Fig. 1b). Then, for the entire interface, we collect
variables f € R4 and z € R4 as T = [f] ... fI] and 2T = [T ... 2], respectively.

Finally, after some simple manipulations, we arrive at the following LCP:

Oﬁf:[thl+h2M2+h3M3—Z]Z—I-tavl—l-fb%—l-fc%—fe 1L z>0, (6)



which is clearly equivalent to a standard LCP(M, q) by setting

M = hy My + ho My + hy Mz — Z, (7)
q=1taV1 +tVy +tcVs — I (8)

where matrices My, Mo, M, Z € R4*4 and vectors Vi, Vs, Vi, £ € R4 are given by

7 7 0 0] (0 -7 7 0| [0 0 -7 7]
X 770 0 i 0 0 00 X 00 0 0
MIZ 7M2: 7M3: 3
0 0 0 0 0 -7 T 0 00 0 0
0 0 0 0 0 0 00 00 —J T
[0 ] [0 ] [ e ]
R 0 N —e N e
Vl— 7V2_ 7‘/}): 3
—e e 0
e 0 0
7 0 0 0] [ e ]
X 000 0 i 0
7 = . 1= (9)
000 0 0
000 0 0

with 7 being an identity matrix, e a vector of ones, and 0 a null vector or matrix, all of
appropriate sizes.

3 Algorithm to find multiple solutions to LCP

Let LCP(M, q) be the original problem, with M € 2"*", g € R". At each iteration, we

consider the following LCP:
M 0
LCP | (10)
N D r

for some constructed matrices N, D and vector r. Initially, N, D,r are null matrices

and vectors.

Let (z,y) be a solution found; if no solution is found, then we quit. It is readily seen
that z is a solution of LCP(M, ¢). Now we will construct a new LCP that excludes z
from its solution.

Let J ={i € {l,..,n}:x; > 0}. For any x > 0, we have that x = z if and only if =

satisfies

ieJ icJ igJ



This system of linear inequalities can be written in the form
Ar+b>0 (12)

for suitable A € R™*™ and b € R™, where m = min{|J| +2,n + 1}. If |J| = n, the
last inequality Zig ;Z; < 0 would hold vacuously and hence can be dropped. Thus any
x # = would satisfy min(Axz + b) < 0. Since the solutions of LCP (M, q) are assumed
to be isolated, there exists € > 0 such that min(Az + b) < —e for all solutions x of
LCP(M, q) that are not equal to z. In general, € can be chosen to be the radius of the
£1-ball around Z from which future solutions are to be excluded.

Then we consider the new LCP given by

M 0 0 0 q
N D 0 0 r
LCP , (13)
A 0 [T 0 b
0 0 ' —1 —€
and we reiterate. In other words, we replace N, D,r by
N D 0 0 r
NTew — A 7 prew — 0 7 0 7 e b ) (14)
0 0 el —1 —€

Now we show by induction that this works.

Suppose that z* solves LCP(M, ¢), * does not equal any previously found solutions
(including z). By inductive hypothesis, there is some y* such that (z*,y*) is a solution
of LCP (10). Since z* solves LCP(M, ¢) and z* # Z, then min(Az* +b) < —e. Set
2* € RMTL according to

z; = max{0, —[Az" + b;}, i=1,..m, =z}, =0. (15)
Then
28 >0, 2 +[Az*4+0; =0 if [Az* +b]; <0, (16)
2 =0, 2z +[Az" +0b]; >0 if [Az* +b]; >0, (17)
Z;;H»l:(): Zik+"'+z;1_z;1+1_6207 (18)

so that (z*,y*, 2*) is a solution of the new LCP.

Conversely, suppose that (z*,y*, 2*) solves the new LCP. Then (z*,y*) solves LCP
(10) and z* solves LCP(M,q). By the inductive hypothesis, z* does not equal any
previously found solutions (not including z). We claim that z* # z. This is because

A4t = —e 20, (19)



implying 27 +--- + 25, > 25,1 + € > €, 50 zj« > ¢/m for some i* € {1,...,m}. Then the
complementarity condition yields

2 4+ [Az® +b)i= =0 (20)

so that [Az™ + b+ = —z% < —e/m and hence min(Az* + b) < —¢/m < 0. This shows
that =* # Z. Q.E.D.

To summarize, the overall algorithm is:

e Step 0: Initialize N, D, r to null matrices and vectors.

e Step 1: Solve LCP (10). If no solution is found, quit. Else let (z,y) be the solution
found. Construct A,b as in (12). Choose a sufficiently small ¢ > 0 as discussed
earlier. Update N, D, r according to (14). Return to Step 1.

