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Abstract: We consider the problem of minimizing the sum of a smooth function and
a separable convex function. This problem includes as special cases bound-constrained
smooth optimization and smooth optimization with ¢;-regularization. We propose a (block)
coordinate gradient descent method for solving this class of nonsmooth separable prob-
lems. The method is simple, highly parallelizable, and suited for large-scale applications
in signal/image denoising, regression, and data mining/classification. We establish global
convergence and, under a local Lipschitzian error bound assumption, local linear rate of
convergence for this method. The local Lipschitzian error bound holds under assumptions
analogous to those for constrained smooth optimization, e.g., the convex function is polyhe-
dral and the smooth function is (nonconvex) quadratic or is the composition of a strongly
convex function with a linear mapping. We report numerical experience with solving the
¢,-regularization of unconstrained optimization problems from Moré et al. [40] and from
the CUTEr set [23]. Comparison with L-BFGS-B and MINOS, applied to a reformulation
of the /;-regularized problem as a bound-constrained smooth optimization problem, is also
reported.
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1 Introduction

A type of nonconvex nonsmooth optimization problem that arises in many applications is
that of minimizing the sum of a smooth function and a convex separable function. Such a
problem has the following form:

min Fu(z) & f(z) + cP(2), )
where ¢ > 0, P : R* — (—o00, 0] is a proper, convex, lower semicontinuous (lsc) function
[51], and f is smooth (i.e., continuously differentiable) on an open subset of R" containing
domP = {z | P(z) < oo}. Typically P is separable, i.e.,

n

P(z) =_ Pj(z;), (2)

=1
for some proper, convex, Isc functions P; : R — (—o0, oc.

The well studied bound-constrained smooth optimization problem is a special case of
(1) with
0 ifl<z<u;
P(z) = - 3
(z) { oo else, (3)
where [ < u (possibly with —oo or co components). Notice that P can take on the extended
value co. This allows for a unified model and analysis. Another special case of (1) that has
attracted much interest in signal/image denoising and data mining/classification is when

P(z) = ||z||;- This yields the following problem with ¢;-regularization:
min  f(z) + cflz]. (4)

For example, f may be the negative of a log-likelihood function. The ¢; term has the
desirable property of inducing sparsity in the solution, i.e., few nonzero components, which
is useful for finding a sparse representation of a noisy signal or for smoothing a signal /image
to have a sparse number of jumps, etc. [1, 5, 7, 11, 12, 38, 54, 55]. Using duality, the
“support vector regression” model [5, 13, 61] can be shown to be a special case of (1) with
P separable (2) and each P; convex and piecewise-linear/quadratic. Similarly, a model for
signal denoising based on Markov random field prior reduces to a special case of (1) with
box constraints [56]. In the above special cases, P, apart from being convex separable, has
the additional nice property of being a polyhedral function, i.e, its epigraph epiP = {(z,§) |
P(z) < &} is a polyhedral set. In applications of interest, the problems are often large, e.g.,
n > 1000, stemming from a fine discretization in 1-D space (for signals) or 2-D space (for
images).

How can (1) and, in particular, (4) be efficiently solved when n is large, say n > 10007
The possibly nonconvex, nonsmooth, and large-scale nature of (1) poses computational
challenges. This problem has previously been studied in [2, 20, 22, 29, 39]. The work most
closely related to ours is that of Fukushima and Mine [22], who proposed a proximal gradient
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descent method which, given z*¥ € domP, computes a direction d* as the solution of the
subproblem

min V(a*)d + %pk||d||2 +eP(a* + d)

(p* > 0) and updates z¥*1 = z* + ofd*, with stepsize o > 0 chosen by an Armijo-type
rule. They showed that every cluster point of {z*} is a stationary point of F,, assuming
that V f has a Lipschitz continuity property, the directional derivative of P has a continuity
property, and p* is uniformly bounded above and below away from zero. Local linear
convergence to a stationary point T was also shown, assuming that VZf(Z) is positive
definite. Later, Kiwiel [29] proposed a method in which P(z* + d) is approximated by a
subgradient bundle. Fukushima [20] further extended Kiwiel’s method to handle smooth
equality constraints via exact penalization, and replaced p*||d||? more generally by a strongly
convex proximal term d? H*d. Mine and Fukushima [39] studied a related Frank-Wolfe-type
method corresponding to p¥ = 0, with o* chosen by line minimization and assuming P
is strictly convex. If domP = R”, then (1) is a special case of a composite nonsmooth
optimization problem studied in [2, 6, 17], i.e., minimizing a real-valued convex function
(t,x) — t+cP(z) composed with a smooth mapping z +— (f(z), ). The descent method of
Auslender [2], when specialized to this case, has a form similar to the method of Fukushima
and Mine, but with p*||d||? in the objective replaced by a ball constraint ||d|| < 1 [2, pages
434, 451]. The descent method of Burke [6], when specialized to this case, also has a form
similar to the method of Fukushima and Mine, but with p*||d||? replaced more generally
by p(d, z*), where p belongs to the function class C* defined in [6, (3.5)]. Under a certain
compactness assumption, every cluster point of {z*} is a stationary point of F, [2, Theorem
2], [6, Theorem 5.3]. The method of Fletcher [17] uses trust-region instead of line search to
achieve global convergence. If in addition f is twice continuously differentiable, then F; is
“lower-C?” [52, Theorem 10.33], for which locally convergent proximal point methods have
been proposed [27, 46, 57]. If f is convex, then an e-subgradient method can also be applied
[3, 4, 49]. However, the above studies did not present numerical results, so the practical
performance of these methods cannot be judged.

