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Abstract: We consider the problem of minimizing the weighted sum of a smooth function
f and a (separable) convex function P of n real variables subject to m linear equality con-
straints. We propose a block-coordinate gradient descent method for solving this problem,
with the coordinate block chosen by a Gauss-Southwell-¢q rule based on sufficient predicted
descent. We establish global convergence to first-order stationarity for this method and, un-
der a local error bound assumption, linear rate of convergence. If f is convex with Lipschitz
continuous gradient, then the method terminates in O(n?/¢) iterations with an e-optimal
solution. If P is separable, then the Gauss-Southwell-¢ rule is implementable in O(n) op-
erations when m = 1 and in O(n?) operations when m > 1. In the special case of support
vector machines training, for which f is convex quadratic, P is separable, and m = 1, this
complexity bound is comparable to the best known bound for decomposition methods. If f
is convex, then, by gradually reducing the weight on P to zero, the method can be adapted
to solve the bi-level problem of minimizing P over the set of minima of f + dx, where X
denotes the closure of the feasible set. This has application in the least 1-norm solution of
maximume-likelihood estimation.
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1 Introduction

We consider a class of constrained nonsmooth optimization problems of the form:

min F.(e) € f(2) + cQ(2), (1)
where ¢ > 0,
of [P if Arz = b;
Q) = { oo(x) ;lsex

P :R" — (—o0, 0] is a proper, convex, lower semicontinuous (lsc) function [34], A € R™*",
b € R™, and f is real-valued and smooth (i.e., continuously differentiable) on an open subset
of R" containing dom@ = {z | Q(z) < oo}. We assume dom@ # (). Then @ is proper,
convex, Isc, and @ is polyhedral whenever P is polyhedral. The objective function F is in
general nonsmooth and nonconvex. Of particular interest is when m is small, n is large,

and P is separable, i.e.,
n

P(z) =3 Pj(z;), (2)
j=1
for some proper, convex, Isc functions P; : ® — (—o0, 00]. However, @ is not separable due
to the constraints Az = b (unless m = 0).

The problem (1) with P separable is quite general and includes as special cases prob-
lems of box-constrained smooth optimization and, more generally, nonsmooth separable
optimization (m = 0) [12, 13, 19, 29, 41], as well as monotropic optimization (f = 0)
[35], and linearly constrained smooth optimization (P is the indicator function for a box)
(2, 9, 14, 30]. In applications arising in signal denoising, image processing, and data classi-
fication, the problem is often large scale (n > 10000) and P may be nonsmooth to induce
solution sparsity; see [4, 7, 8, 10, 11, 37, 38, 39] and references therein. Such applications
include Basis Pursuit/Lasso (f is convex quadratic, P is the 1-norm, m = 0) [7, 8, 11]
and support vector machine (SVM) training (f is quadratic, P is the indicator function
for a box, m = 1) [18, 32]. Methods that update x one coordinate block at a time are
well suited to solve these problems, due to their low computational cost per iteration and
ease of implementation and parallelization. Such methods include (block) SOR methods
for finding sparse representation of signals and decomposition methods for SVM training;
see [2, 5, 6, 11, 15, 18, 21, 22, 23, 26, 32, 37, 39] and references therein. Recently, block-
coordinate gradient descent (CGD) methods were proposed in [41] for solving the case of
m = 0 and then extended in [42] for linearly constrained smooth optimization. These meth-
ods approximate f by a quadratic at the current iterate =, apply block-coordinate descent
to generate a feasible descent direction d, and then update x by performing an inexact line
search along d. Numerical experiences in [28, 41, 42| suggest that the CGD methods can
be effective in practice.

In this paper, we extend the CGD methods in [41, 42] to solve the general problem
(1). As in [41, 42], we choose the coordinate block according to a Gauss-Southwell-¢ rule



and choose the stepsize according to an Armijo-like rule; see (7) and (10). (In [41], a
Gauss-Seidel rule and a Gauss-Southwell-r rule for choosing the coordinate block are also
considered. We do not consider them here for reasons to be explained in Section 8.) Our
main contributions are three-fold. First, we show that, in the case where P is separable and
piecewise-linear /quadratic with O(1) pieces, the Gauss-Southwell-¢ rule is implementable
in O(n) operations when m = 1 and in O(n?) operations when m > 1; see Section 6. This
is based on conformal realization [33], [35, Section 10B] of a diagonally scaled gradient
“projection” direction, and extends the procedure in [42, Section 6] for linearly constrained
smooth optimization. The resulting method uses only O(n) operations per iteration when
m = 1, P is separable and piecewise-linear/quadratic with O(1) pieces (e.g., 1-norm), and f
is quadratic or has a partially separable structure; see the end of Section 6. Second, we show
that, for any ¢ > 0, the CGD method terminates in O(n?/¢) iterations with an e-optimal
solution, assuming f is convex with Lipschitz continuous gradient; see Theorem 5.1. This
is the first complexity bound for a CGD method. When specialized to the training of SVM
(m =1, P is the indicator function for a box II}_, [l;, u;], and f is quadratic), the resulting
complexity bound of

0 (2 i o0 () i ) )

€ Nbmax

operations for achieving e-optimality, where by, = nax (uj —1;) and A is the maximum
<j<n

norm of the 2 x 2 principal submatrices of V2f(z), is comparable to the currently best
bounds for decomposition methods [16, 17, 22]; see Section 6 for details. In addition,
the method achieves global convergence to first-order stationarity and, under a local error
bound assumption, linear rate of convergence; see Theorems 4.1 and 4.2. This generalizes
[41, Theorem 3] and [42, Theorem 5.1] for the cases of m = 0 and linearly constrained
smooth optimization. Third, when f is convex and under a mild assumption on (), we show
that, by gradually decreasing ¢ towards zero at a suitable rate during the execution of the
CGD method, we can solve the following bi-level problem:

min Q(z), (3)

zESy

where Sy denotes the set of minima of f over X, where X denotes the closure of dom@).
This problem arises, for example, in the least 1-norm solution of a least square problem or
a maximum likelihood estimation problem [11, 37].

In our notation, R” denotes the space of n-dimensional real column vectors, 7 denotes
transpose. For any x € R", z; denotes the jth component of z, z 7 denotes the subvector of =
comprising z;, j € J, and ||z||, = ( i \xj|p)1/p for 1 < p < oo and ||z||e = max; |z;|. For
simplicity, we write ||z|| = ||z||2. For any nonempty J C N = {1,...,n}, |J| denotes the
cardinality of 7. For any symmetric matrices H, D € R"*", we write H > D (respectively,
H > D) to mean that H— D is positive semidefinite (respectively, positive definite). H;; =
[H;jli jes denotes the principal submatrix of H indexed by J. Amin(H) and Amax(H) denote
the minimum and maximum eigenvalues of H. We denote by I the identity matrix and by 0

the matrix of zero entries. Unless otherwise specified, {z*} denotes the sequence 2%, z, ....
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2 (Block) Coordinate Gradient Descent Method

In this section, we describe our method for solving (1). Asin [41, 42], we use V f(z) to build
a quadratic approximation of f at z and apply coordinate descent to generate a feasible
descent direction d at . More precisely, we choose a nonempty subset J C N and a
symmetric matrix H € R"*", and move x along the direction

du(z:J) € arg min {Vf(:r)Td + %dTHd +cQz+d) |dj=0VY) ¢ J} : (4)
deRn

Here dy(x; J) depends on H through H 7z only. To ensure that dy(x; J) is well defined,
we assume that H 77 is positive definite on Null(A7) (the null space of A7) or, equivalently,
BT H;7Bs >~ 0, where A7 denotes the submatrix of A comprising columns indexed by J
and B is a matrix whose columns form an orthonormal basis for Null(A 7). The direction
(4) reduces to those used in [41, 42] when m = 0 or P is the indicator function for a box.