4 Computational results

Various computational results are provided in this section with the aim of highlighting
the performance of the approach described in the previous section.

The algorithm was easily implemented as a MATLAB (ver 6.1) code, albeit without
any special provisions for efficiency. For fracture problems, the code simply: (a) forms
the data for LCP(M, q) precisely as detailed in (9); (b) writes to a text file the data in
GAMS [24] format (GAMS is a mathematical programming modeling environment and
stands for General Algebraic Modeling System); (c) invokes a MATLAB-GAMS link
[25] to solve the LCP using the PATH solver; (d) exits if no solution is found, or reforms
a new LCP in accordance to (13) and reiterates. There are only two initial parameters
that are required: the value of € and the initial vector = for the LCP(M, q).

All runs were carried out on a 1 GHz Pentium IV running Win NT4. GAMS/PATH
(ver 4.6.03) was used for all MCP solves from within GAMS (Rev 133) and was run with
default settings except with preprocessing turned “off” and the proximal perturbation
factor set to 0.1 [15]. Approximate timings were obtained using the MATLAB “tic”
and “toc” functions and include all file reads and writes, GAMS/PATH solves as well
as MATLAB processing,.

In the following, we report on three sets of examples. Each example consists of
a whole series of (single-step) holonomic analyses carried out for different load levels,
in effect solving a series of LCPs for the same M matrix but different ¢ vectors. The
holonomic runs for each example, it must be stressed, are independent runs but were
carried out simultaneously in a single MATLAB run.

4.1 Example 1: three-bar softening truss

The simple textbook three-bar truss with softening elements [16], shown in Fig. 2a, can
be considered a prototype of more meaningful quasibrittle fracture situations. Data
(kN, mm units) are as follows: area of vertical bar = 800; areas of inclined bars = 500;



yield limit = 0.5; elastic modulus = 200; softening modulus = —50. The interested
reader should refer to Bolzon et al. [16] for basic details of how M and ¢ are formed
(although, for the present work, we use a slightly reduced but equivalent LCP).

For the single-step analyses, the load p was set at 42 levels (increasing from 0 to
800 in steps of 20 and at the known maximum level of 815.68). We used ¢ = 0.1 and
xT =[10...10] for all LCPs.

Manifestations of overall instability and bifurcations of the equilibrium path, which
are typical consequences of softening constitutive laws, are to expected to occur with
both symmetric (S) and nonsymmetric (NS) responses (as indicated in Fig. 2b). Indeed
the responses obtained confirm this. We show in Fig. 3, the load p versus vertical dis-
placement u solutions obtained: one symmetric path and two nonsymmetric branches
were identified correctly (although the two nonsymmetric solutions cannot be distin-
guished since their vertical deflections are identical). As expected, the nonsymmetric
branch leads to a lower limit load.

The analyses took 41 secs, and successfully identified precisely (without any spurious
or repeated solutions) all expected 159 solutions; 201 LCPs (viz. 159 + 42, since for
each of the 42 single-step analyses an additional LCP had to be processed to ensure no
further solution in each case) were solved with sizes ranging from n = 3 to n = 21.

4.2 Example 2: two-notch tensile (2NT) test

This second example concerns the well-studied two-notch tensile (2NT) test for which
multiple equilibrium paths and unstable responses are expected. The loaded speci-
men is shown in Fig. 4a, while the expected deformed configurations consisting of one
symmetric (S) and two nonsymmetric (NS) modes are drawn in Fig. 4b.

We adopted the same geometrical specimen as in [17, 23], but used a three-branch
softening law, instead of a single branch (the properties of which were especially selected
to induce a severe snap-back instability). Details of geometric and material properties
are: length = 250 mm; width = 60 mm; thickness = 1 mm; notch depth = 5 mm (on
each side); Young’s modulus = 18000 MPa; Poisson ratio = 0.2; three-branch softening
with ¢, = 1, t, = 2, t. = 3.4, hy = 350, hy = 250, hg = 200 in N, mm units. A
distributed load of p = 48a N was applied to each end of the specimen and the midside
deflection u over half of the length determined.

We used a simple collocation boundary element model with a total of 78 quadratic
elements, of which 10 element pairs (or 21 node pairs) were located on the interface.
Thirty two single-step analyses were carried out within the same run, with load factor
a increasing from 0.1 to 3.2 in steps of 0.1. We used ¢ = 10® and z? = [10...10] for
all LCPs.

Figure 5 shows the « versus u solutions obtained. As in the previous example, sym-
metric and nonsymmetric softening deformations are evident, with the nonsymmetric
path providing the lower limit load. We again note that there are in fact two nonsym-
metric configurations (left crack and right crack).