In the special case of bound-constrained smooth optimization, gradient-projection meth-
ods [3, 4, 28, 36, 41] or coordinate descent methods [8, 24, 34, 37, 45] can be effective. Other
methods based on trust region or active set, possibly in conjunction with gradient projection
to do active-set identification, have also been much studied; see [9, 10, 62] and references
therein. In the special case of (4), some methods have been proposed for the special case of
“basis pursuit,” where

f(@) = || Az — bll3,

the columns of A € R™*" are wavelet functions, and b € R™. Specifically, Chen, Donoho
and Saunders [7] proposed a primal-dual interior-point (IP) method, with a conjugate-
gradient method used to solve the linear equations at each iteration, exploiting the fast
multiplications by A and AT. However, the number of conjugate-gradient steps is large due
to ill-conditioning in the linear equations being solved at each IP iteration. For the case
where the columns of A comprise the finite union of (overcomplete) sets of orthonormal
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wavelet packets, Sardy, Bruce, and Tseng [53] proposed an alternative method based on
block coordinate descent, which was significantly more efficient than the IP method owing
to its fast iterations by exploiting the wavelet structure of A. Although coordinate descent
methods do not converge on nonsmooth problems in general, the nonsmooth 1-norm is
separable, which is key to its convergence. Unfortunately, the coordinate descent method
is much less efficient when f is nonquadratic since it requires an expensive coordinate-wise
minimization at each iteration; see [25, 26, 54, 55, 56] for further discussions and special
cases. Also, if f is nonconvex, then an example of Powell [47] shows that coordinate descent
methods can cycle among non-stationary points, even if P = 0. Additional assumptions on
f are needed to ensure global convergence [59, 60].

We can alternatively reformulate (1) as a smooth optimization problem over a closed
convex set:

min { f(z) +c€ | Plz) -£<0} (5)

If P is polyhedral, then this problem has linear constraints. The special case of (1) can be
reformulated as a bound-constrained smooth optimization problem, though the dimension
doubles; see Section 7.3. However, although there exist many methods for solving this class
of problems (e.g., gradient projection and active-set methods), these methods seem not well
suited for the large-scale applications mentioned earlier. In particular, they cannot easily
exploit the separable structure of P.