First, we have the following generalization of [41, Lemma 1] and [42, Lemma 2.1}, show-
ing that a nonzero dy(z;J) is a descent direction of F, at x. We include its proof for
completeness.

Lemma 2.1 For any x € domQ, nonempty J C N and symmetric H € R"*" with

BTH;5B7 = 0, let d =dy(z; J) and g = V f(z). Then
F.(r+ ad) < F.(z) + « (gTd +cQ(z +d) — cQ(:E)) +o(e) Vo€ (0,1], (5)
g'd+cQ(x +d) — cQ(z) < —d"Hd < —Apin(BLH77B7)|d])*. (6)

Proof. (5) and the first inequality in (6) follow from [41, Lemma 1]. Since ds € Null(A )
so that ds = By for some vector y, we have

d"Hd=y"B7Hy57B7y > ||yl[*Amin(Br Hz5B7) = ||d|[*Ain(B7Hz5By),

where the second equality uses B?}B 7 = 1. This proves the second inequality in (6). =

We now describe formally the block-coordinate gradient descent (abbreviated as CGD)
method.

CGD method:
Choose z° € domQ. For k = 0,1,2, ..., generate z**! from z
iteration:

k according to the

1. Choose a nonempty J* C A and a symmetric H*¥ € £**" with ng "}kjkBjk -
0.

2. Solve (4) with z = 2%, J = J*, H = H* to obtain d* = d g« (z*; J%).

3. Choose a stepsize of > 0 and set 2%t = 2% 4+ oFd*.




Various stepsize rules for smooth optimization [2, 9, 30] can be adapted to our setting.
The following Armijo rule, used in [41, 42], is simple, requires only function evaluations,
and seems effective in theory and practice.

Armijo rule:
k

ini

Choose af > 0 and let of be the largest element of {a* 57},_ .. satisfying
F (z* + ofd*) < F,(2%) 4+ of o AF, (7)
where 0 < f<1,0<0<1,0<y<1, and

ARG f (M) a4 yd T B 4 Qo + d¥) — cQ(ah). (8)

Since BY HY, ;i By > 0 and 0 <y < 1, we see from Lemma 2.1 that
F (2 + ad®) < F.(2%) + aA* +o(a) Va € (0,1],

and AF < (y — 1)d*" Hkd¥ < 0 whenever d* # 0. Since 0 < ¢ < 1, this shows that ¥ given
by the Armijo rule is well defined and positive. By choosing O‘ﬁ. ., based on the previous
stepsize a*~!, the number of function evaluations can be kept small in practice. Notice that
AF increases with +y, so larger stepsizes will be accepted if we choose either o near 0 or vy
near 1.

For convergence, the index subset J* must be chosen judiciously. We will choose J*
according to the Gauss-Southwell-q rule, which was introduced in [41] for the case of m =0
and was shown in [41, 42] to be effective in theory and practice. Specifically, let

gz ) % {v F@)Td + %dTHd +eQ(a +d) - cQ(x)} ()

)
d=du (z;7)

which is the predicted descent when z is moved along the direction dy(z; J). The Gauss-
Southwell-g rule chooses the index subset J* to achieve sufficient predicted descent, i.e.,

qpr (2% T*) < v qpr (2% N), (10)

where D* - 0 (typically diagonal) and 0 < v < 1. In fact, it suffices that By, D* By = 0 for
our analysis. We will discuss in Section 6 how to efficiently implement this rule when P is
separable and piecewise-linear/quadratic.

3 Properties of search direction

In this section we derive various properties of the search direction dy(x; J) and the cor-
responding predicted descent gg(z;J). These properties will be used in later sections to
analyze the convergence rate and the complexity of the CGD method.
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Formally, we say that z € R" is a stationary point of F, if x € domF, and F,'(x;d) > 0
for all d € R™. The following lemma gives an alternative characterization of stationarity.

Lemma 3.1 For any symmetric matriv H € R™™ satisfying B\HyxBy = 0, an x €
dom@ is a stationary point of F, if and only if dg(z; N') = 0.

Proof. Let C be a matrix whose columns form an orthonormal basis for the column span
of AT. Then dy(z;N) is unchanged when H is replaced by H + §CCT for any § € R.
Moreover, H +60CCT = 0 for all @ sufficiently large. Then we apply Lemma 2 in [41] to (1)
to obtain the desired result. =

The following lemma shows that ||dg(z; J)| changes not too fast with the quadratic
coefficients H. It will be used to prove Theorem 4.2. We give its proof for completeness,
which is similar to those of [41, Lemma 3] and [42, Lemma 3.1].

Lemma 3.2 Fiz any z € domQ, nonempty J C N, and symmetric matrices H, H e Rjrxn
satisfying U = 0 and U = 0, where U = ByHy5By andU = B7H;75By. Letd = dp(; J)
and d = dg(z; J). Then

5 1 + )\maX(S) + \/1 — 2Amin(S) + Amax(S)2 )\max(U)
1) < ; hwal0) 0O

where S = U200 1/2,

Proof. Since d; = d; = 0 for all j ¢ 7, it suffices to prove the lemma for the case of
J =N. Let g = Vf(z). By the definition of d and d and applying [36, Theorem 10.1] to
(1), we have

d € argmin (g + Hd) u + cQ(z +u) — cQ(z),
d € argmin (g + Hd)Tu + cQ(z + u) — cQ(z).
Thus

(94 Hd)Td + cQ(z + d) — cQ(z),
(g+Hd)"d+ cQ(z + d) — cQ(x).

(g+ Hd)"d+ cQ(z + d) — cQ(z)

<
(g+Hd) d+ cQ(z+d) — cQ(z) <

Adding the above two inequalities and rearranging terms yield
d"Hd — d"(H + H)d+ d"Hd < 0.