The analyses took 65 secs, and again successfully identified all 118 expected solutions
as well as the fact that the last two load levels had no solutions; 2 solutions were obtained
twice; 152 LCPs were solved in all with sizes ranging from n = 84 to n = 363.

4.3 Example 3: wedge-splitting (WS) test

The wedge splitting (WS) and three-point bending (3PB) tests are standard experi-
mental setups primarily aimed at obtained key material data from quasibrittle brittle
fracture specimens. The respective idealized setups are as shown in Fig. 6a and Fig. 6b.
In order to be able to trace the softening response, a displacement (u), rather than load
control (p), is applied in experiments. In the following WST example, we, however,
adopted a load control so that multiplicity of solutions exist.

We used data related to an actual, normal-strength concrete specimen from a sophis-
ticated WS test carried out at the Swiss Federal Institute of Technology [26]. Details of
the specimens used (geometry and elastic properties) are provided in Tin-Loi and Que
[27]. A realistic three-branch law with ¢, = 0.255, ¢, = 1.129, ¢, = 4.138, hy = 173.04,
ho = 14.34, hg = 1.17 was adopted.

The discretized models of the WS test was constructed from the same direct two-
zone, collocation boundary element approach used for the previous example. The dis-
cretization involved 192 quadratic elements, with 17 element pairs (35 node pairs) on
the crack interface. The applied load is p = 97«. Thirty single-step analyses were car-
ried out within the same run, with « increasing from 1 to 30 in steps of 1. We set
T =10...0] for all LCPs but varied ¢ as follows: ¢ = 1 for a < 10, ¢ = 102 for o > 10.
The choice of ¢ appears to be related to the distance between the solutions; obviously
if solutions are close together, a smaller ¢ needs to be used to ensure previous solutions
are constrained out.

As is well known, that particular test (as also for the 3PB test) for well-designed
experiments provides two solutions at the most. This is corroborated by the p—u results
obtained and displayed in Fig. 7; the response consists of a symmetric softening path
only.

The analyses took 65 secs, and again successfully identified all 60 expected solutions;
99 LCPs were solved with sizes ranging from n = 140 to n = 397. However, in spite
of increasing the PATH tolerance option to 5 x 10~%, some (9 in all) spurious solutions
(which were clearly physically unacceptable although they satisfied complementarity to
the provided tolerance) were obtained.

5 Concluding remarks

Key features of quasibrittle fracture analyses are multiplicity or lack of solutions. This
is expected from both mechanical and mathematical considerations. A fracture analysis
can be elegantly formulated as a complementarity problem which is linear when the
well-accepted piecewise linear softening laws are adopted. The problem, however, is to
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compute numerically all solutions to the LCP, or to show that none exits.

This paper proposes a novel scheme to achieve this. In essence, the algorithm simply
keeps setting up a new LCP that does not contain any previously found solutions until
no further solution is identified. It requires the availability of a good LCP solver such
as the industry-standard PATH code.

It was conclusively found, from our numerical tests, that the indicated method is
eminently feasible—in fact better than any other proposed so far. Firstly, it is simple
as it involves minimal coding and requires essentially the setting of a single parameter
€ representing the radius of the £1-ball from which future solutions are to be excluded.
Secondly, it is extremely efficient since the core LCP solver, PATH, is so. In fact, it
can be made more efficient if the scheme either makes use entirely of MATLAB or of
GAMS, rather than having to rely on writing the MATLAB generated data to a GAMS
input file, as done in this paper. Thirdly, it is surprisingly robust. And, lastly, it has
the capability to solve large-scale problems.

Also worthy of mention is the fact that the proposed algorithm is not specific to
fracture problems; it can obviously solve LCPs that arise in various other fields such
as in the computation of Nash equilibrium points, transport equilibria and multiplicity
of electrical networks. Nor is it specific to LCPs only; it can be used to process any
nonlinear mixed complementarity problem. Finally, even in cases where the solutions of
the LCP are not isolated, we believe that the method could still be employed to build
a finite solution subset that spans, in some fashion, the solution set of the LCP.
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FIGURE CAPTIONS

. Fracture problem: (a) structure; (b) piecewise linear cohesive crack model.

. Three-bar softening truss: (a) structure; (b) possible deformed configurations.
. Three-bar softening truss: p — u solutions.

. Two-notch tensile test: (a) specimen; (b) possible deformed configurations.

. Two-notch tensile test: o — u solutions.

. Standard fracture tests: (a) wedge splitting; (b) three-point bending.

. Wedge-splitting test: p — u solutions.
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