Thus, even in the special case of (4), there appears to be no existing method that can
efficiently solve this problem when f is nonquadratic and n is large. The nonquadratic case
is of practical interest since it allows for non-Gaussian noise in likelihood estimation and
includes sparse nonlinear least square problem. Our aim is to develop a new method that
can efficiently solve (1) and, in particular, (4) on a large scale. Our idea is simple: Since
coordinate-wise minimization is expensive when f is nonquadratic, we will replace f in
F. by a strictly convex quadratic approximation. To ensure sufficient descent, we perform
an inexact line search on F, from the current iterate in the direction of the coordinate-
wise minimum. Surprisingly, this approach does not appear to have been studied before.
Specifically, we propose a (block) coordinate gradient descent (abbreviated as CGD) method
for solving (1) with P having a block-separable structure. At each iteration, we approximate
f by a quadratic and apply block coordinate descent to generate a descent direction. Then
we do an inexact line search along this direction and re-iterate. This method is simple, highly
parallelizable, and is suited for solving large-scale problems. We show that each cluster
point of the iterates generated by this method is a stationary point of F,, provided that
the coordinates are updated in either a Gauss-Seidel manner or a Gauss-Southwell manner;
see Theorem 4.1. Thus, coordinate gradient descent not only has cheaper iterations than
exact coordinate descent, it also has stronger global convergence properties, able to avoid
the aforementioned cycling phenomenon. We next show that if a local Lipschitzian error
bound on the distance to the set of stationary points X holds and the isocost surfaces of
F, restricted to X are properly separated, then the iterates generated by the CGD method
converge at least linearly to a stationary point of Fi; see Theorems 5.1, 5.2. This result
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is analogous to those obtained for gradient projection, matrix splitting, coordinate descent
methods for constrained smooth optimization [30, 31, 32, 33, 58]. We show that this local
error bound holds if either (i) f is strongly convex with Lipschitz continuous gradient or (ii)
P is polyhedral (not necessarily separable) and f is quadratic or the dual of certain strictly
convex function or the composition of a strongly convex function with Lipschitz continuous
gradient and an affine mapping; see Theorem 6.1. The proof for case (ii) involves reducing (1)
to a linearly constrained smooth optimization problem and applying existing error bound
results for that problem [15, 30, 31, 32, 48]. In the special case of linearly constrained
smooth optimization problem (i.e., P is the indicator function for a polyhedral set), error
bound has been much studied and is a key to establishing linear convergence rate for various
methods without assuming uniqueness or boundedness of solutions; see [15, 30, 31, 32, 33]
and references therein. To our knowledge, error bound for the nonsmooth problem (1) has
not been studied previously, and the convergence rate analysis involves new proof ideas to
handle the nonsmoothness of the objective function F.. The CGD method may be viewed
roughly as a block coordinate version of the method in [22] using a general proximal term,
though we also use a different stepsize rule (similar to one in [6]) which is needed for the
convergence rate analysis. Our global convergence and convergence rate analyses require
weaker assumptions than those in [22].

In Section 7, we describe an implementation of the CGD method, along with conver-
gence acceleration techniques, and we report our numerical experience with solving /-
regularization of nonlinear least square problems from [40] and unconstrained smooth opti-
mization problems from the CUTEr set [23]. We compare the CGD method with L-BFGS-B
[62] and MINOS [42], applied to a reformulation of the ¢;-regularized problem as a bound-
constrained smooth optimization problem. Our comparison suggests that the CGD method
can be effective in practice. We discuss conclusions and extensions in Section 8.

In our notation, R” denotes the space of n-dimensional real column vectors, I denotes
transpose. For any x € R” and nonempty J C {1,...,n}, z; denotes the jth component of

z, x; denotes the subvector of x comprising z;, j € J, and ||z||, = ( = \xj\p)l/p for 1 <
p < oo and ||z|| = max; |z;|. For simplicity, we write ||z|| = ||z|]2. Also, Jo = {1,...,n}\J.
For n x n real symmetric matrices A, B, we write A > B (respectively, A > B) to mean
that A — B is positive semidefinite (respectively, positive definite). A;; = [Ajj]ijes denotes
the principal submatrix of A indexed by J. Amin(A4) and Apax(A) denote the minimum and
maximum eigenvalues of A. We denote by I the identity matrix and by 0,, the n X n matrix
of zero entries. Unless otherwise specified, {z*} denotes the sequence z°, z!, ... and, for any
integer £ > 0, {2***}x denotes a subsequence {z¥+¢},cx with K C {0,1,...}.

2 (Block) Coordinate Gradient Descent Method

In our method, we use Vf(z) to build a quadratic approximation of f at z and apply
coordinate descent to generate an improving direction d at x. More precisely, we choose a



nonempty index subset J C {1,...,n} and a symmetric matrix H > 0, (approximating the
Hessian V2f(z)), and move z along the direction d = d(z; J), where

1
di(z;J) & argmin{ Vf(z)Td+ EdTHd—i- cP(x+d) | dj=0Vj¢&J } (6)
d

Notice that dg(x;J) depends on H only through H;;. This coordinate gradient descent
approach may be viewed as a hybrid of gradient-projection and coordinate descent, with
connection to the variable/gradient distribution methods for unconstrained smooth opti-
mization [16, 21, 35]. In particular,

e if J={1,...,n} and P is given by (3), then d is a scaled gradient-projection direction
for bound-constrained minimization [4, 28, 41, 44];

e if f is quadratic and we choose H = V?f(x), then d is a (block) coordinate descent
direction [4, 44, 53, 59, 60].

If H is block-diagonal and P is accordingly block-separable, then (6) decomposes into sub-
problems that can be solved in parallel.

Using the convexity of P, we have the following lemma showing that d is a descent
direction at z whenever d # 0.