Since d,d € Null(4), we have d = Byy and d = By for some vectors y, . Substituting
these into the above inequality and using the definitions of U, U yield

y'Uy—y" U+ D)+ §"0g <.
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Then proceeding as in the proof of [41, Lemma 3] and using ||d|| = ||y||, ||d|| = ||§|| (since
Bi;By = I), we obtain (11). =

The next lemma bounds V f(z)? (z' — ) + cQ(2') — cQ(z) from above by a weighted sum
of |z — z||* and —qp(x; J), where 2’ = z + ad, d = dg(z;J), and J satisfies a condition
analogous to (10). This lemma, which extends [42, Lemma 3.3] for the case of linearly
constrained smooth optimization, will be used to prove Theorem 4.2.

Lemma 3.3 Fiz any v € domQ, nonempty J C N, symmetric matrices H,D € R™"
satisfying By Hy7By > 0, 61 = D > 0, and

ap(;T) < v qp(z; N), (12)
with 6 >0, 0 < v < 1. Then, for any T € dom@, 0 < a < 1, we have
9" (@' = 2) + Q(a') — eQ(z) <

where g =V f(z), ' =z + ad, and d = dg(z; J).

N | &

1
Iz = 2l - ~an(a:7), (13

Proof. Since Z — z is a feasible solution of the minimization subproblem (4) corresponding
to N and D, we have

(3 N) < oT(F — 2) + %(gz —2)'D(F — 2) + cQ(F) — cQ(x).

Since 61 = D, we have (Z — 2)TD(z — z) < 6||Z — z||?. This together with (12) yields
1 )
;qD(x; J)<g"(z—z)+ §||3_: — 2| + eQ(F) — cQ(x).

Rearranging terms, we have

(@~ %)+ eQa) ~ Q) < 2F — 2|~ Lap(a: ). (1)
Also, by the definition of d and (6) in Lemma 2.1, for any o > 0 we have
alg'd + cQ(z +d) — cQ(z)) < 0.
Since @ is convex so that cQ(z + ad) — cQ(z) < a(cQ(z + d) — cQ(z)), this implies
ag’d+ cQ(z + ad) — cQ(x) < 0.
Adding this to (14) yields (13). m

The next lemma shows that A is bounded above by a constant multiple of gz (z;J)-
It also bounds ¢y (x;J) from above by a constant multiple of ¢p(x; 7). This lemma is
new and will be used to analyze the complexity of the CGD method when f is convex; see
Theorem 5.1.



Lemma 3.4 For any v € dom@Q, nonempty J C N, and symmetric matric H € R
satisfying B H77By > 0, the following results hold with d = dg(x; J) and g = V f(z).

(a) Forany0<~y<1,
A <min{l1,2 — 2y}qu(z; J),
where A = g7d + yd" Hd + cQ(x + d) — cQ(z).
(b) For any symmetric matriz D € R™*™ satisfying B5D;7Bs = BLYH;7Bs and any
O<w<l,
qu(2; J) < qp(2; J) < waup(x; J).

Proof. (a) If v < 1/2, then d" Hd > 0 by (6) in Lemma 2.1, so that

1
A=qy(z;T)+ (7 — §)dTHd < qu(z; J).
Otherwise, 1/2 < v < 1 and we have from (6) in Lemma 2.1 that

A
= ¢fd+cQ(x+d) — cQ(z) + (2y - 1)d"Hd + (1 — v)d" Hd
< gld+ Q4+ d) — cQ(z) + (27 = 1)(—g"d — cQ(z + d) + cQ(z)) + (1 — v)d" Hd
= 2=29)qu(x; 7).
Thus A < min{1,2 — 2vy}qu(z; J).
(b) Let d = dp(x; J). Then

qa(z;J) = g'd+ %dTHd + Qx4+ d) — cQ(x)
< gTd+ %&THJJr cQ(z +d) — cQ(z)

< gld+ %CZTDJ-F cQ(z +d) — cQ(x)
= C]D(.T,j),

where the third step uses BLH;7Bs < BLD 7;B; and Azyd; = 0. This proves the first
inequality. To prove the second inequality, we note that

@op (2 T) = u-:%livl}ej{ g u+ %uTDu +cQz +u) - CQ(f)}
1 1
- T Yoot st -
= éqp(x; J),

where the inequality uses the convexity of ). =



Corollary 3.1 For any x € domQ, nonempty J C N, and symmetric matrices H,D €
R satisfying 0 < BYHz7By < Al and B Dg7By = 61, we have

)
qu(z; J) < min{l, i} qp(z; J).

Proof. We have BYH;7B; < 3B} Ds7B7. If 3 <1, then ByHy5By = 3BYD;sB; =
B%Ds7Bg, so Lemma 3.4(b) yields qg(z; J) < ¢p(z;J). If 2 > 1, then Lemma 3.4(b)
again yields

1>

ap(z; TJ).

> I>n

qu(z; J) < Q%D(ﬂﬁ; J) <

This proves the desired result. m

4 Global convergence and convergence rate analysis

In this section we analyze the global convergence and asymptotic convergence rate of the
CGD method using the Gauss-Southwell-g rule, analogous to those obtained for the cases of
m = 0 [41, Theorems 1 and 3] and linearly constrained smooth optimization [42, Theorems
4.1 and 5.1]. Analogous to [42], we make the following assumption on {H*} in the CGD
method.

Assumption 1 M\ > ngHﬁkjkBjk = M for all k, where 0 < A < .

Assumption 1 allows H* to closely approximate V?2f(x*) provided V2f(z*) . . is posi-
JrT
tive definite over Null(A ;). The following theorem states the global convergence properties
of the CGD method. Its proof is omitted since it is nearly identical to that of [41, Theo-
rem 1(a), (b), (d), (f)] for the case of m = 0, with minor modification to account for [41,
Assumption 1] being relaxed to Assumption 1.

Theorem 4.1 Let {z*}, {T*}, {H*}, {d*} be sequences generated by the CGD method,
where { H*} satisfies Assumption 1 and {o*} is chosen by the Armijo rule with infy of > 0.
Then the following results hold.

(a) {F.(z*)} is nonincreasing and AF given by (8) satisfies
—AF > (1 - y)d B > (- ) Allat (15)
F (2"1) — F.(z*) < 0a*AF <0 VE. (16)

(b) If {T*} satisfies (10), 61 = D* = &I for all k, where 0 < § < 6, and either (1) Q is
continuous on dom@ or (2) infya® > 0 or (8) ok, = 1 for all k, then every cluster
point of {x*} is a stationary point of F,.
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(c) If, for any £ € {1,...,n}, there exists Ly > 0 such that

IVF() = VI < Lilly =2l Vy, z € domQ with y; = 2; Vj ¢ T,

VT C N with |J] <, (17)

then of > min{a* | Bmin{1,2A(1 — 0 + 0v)/Le} for all k. If limy_,o F,(z*) > —oc0
also, then {AF} — 0 and {d*} — 0.

If P is separable, then @ is automatically continuous on dom@ [36, Corollary 2.37]. The
next theorem establishes the convergence rate of the CGD method under Assumption 1
and the following assumption that is analogous to [41, Assumption 2]. In what follows, X
denotes the set of stationary points of F, and

dist(z, X) = min ||z — z|| Vo € R™.
zeX

Assumption 2 (a) X # 0 and, for any ( > min,F,(z), there exist scalars T > 0 and
€ > 0 such that

dist(z, X) < 7||d;(x; N)||  whenever F.(x) <, ||di(z; N)|| < e.