Lemma 2.1 For any x € domP, nonempty J C {1,....n} and H > 0,, let d = dg(z;J)
and g =V f(x). Then

Fy(z + ad) < Fy(z) + a(¢"d + cP(z + d) — cP(z)) + o(a) Ya € (0,1], (7)

g"d+ cP(x+d) — cP(x) < —d" Hd. (8)

Proof. For any «a € (0, 1], we have from the convexity of P and H > 0,, that

Fz+ad)—F.(zx) = flx+ad)— f(z)+cPla(z+d)+ (1 —a)zr) — cP(x)
< flz+ad) — f(z)+acP(z +d) + (1 — a)cP(z) — cP(x)
= ag'd+o(a) + a(cP(z + d) — cP(z)),

which proves (7).
For any a € (0, 1), we have from (6) and the convexity of P that

g'd+ %CZTHCZ +cPz+d) < g¢"(ad)+ %(ad)TH(ad) + cP(z + ad)

1
< agtd+ §a2dTHd + acP(z +d) + (1 — a)cP(z).



Rearranging terms yields
(1= a)g%d+ (1 - a)(cP(z +d) — cP(z)) + %(1 _ o))d"Hd < 0.

Since 1 —a? = (1 — a)(1 + «), dividing both sides by 1 — « > 0 and then taking o 1 1 prove
(8). m

The bound (8) is sharp when P = 0. We next choose a stepsize a > 0 so that ' = x+ad
achieves sufficient descent, and re-iterate. We now describe formally the block coordinate
gradient descent (abbreviated as CGD) method.

CGD method:
Choose z° € domP. For k = 0,1,2, ..., generate z**! from z
iteration:

k¥ according to the

1. Choose a nonempty J* C {1,...,n} and an H* = 0,.
2. Solve (6) with x = 2%, J = J*¥, H = HF to obtain d* = dy«(z*; J*).

3. Set zFt! = 2% 4 oFdF, with o > 0.

Various stepsize rules for smooth optimization [4, 18, 19, 44] can be extended to our
nonsmooth setting. The following adaptation of the Armijo rule, based on Lemma 2.1 and
[6, Subsections 4.2, 4.3], is simple and seems effective from both theoretical and practical
standpoints.

Armijo rule:
Choose o > 0 and let o* be the largest element of {af B7};_, . satisfying

ini

F(z* + ofd") < F(z*) + oo AF, 9)
where 0 < /< 1,0<o0<1,0<vy<1, and

ARG F(F)T 4 ydiT B 4 cP(s* + d¥) — cP(ah). (10)

Since H* > 0, and 0 < 7 < 1, we see from Lemma 2.1 that
F.(z" 4+ ad*) < F.(z") + aA* + o(a) Va € (0,1],

and A% < (y— 1)al’”Tde’c < 0 whenever d* # 0. Since 0 < o < 1, this shows that o given
by the Armijo rule is well defined and positive. This rule, like that for sequential quadratic
programming methods [4, 6, 10, 18, 20, 44], requires only function evaluations. And, by
choosing o , based on the previous stepsize o*~1, the number of function evaluations can
be kept small in practice. Notice that A* increases with «v. Thus, larger stepsizes will be
accepted if we choose either o near 0 or y near 1. The descent condition (9) is similar to

ini
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those used in [2, 6] and the term A therein seems essential to our convergence rate analysis;
see Section 8 for discussions.

For convergence, the index subset J* must be chosen judiciously. For smooth optimiza-
tion, J* is often chosen in a Gauss-Seidel manner, e.g., J* cycles through {1},{2}, ..., {n}
or, more generally, J° J!, ... collectively covers 1,2, ...,n for every T consecutive iterations,
where T' > 1 [8, 24, 33, 45, 60], i.e.,

JFUJSt U T = {1, n), E=0,1,... (11)

As we shall see, this generalized Gauss-Seidel rule can also be applied to our nonsmooth
separable problem to achieve global convergence. However, for the convergence rate analysis,
we need a more restrictive choice of J¥, specifically, there exists a subsequence 7 C {0, 1, ...}
such that

07, {1,..,n} = (disjoint union of J5, .51, J7®-1) VkeT,  (12)

where 7(k) & min{k’ € 7 | k¥’ > k}. In particular, (12) is a special case of (11) with T’ < n.