(b) There exists a scalar p > 0 such that

lz —yll > p whenever z € X, y€X, F(z)# Fe(y).

Assumption 2(a) is a local Lipschitzian error bound assumption, saying that the distance
from z to X is locally in the order of the norm of the residual at z; see [23, 24, 25] and
references therein. Assumption 2(b) says that the isocost surfaces of F, restricted to the
solution set X are “properly separated.” Assumption 2(b) holds automatically if f is convex
or f is quadratic and P is polyhedral; see [25, 41] for further discussions. Upon applying [41,
Theorem 4] to the problem (1), we obtain the following sufficient conditions for Assumption
2(a) to hold.

Proposition 4.1 Suppose that X # () and any of the following conditions hold.

C1 f is strongly convexr and satisfies (17) with £ = n for some L, > 0.
C2 f is quadratic. P s polyhedral.

C3 f(x) = g(Ex)+q'z for allz € R*, where E € RP*™ q € R", and g is a strongly convex
differentiable function on RP with Vg Lipschitz continuous on RP. P is polyhedral.

C4 f(z) = maxyey{(Ex)Ty — g(y)} + ¢"x for all z € R", where Y is a polyhedral set in
RP, E € RP*" g € R, and g is a strongly convex differentiable function on RP with
Vg Lipschitz continuous on RP. P is polyhedral.

10



Then Assumption 2(a) holds.

The next theorem establishes, under Assumption 1 and 2, the linear rate of convergence
of the CGD method using (10) to choose {J*}. Tts proof, which uses Theorem 4.1 and
Lemmas 2.1, 3.2, 3.3, is similar to the proof of [42, Theorem 5.1], except that “f” is
replaced by “F.” and “c()” is added in some places. For completeness, the proof is included
in the Appendix. In what follows, by Q-linear and R-linear convergence, we mean linear
convergence in the quotient and the root sense, respectively [31, Chapter 9.

Theorem 4.2 Assume that f satisfies (17) with £ = n for some L, > 0. Let {z*}, {H*},
{d*} be sequences generated by the CGD method, where { H*} satisfies Assumption 1, {J*}
satisfies (10) with 61 = D¥ = 81 for allk (0 < § < 6). If F, satisfies Assumption 2 and {o¥}
is chosen by the Armijo rule with sup, of <1 andinfyof >0, then either {F.(z*)} | —oc
or {F.(z*)} converges at least Q-linearly and {z*} converges at least R-linearly to a point
in X.

Theorem 4.2 generalizes [41, Theorem 3] by relaxing [41, Assumption 1] to Assumption 1
and, more significantly, not assuming () is block-separable. The assumption (17) with £ =n
in Theorem 4.2 can be relaxed to V f being Lipschitz continuous on dom@ N (X° + oB) for
some p > 0, where B denotes the unit Euclidean ball in #” and X° denotes the convex hull
of the level set {x | F.(z) < F.(2°)}. For simplicity, we do not consider this more relaxed
assumption here.

5 Complexity analysis when f is convex

The following theorem is the main result of this section, giving an upper bound on the num-
ber of iterations for the CGD method to achieve e-optimality when f is convex with Lipschitz
continuous gradient. Its proof uses Lemmas 2.1, 3.4(a), Corollary 3.1, and Theorem 4.1(c).
In what follows, [-] denotes the ceiling function.

Theorem 5.1 Suppose f is conver and satisfies (17) for some Ly > 0 (£ > 1). Suppose
inf, F,(z) > —oo. Let {z*}, {T*}, {H*} be sequences generated by the CGD method, where
{H*} satisfies Assumption 1, {J*} satisfies (10) with 6I = D*¥ = &I and |J*| < £ for
all k (0 <8 <6,¢>1), and {a*} is chosen by the Armijo rule with infyo® > 0. Let
e¥ = F,(z%) — inf, F.(x) for all k. Then * < ¢ whenever

_ ) max {0, [C%‘g In (%)-‘} if € > 6r°;
~ | max {0, [C%‘g In (({;—00)-‘} + [C‘ZZJ else,

where r° = max, {dist(ac,)?)2 | F.(z) < Fc(xo)}, X = argmin, F.(z), C = min{1,2 —

2y} min{1,8/A}v, and o = min{inf; o* , Amin{1,2A(1 — o + o)/ Le}.

in:
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Proof. For each k =0,1,..., by (7), we have

et —e* = F(a") - F.(z")

oo AF

oa® min{1,2 — 2y}qpx (-’Ek; jk)

Coaqpr(z";N)

Coaqpr(z*; N, (18)

VAN VAN VAN VAN

where the second inequality uses Assumption 1 and Lemma 3.4(a), the third inequality uses
Corollary 3.1 and (10), and the last inequality uses Theorem 4.1(c), implying that o* > a.

For each k = 0,1,..., and t € [0,1], let g* = Vf(z*) and let % € X satisfy ||z* — 7| =
dist(z*, X). Then
1
apr(@*N) = ming" d+ Sd"DFd+ Q" +d) — cQ(a¥)

2

< ngt(a_Uk —zF) + %(:Z‘k — 2T DR (% — 2%) + eQ(2F + (7" — 1)) — cQ(a")
< ngt(ik — ") + g(a:k — )T DR (2% — 2%) + teQ(z*) — teQ(z¥)
< (@0 = f(2®) + teQ(ZF) — teQ(aF) + gé_dis‘c(aﬁk,)z)2

2 -
= —tef + E(Sdist(:z:k,X)2
2
< —teP + —or",
2
where the second inequality uses the convexity of () and the third inequality uses the

convexity of f. This holds for all ¢ € [0, 1]. Minimizing the right-hand side with respect to
t yields

[\

ek)
2670

~—~

gpr (25 N) < —
if e# < §r0; and else
1- 1
qpr (2 N) < —eF + 5(57'0 < _§€k'
This together with (18) yields that

Coa Coa
k1 _ _k Qe k Qg
e §e—gro(e)—e (1—W(e)> (19)
if e < §70; and else
el < b — —ngek. (20)
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Case (1): If € > 670, then (20) implies e* < ¢ whenever

(1 = C%) < e’ exp(—kCoa/2) < €

ol (O]}

Case (2): If € < r°, then (20) implies e¥ < §r° whenever

or, equivalently,

(1 - C%) < e’ exp(=koCoa/2) < r°

k>kdifma Oilni
= fo = max "1 Coa or0 )

For each k > kg, eF < 610, If €¥ = 0, then ef < e. Otherwise ¥ > 0. Then e/ > 0 for
j = ko, ko +1,...,k and we consider the reciprocals &; = 1/e/. By (19) and ek >0,
we have 0 < Cie/ < 1for j = ko, ko+1,...,k— 1, where C; = Coa/(6r°). Thus (19)
yields

or, equivalently,

1 1 C
> - - ) =0,1,...,k— 1.
6]4—1 5] - 69(1 016]) e 1 — 016] = Cla J 0, ) ’

Therefore & = &, + E] ko (&ir1 — &) > Ci(k — ko) and consequently

e’C = l < 71
& — Ci(k—ko)

It follows that e* < e whenever

k> k +[LW— o YR | ) O U
=0 Cie - max Coa . 5r0 Coae |’

Ifwetake7=1/2,Dk:H’“=Iandai’i =1forallk, then 6 =6 =)A= \=1 and
C = v, and the iteration bounds in Theorem 5.1 reduce to

{ O (% maX{O, In (%)}) if € > r°; (21)

O (% max {O, In (j—ﬁ)} + Lf;zo) else.

Notice that 7 = 0 whenever 2° € X. If X is bounded, then it can be seen that r* — 0 as
dist (2%, X) — 0.
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6 Index subset selection when P is separable

In this section we study efficient ways to find an index subset J* satisfying (10) for some
constant 0 < v < 1. One obvious choice is J* = A, which satisfies (10) with v = 1.
However, the corresponding search direction (4) may be expensive to compute and, for
SVM applications, the gradient V f would be expensive to update. We will extend the
procedure developed in [42] for linearly constrained smooth optimization to use a conformal
realization of dpx (2%; V) [33], [35, Section 10B] to find J* of small size when P is separable.
Our main result is Proposition 6.1, showing the existence of such J* by construction.

For any d € R", the support of d is supp(d) af {j e N |d;j #0}. Wesay d € R" is
conformal to d € R™ if

supp(d’) C supp(d),  d;d; > 0VjeN, (22)

i.e., the nonzero components of d’ have the same signs as the corresponding components
of d. A nonzero d € R" is an elementary vector of Null(A) if d € Null(A) and there is
no nonzero d' € Null(A4) that is conformal to d and supp(d') # supp(d). Each elementary
vector d satisfies [supp(d)| < rank(A)+ 1 (since any subset of rank(A) + 1 columns of A are
linearly dependent) [35, Exercise 10.6].

First, we derive a lower bound on P(z + d) — P(x), based on a conformal realization of
d, for the case when P is separable. This bound will be used to prove Proposition 6.1.

Lemma 6.1 Suppose P is separable, i.e., has the form (2). For any z,z + d € domP, let
d be expressed asd =d' +---+d", for somer > 1 and some nonzero d' € R" conformal to
dfort=1,...,r. Then

r

Pz +d) - P(z) > Y (P(x+d) - P(z)).

t=1
Proof. Since P is separable, it suffices to prove that, for each j € N,
Pi(z;+dj + -+ d}) — Py(z;) > 2 (Pj(; + db) — Py(x;)) - (23)

We prove this by induction on 7. This clearly holds for » = 1. Suppose (23) holds for r < s,
where s > 2. We show below that (23) holds for r = s. If dj + --- + d:~' =0, then (23)
reduces to the case of r = 1 and hence holds. If d} = 0, then (23) reduces to the case of
r < s and hence holds. Thus it remains to consider the case of dj + --- + dj-_l # 0 and
ds # 0. Since dj,d?, ..., dS are conformal to d;, either (i) dj +---4d5 ' > 0and d >0 or
(ii) dj 4+ ---+d ' <0 and d5 < 0. In case (i), we have z; + d} +---+dj ' < z; +d; and
zj + di < z; + dj, so the convexity of P; [36, Lemma 2.12] implies

Pj(wj +dj+---+di") — Pi(z) Pi(z; + d;) — Pi(zy)
di 4+ + &7 d; ’
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Pj(z; + d3) — Pj(z;) < Pilzj+dj) — Pi(a))
s = d; '

Multiplying the above two inequalities by, respectively, d} + -+ d;-_l >0 and d; > 0 and
summing, we have

Pi(zj+dj + -+ d7") = Pi(z;) + Pi(z; + d3) — Pj(x;) < Pi(z; + dj) — Pi(z;).  (24)

In case (ii), we have z; + d; + -+ d‘;*l > z; +d; and z; + di > x; + dj, so the convexity
of P; implies

Pj(xj-f‘d;-f‘"'-i‘d;il)—Pj(.Tj) > Pj($j+dj)—Pj($j)

di+-+d! - d; ’
Pj(z; + d3) — Pj(z;) o Dz +d;) = Py(x))
s = d; '

Multiplying the above two inequalities by, respectively, d} 4+ dj_l <0 and d; <0 and
summing, we again obtain (24). Since (23) holds for r < s, we also have

|
—

Pi(z;+df + -+ d57h) = Piz;) > Y (Pyla; + df) — Py(xy)) -
t=1

Combining this with (24) proves that (23) holds forr =s. =

Lemma 6.1 is false if we drop the assumption that P is separable. For example, take

P(z) = ||z|]|, = = 0, and d = (1,1,—2)". Then d can be expressed as d = d' + d* =
2

(1,0,-1)T + (0,1, -1)T, but P(z +d) — P(z) =v6 <2v2=)" (P(x +d') — P(x)).

t=1
By using Lemma 6.1 and generalizing the proof of [42, Proposition 6.1], we obtain the
following main result of this section.

Proposition 6.1 For any x € dom@), ¢ € {rank(A) + 1,...,n}, and diagonal D > 0, if P
is separable, then there exists a nonempty J C N satisfying | T| < £ and

1

I < —
QD(x’j)_n—€+1q

p(x; N). (25)

Proof. Let d = dp(z; N'). We divide our argument into three cases.

Case (i) d = 0: Then gp(z; N) = 0. Thus, for any nonempty J C N with |J| < £, we have
from (9) and Lemma 2.1 with H = D that ¢p(x; J) < 0 = ¢p(z;N), so (25) holds.

Case (ii) d # 0 and [supp(d)| < ¢: Then J = supp(d) satisfies ¢p(z; J) = gp(z; N') and
hence (25), as well as |J| < £.
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Case (iii) d # 0 and |supp(d)| > ¢: Since d € Null(A), it has a conformal realization [33],
[35, Section 10B], namely,
d=v'+---4+0°

for some s > 1 and some nonzero elementary vectors v* € Null(A4), ¢ = 1,..., s, conformal
to d. Then, for some o > 0, supp(d') is a proper subset of supp(d) and d' € Null(A), where
d = d — av'. (Note that aw! is an elementary vector of Null(A4), so that |supp(av!)| <
rank(A)+1 < £.) We repeat the above reduction step with d' in place of d. Since |supp(d')| <
|supp(d)| — 1, after at most |supp(d)| — £ reduction steps, we obtain

d=d +---+d, (26)

for some r < [supp(d)|—¢+1 and some nonzero d* € Null(A) conformal to d with [supp(d*)| <
£, t=1,...,r. Since [supp(d)| < n, we have r <n — £+ 1.

Since Ad' = 0, this implies A(z +d') =b, t =1,...,7. Also (9) and (26) imply that
1
ap(;N) = g"d+d"Dd+cQ(z+d) - cQ(x)
= gld+ 1dTDd + cP(x + d) — cP(x)

= ZgTdt-i- ZZ (d*)"Dd" + cP (z + d) — cP(x)

51t1

> Z ghd' + = i(dt)TDdt + cP (x +d) — cP(z)
> ZgTdt Z (d)?'Dd" + Z (cP(z +d") - cP(x))

> r min { g d + i(dt)TDdt +cP(z+d') — cP(x)}

= r min {gTdt + %(dt)TDdt +eQ(z +d") — CQ(:E)} ,

t=1,..,r

where ¢ = Vf(z) and the first inequality uses (22) and D > 0 being diagonal, so that
(d*)TDd? > 0 for all s,t; the second inequality uses Lemma 6.1. Thus, if we let t be an
index ¢ attaining the above minimum and let J = supp(d?), then | 7| < £ and

San(EsN) 2 " d 4 (@) D'+ Q(r + ) — QL) 2 ap(w: ),

where the second inequality uses A(z + d*) = b and d§- =0forjg&J. =

It can be seen from its proof that Proposition 6.1 still holds if the diagonal matrix D is
only positive semidefinite, provided that ¢p(z; N') > —oo (such as when dom@ is bounded).
However, Proposition 6.1 is false if we drop the assumption that P is separable. Take

m=1,n=3, f(z)=z1+z3+2x3, Px)=\2?+2i+ |23/, A=[11 —-1], b=0.
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Then, z = 0 is not a stationary point (d = (—1,—1,—2)7 is a feasible descent direction),
so gp(xz; N) < 0 for any D > 0. However, it is straightforward to check that gp(z;J) > 0
whenever |J| < 2.

The proof of Proposition 6.1 suggests, for any ¢ € {rank(A4)+1,...,n}, an O(n—¥£)-step
reduction procedure for finding a conformal realization (26) of dp(z; N) with r <n —£+1
and a corresponding J satisfying |J| < ¢ and (25). In the case of m = 1 and ¢ = 2, such
a conformal realization can be found in O(n) operations, as is discussed in [42, Section 7).
In the case of m = 2 and ¢ = 3, such a conformal realization can be found in O(nlnn)
operations. For m > 3, the currently best time complexity of finding such a conformal
realization is O(m?(n — £)?) operations. See [42, Section 7| for more detailed discussions.

There remains the question of how to find dp(z; N) with D > 0 diagonal. In the linearly
constrained case of P; = dj, ;) for all j, as is considered in [42], this reduces to a quadratic
program with separable convex objective function of the form

1
min {Vf(@)d+ 3d'Dd| Ad=0, 1~z <d <u-z), (27)

which is solvable in O(n) operations for m fixed [1, 27]; also see [3, 20] and references therein
for the special case of m = 1. For general P;, finding dp(x; N') reduces to a monotropic
optimization problem which can be solved using various methods; see [35, 40] and references
therein. However, these methods in general do not run in linear time. If each P; is polyhedral
or, more generally, piecewise-linear/quadratic with v; pieces, then, as we show below, finding
dp(z; N) is reducible to a problem of the form (27) with v +- - - + v, variables, and hence is
solvable in O(v; +- - -+1,,) operations for m fixed. Here we assume without loss of generality
that domP; is not a singleton, so that v; > 1. In particular, since D is diagonal, dp(z; )
is the optimal solution of a problem of the form

min {i ;(d;) | Ad = 0} : (28)

where each II; is strictly convex, piecewise-linear/quadratic with v; pieces. Let the break-
points of II; be denoted by —oo < a? < a} < --- < a;’ < o0 (so a

; and a;j are the endpoints
of domlIl;). Let

I (aly 4 Ij(a; +d;) if0>d; > af —aj;
I o0 else,

Hﬁ(dﬁ) def {Hj(af_l—i-df) if()gdfgaf—af_l; (=2, ..

00 else,

We consider the following problem

min {Z ST )

] j=1¢=1

S Al = 0} - (20)

j=14=1
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This problem, with v; + --- + v, variables, has the same form as (27) since the objective
function is separable and each component function is strictly convex quadratic over its
domain. Moreover, the optimal solution of (29) must satisfy

did>=0, d">0 = d=d-d", =2,y j=1...n (30

If djd # 0, then dj < 0, d5 > 0, and the strict convexity of II; would imply

I (aj 4 dj + d7) — T;(a; + dj) - IT;(a; 4 d3) — 1;(aj)
e 7
j j

and hence IT;(aj + dj + d7) 4+ T;(a;) < I;(aj + d}) 4 I;(aj + d7). Then replacing dj, d5 by
dj + d3, 0 when d; + d7 < 0 (and replacing d;, d; by 0, dj + dj when dj + dj > 0) would
yield another feasible solution of (29) with a lower objective value. The second condition in
(30) can be argued similarly. Hence, by using

d]:a]l—i-dj-l--i-d?, 7=1,...,n, (31)

we can construct from the optimal solution of (29) a feasible solution of (28) with the same
objective value. Conversely, we can construct from the optimal solution of (28) a feasible
solution of (29) that has the same objective value and satisfies (30), (31).

By combining the above observations, we can conclude the following about finding an
index subset J satisfying |J| < ¢ and (25) when each P; is piecewise-linear/quadratic with
O(1) pieces: For m =1 and ¢ = 2, J can be found in O(n) operations and, for m > 2 and
¢ € {rank(A) + 1,...,n}, J can be found in O(n?) operations, where the constant in O(-)
depends on m. It is an open question whether this can be improved to O(n) operations.

Note that r® < nb?,_, where by,, = max (uj — ;) and I; < u; denote the endpoints of
<j<n

domP;, which we assume to be bounded. Thus, if f is convex and satisfies (17) for some ¢,
then it follows from (21) that, for m = 1 and ¢ = 2, the CGD method can be implemented

to achieve e-optimality in

2 2 0
O<%+nL2maX{0,ln< c )}) -O(n+ Ny)

€ NDmax

operations, where Ny is the number of operations for evaluating f and V f at the current
iterate. If in addition f is quadratic or has the partially separable form

f(z) = g(Ex) + "z,

where g : R — (—o00, 00| is convex block-separable with O(1) size blocks, ¢ € R™, and each
column of E € RP*" has O(1) nonzeros, then Ny = O(n). When specialized to the training
of SVM, for which P; =y, 4, A=[1 --- 1], and f is quadratic, the preceding complexity

3 2 0
O <%+n2Amax{0,ln< ¢ )})
€ Nbmax
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operations, where A = max;; \/(Hm — H;j)? + (Hj; — H;;)?/v/2 and H = V*f(z). For this
same problem, Hush and Scovel [16] proposed a decomposition method, based on block-
coordinate descent, and proved that, for any ¢ > 0, the method finds an e-optimal solution
in O(b%,,n®Inn(e® +n?A)/e) operations. This method was extended by List and Simon [22]
to problems with general linear constraints, and the overall complexity bound was improved
to O ("SAS‘Q“ x + n? max {0, In (nAinax) }) operations. Hush et al. [17] later proposed a more
practical decomposition method that achieves the same complexity bounds as in [22]. Our
complexity bound for the CGD method on this problem is comparable to the above bound
when m = 1 (which covers SVM), and is off by a factor of Inn when m = 2 and by a factor
of n when m > 3, due to the extra cost of finding a conformal realization of dp(x; N'). This

extra cost is the price for achieving linear convergence shown in Theorem 4.2.

7 Bi-level optimization

In this section, we show that when f is convex, we can apply the CGD method to solve
the bi-level problem (3) by decreasing ¢ towards zero whenever the current iterate z* is an
approximate stationary point of (1). In particular, by Lemma 3.1, ||dp«(z¥; N)|| acts as a
“residual” function, measuring how close z* comes to being stationary for (1). We will use
the following measure of approximate stationarity:

ldpe (=" M) < €, 1D dpi(a" N < €, (32)

—(D*z* + V f (")) dpr (2F; V) < €, (33)

with €¥ > 0 to be specified. Notice that if J* is chosen as described in Section 6, then
dpr (2%; N') would be available as a byproduct and need not be computed additionally.

Our method for solving (3) uses similar idea as in [37] for a primal-dual interior-point
method. At each outer iteration & (k = 0,1,2,...), a regularization parameter c* > 0 and
an accuracy tolerance €* are chosen, and the CGD method is applied to solve (1) with ¢ = c*
until it finds an approximate solution z* satisfying the conditions (32) and (33). Since the
idea of decreasing c is reminiscent of homotopy methods for equation solving, we call this
the CGD-homotopy method.

CGD-Homotopy Method:

Choose z° € dom@. For k = 1,2,..., generate z* from z
iteration:

k=1 according to the outer

1. Choose ¢ > 0 and €* > 0.

2. Compute an z* € domQ@ satisfying (32) and (33) for some D* = 0 by applying the
CGD method to (1) with ¢ = ¢* and initial iterate z = %=1,

19



The following theorem shows that, by letting ¢ — 0 and €* — 0 at suitable rates in the
CGD-homotopy method, every cluster point of the approximate solutions {z*} solves (3).

Theorem 7.1 Suppose f is convezr, Sy Ndom@ # 0, and (3) has an optimal solution.
Consider any c® and €*, k =1,2, ..., satisfying

lim ¢* = 0, lim — = 0. (34)

k—00 k—o0 ck

Consider any x* satisfying (32) and (33) with ¢ = ¢* for k = 1,2,... Then every cluster
point of {z*} is an optimal solution of (3). If Q is level-bounded, then {z*} has a cluster
point.

Proof. Let z* be any optimal solution of (3), i.e., z* € argmin, ¢y Q(z). By Fermat’s rule
[36, Theorem 10.1],

d* € argmin (¢F + D*d*)"d + #Q(z* + d) — FQ(z*),
d

where we let d* = dpe(2F; ) and g% = V f(2*). Hence

(¢* + DFA)Td* + FQ(a* + d*) — FQ(a*)
< (¢ + DFdRYT (2 — 2%) + FQ(a*) — FQ(zF).

Using (d¥)”D*d* > 0 and rearranging and canceling terms, we obtain

f(@F) + FQ(a* + d¥)

F(@*) + (¢ + DFF)T (2" — 2*) + FQ(z") — (¢")"d*

f@*) + (DFd*)T (2" — %) + FQ(z*) — (¢*)"d*

f@*) + | D*d*||la*]| — (D*a* + g*)Td* + FQ(a")

f@*) 4+ Fllz* || + € + FQ(a), (35)

[VANVANRVARR VAN

T
T
T

where the second inequality follows from f being convex, so that f(z ) + (5T (z* — 2*) <
f(z*), and the last inequality uses (32) and (33). Since z* € S; and z* € dom@Q, f(z*) <
f(x*). This together with (35) implies

FQ(* + d*) < F||z*|| + ¢ + FQ(zY).
Dividing both sides by c* yields

Gk

R k
Q¥ +d9 < Zlla*ll + 5 + Q). (36)

By (34), {c*} — 0 and {¢*} — 0, so that, by (32), {d*} — 0. This, together with (35) and
@ being convex (so ) is bounded below on any compact set), implies that any cluster point
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T of {z*} satisfies f(Z) < f(z*). Since z*¥ € dom@Q for all k, T € X. Moreover, (34), (36),
{d*¥} — 0, and the lIsc property of @ imply Q(zZ) < Q(z*). Thus Z € S; and 7 is an optimal
solution of (3).

_ Suppose @ is level-bounded. By (34) and (36), {a* +d*} is bounded. This together with
{d*} — 0 implies that {z*} has cluster points. m

It is not known if Theorem 7.1 still holds if we replace “dpx(z*; N)” in (32) and (33) by
“dgr (z%; T*)” with J* satisfying (10), even though the latter is also available as a byproduct
of the CGD method. Thus the notion of approximate stationarity for (1) must be chosen
with care. The following lemma shows that the bi-level problem (3) has an optimal solution
under a mild assumption on ).

Lemma 7.1 Suppose Sy Ndom@ # 0 and Q is level-bounded over Sy. Then the minimum
of Q over Sy is finite and attained on a nonempty compact subset of Sy.

Proof. Let Q = ds; +@Q, where ds, is the indicator function of the set Sy. Then Q is proper
because Sy N dom@ # (0, and it is Isc since its level sets Sy N {z | Q(z) < &}, with € < oo,
are closed (due to Sy being closed and @ being lIsc). Since @ is level-bounded over Sy,

these level sets are bounded. Then the minimum of () is finite and attained on a nonempty
compact set. ]

8 Conclusions and Extensions

We have extended a block-coordinate gradient descent method to linearly constrained non-
smooth separable minimization, and have analyzed its global convergence and asymptotic
convergence rate. In the case where f is convex, we also analyzed its computational com-
plexity and presented a homotopy strategy to solve a bi-level version of the problem.

There are many directions for extensions. Can the complexity bound in Section 5 be
sharpened? Can the homotopy strategy be extended to handle nonconvex f? The Gauss-
Southwell-r rule for choosing J*, studied in [41] for the case of m = 0, can also be extended
to the case of m > 1. We did not consider it here because (i) we do not have a convergence
rate analysis analogous to Theorem 4.2 and (ii) our numerical experience in [41] suggests
that this rule is not better than the Gauss-Southwell-g rule in practice. The classical Gauss-
Seidel rule for choosing J*, studied in [41] for the case of m = 0, can also be extended to
the case of m > 1 provided P is separable. However, this rule seems impractical since it
would require cycling through (mil) coordinate blocks of size m + 1 each.

Suppose P is not separable but block-separable of the form

P(z) =Y Py(zyz),

Jec
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where J € C form a partition of M. Then Lemma 6.1 and Proposition 6.1 are no longer
applicable as we saw in Section 6. This case is of practical interest as it arises in group
Lasso, for which P;(z7) = ||z7||; see [28]. Can we still efficiently find a small J* satisfying
(10)? Can the Gauss-Seidel rule, used in [28, 41] for the case of m = 0, be extended to the
case of m > 17 This is open even when m =1 and P (xz7) = ||z 7]|-

Problem (1) can be generalized to the following problem:

min {f(z) + cP(z) | fi(x) =0,..., fu(z) =0},

TER™

where fi,..., f,, are twice continuously differentiable functions. Can the CGD method be
extended to solve this more general problem?

9 Appendix: Proof of Theorem 4.2
For each k = 0,1,..., (8) and d* = dy«(z*; J*) imply that
AF 4 (% — 7) & HYE = gk %d’“TH’“dk +eQ(z* + d*) — cQ(a")
Tk + %(Jk)Tchzk + cQ(z* + d*) — cQ(zF)
= apeah T4 + S (@) (HE - DY, (37)

IN

where we let d¥ = dpi(2F; J*). By Lemma 3.2 with J = J*, H = H* and H = DF,

1] < la*]]- (38)

L+3/A+1/1—-28/3+ (5/2)° A
2 s

This together with (37) and (d*)7 (H* — D*)d* < (X — 8)||d¥||? implies that
1
A+ (5 =) A < gt ) + wlldH P, (39)

Here, w € R is a constant depending on A, ), 8,6 only. Also, by (9) and (6) in Lemma 2.1
with J =N, H = D*, we have

a5 ) = ((g)1d+ Sd DR+ Qe + d) - Q(t))

< (—ldTD’“d>
2 d=d 1, (zF;N)

)
< —Llpe NP VR, (40)

d:de (xk 7N)

where the last inequality uses D* > §1.
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By Theorem 4.1(a), { F.(z*)} is nonincreasing. Thus either { F.(z*)} | —oco or lim_, o, F.(z*) >
—o0. Suppose the latter. Since of is chosen by the Armijo rule with infy o > 0, The-
orem 4.1(c) implies infy o > 0, {A*} — 0, and {d*} — 0. Since {H*} is bounded by
Assumption 1, we obtain from (37) that 0 < liminfy o gpr(z¥; J*). Then (10) and (40)
yield {dpr(z¥; M)} — 0.

By Lemma 3.2 with J =N, H = D* and H = I, we have

1+1/6+1/1—2/5+ (1/5)?
stk < AL =2/ 1)

Hence {d;(z*; M)} — 0. Since {F,(z*)} is nonincreasing, this implies that F.(z*) < F,(z°)
and ||d;(z*; N)|| < € for all k > some k. Then, by Assumption 2(a), there exist £ and 7 > 0
such that

§||dpr(z*; N)|| VE. (41)

la* — 2% < Tlldi (@ N VE >k, (42)
where 7% € X satisfies ||zF — || = dist(z*, X). Since {d;(z*;N)} — 0, this implies
{z*F — 7%} — 0. Since {zF™! — 2*¥} = {a*d*} — 0, this and Assumption 2(b) imply that
{Z*} eventually settles down at some isocost surface of F,, i.e., there exist an index k& > k

and a scalar v such that R
F.(i*Y=0 Vk>k. (43)

k is a stationary point of F,, we have

Fix any index k > k. Since Z
V(@) (2% — 7%) + cQ(2*) — cQ(zF) > 0.
We also have from the Mean Value Theorem that
Fa*) — F@*) = VWM — o),
for some ¥ lying on the line segment joining z*¥ with z*. Since z*, Z* lie in the convex set
dom@), so does ¥*. Combining these two relations and using (43), we obtain

0 - F(a%) < (Vf(E") - V)" (" - 7")
< IVF@EE) = V12— 2|
< Ln”CEk - jk“Qa
where the last inequality uses (17), the convexity of dom@, and ||¢* — z*|| < ||=* — z*||.
This together with {z* — 7%} — 0 proves that
.. k _
hlggglch(x ) > 0. (44)

For each index k > k, we have from (43) that
Fc($k+1) -9
= f(@*) + Q™) — f(z¥) — cQ(z¥)
V@) (@ = 28) + Q2™ — eQ(7¥)
= (V@) = V()" (" =7 + V(") (@ = 7°) +eQ(a"") — Q)

IN

. 5 1
Lo |3 — 2®||||z*" — 2| + §||fr'“ —z|* - aqm(:v’“; T, (45)
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where the second step uses the Mean Value Theorem with Z* a point lying on the segment
joining z*™! with 7* (so that #*¥ € dom@); the fourth step uses (17) and Lemma 3.3. Using
the inequalities || 7% — 2*|| < ||2*T" — 2% + ||z% — z¥||, ||2*T! — 2F|| < [|aF T — 2| + ||2* — 2|
and ||zF+! — 2¥|| = o||d"||, we see from (42), and sup, o* < 1 (since sup, of < 1) that the

right-hand side of (45) is bounded above by
Cr (1d*I” — gpr (*; T*) + lldi (%5 N) )

for all £ > /;, where C; > 0 is some constant depending on L,, 7,8, v only.

By (15), we have

M|d¥||? < ¥ HEGE < —%A’“ Vk.
-7
By (40) and (41), we also have

52

dr(z*; N2 < (1 +1/0+\/1—2/6+ (1/@2)2 O (g (@) Yk,

20

Thus, the quantity in (46) is bounded above by

Cs <—Ak — gpk (xk; jk) — gpk (ka;/\/))

for all £ > ]Af, where Cy > 0 is some constant depending on L,,, 7,6, 6,7, A, v only.

Combining (39) with (47) yields
1
(T < —A (7= 5 ) T HAE ol
1 1 w
< —AF— { ——}—Ak—iAk.
= P T 2 15 A )
Combining (10) and (49), we see that the quantity in (48) is bounded above by

—C3AF

(46)

(47)

(48)

all k£ > ];J, where C3 > 0 is some constant depending on L,,T,0,8,7, A, A, v only. Thus the
right-hand side of (45) is bounded above by —C3A* for all k¥ > k. Combining this with

(16), (45), and infy &* > 0 (see Theorem 4.1(c)) yields
F.(zF) — 0 < Cy(Fu(z*) = Fo(a**Y) Vk >k,

where Cy = C3/(o infy o*). Upon rearranging terms and using (44), we have

Cy
1+ Cy

0< F(z"t) -0 < (F,(z*) — o) Vk >k,
so {F.(z*)} converges to ¥ at least Q-linearly.
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Finally, by (16), (47), and z**! — z¥ = o*d*, we have

[[25 ! — 2|2 k k+1 7.
o(l—9)A " < F (%) — F.(2"") Vk > k.

This implies

(1=7)A

Since {F,(z*) — F.(z*™)} — 0 at least R-linearly and sup, o < 1, this implies that {z*}
converges at least R-linearly.

k ~
o+ = o] < J SPEE(F(a¥) = Fu(oH) h2
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