For smooth optimization, J* can also be chosen in a Gauss-Southwell manner, indexing
partial derivatives of the objective function that are within a multiplicative factor of being
maximum in magnitude [21, 45, 53]. This can be extended to our nonsmooth separable
problem as follows. For any x € domP and H > 0,, let

di(z) € dy(z;:{1,..,n}). (13)

We will see in Lemma 3.1 that an x € domP is a stationary point of F, if and only if
di(z) = 0. Thus, ||dg ()|l acts as a scaled “residual” function (with scaling matrix H),
measuring how close  comes to being stationary for F,. Moreover, if H is diagonal, then
the separability of P means that dy(z);, the jth components of dy(x), depends on z; only
and is easily computable.

o If P =0, then dy(z); = =V f(z);/Hj;.
e If P is given by (3), then dy(x); = mid{l; — z;, =V f(z);/Hjj, u; — x;}.
e If P is the 1-norm, then dy(z); = —mid{(V f(z); — ¢)/Hjj,zj, (Vf(z); + ¢)/H;;}.

[mid{a, b, c} denotes the median (mid-point) of a, b, c.] Accordingly, we choose J* to satisfy
ldpe (25 T*)lloo > vlldpr(2°)[|oo, (14)

where 0 < v < 1 and D* = 0, is diagonal (e.g., D* = I or D¥ = diag(H*)). Other
norms beside oco-norm can also be used. We will call (14) the Gauss-Southwell-r rule.
Notice that J¥ = {1,...,n} is a valid choice. If P is the indicator function for a closed
convex set X C R", then d;(z) = [z — Vf(z)]% — =, where [z]} denotes the orthogonal
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projection of = onto X. Thus, dy(z) is a generalization of the projection residual used
in error bounds and convergence rate analysis of descent methods for constrained smooth
optimization [15, 30, 31, 32, 33, 48, 58|.

We will see that the above Gauss-Southwell-r rule yields global convergence of the CGD
method. However, this rule has thus far resisted a convergence rate analysis. The difficulty
lies in that the nonsmooth objective function F, can have different local growth rates (linear
or quadratic) along different coordinate directions, and this is not adequately captured by
the residual dp«(z*); see Section 5 for more discussions. This motivated us to consider a
(new) Gauss-Southwell rule based on the optimal objective value of (6) rather than the
norm of its optimal solution. For any x € domP, nonempty J C {1,....n}, and H > 0,,
define gy (x; J) to be the difference between the optimal objective value of (6) and cP(z),
ie.,

1
qu(z; J) def (Vf(x)Td + —d"Hd + cP(z + d)) —cP(x). (15)
2 d=dp (z;7)
Thus gg(x; J) estimates the descent in F, from z to = + dg(z;J). We have from (8) in
Lemma 2.1 that gy (z;J) < —1dy(x; J)"Hdy(z; J) < 0, so that gy (z) = 0 if and only if
du(z) = 0, where
def
gu(z) = qu(z;{1,..,n}). (16)
Thus, like ||dg(2)||lc0, —qu(z) acts as a “residual” function, measuring how close z comes

to being stationary for F,. If P is separable and H is diagonal, then gg(z;J) is separable
in the sense that qu(x;J) = 3¢, qu(2; j). Accordingly, we choose J* to satisfy

qpr (2F; TF) < v gpr(aF), (17)

where 0 < v < 1, D¥ = 0, is diagonal (e.g., D¥ = I or D* = diag(H*)). We call this the
Gauss-Southwell-q rule. Notice that J* = {1,...,n} is a valid choice.

3 Properties of Search Direction

In this section we study properties of the search direction dy(z,J) and the residual dy(x)

which will be useful for analyzing the global convergence and asymptotic convergence rate
of the CGD method.

Formally, we say that = € R" is a stationary point of F, if x € domF, and F.'(z;d) > 0
for all d € R". The following lemma gives an alternative characterization of stationarity
that will be often used in our analysis.

Lemma 3.1 For any H > 0,, an x € domP is a stationary point of F, if and only if



Proof. Fix any z € domP and H > 0,. If dy(x) # 0, then (7) and (8) show that dy(z) is
a descent direction for F, at x, implying that z is not a stationary point of F,.. Conversely,
if dg(z) = 0, then

g u+ %UTHU +cP(z+u) > cP(z) YueR",
where g = V f(z). For any d € R", letting v = ad for a > 0 yields
aghd+ %aszHd + cP(xz + ad) > cP(z) Ya>0. (18)
Since f(z + ad) — f(z) = ag?d + o(), this together with (18) yields

Flw:d) = lim f(x+ ad) — f(z) + cP(z + ad) — cP(x)

al0 [0
— 1a2dTHd
> lim ofa) - 30 —0 Vde R
al0 o

Hence F.'(z;d) > 0 for all d, implying that z is a stationary point of F,. m

The next lemma shows that ||dy(x; J)|| changes not too fast with the quadratic coeffi-
cients H. It will be used to prove Theorems 4.1 and 5.1.

Lemma 3.2 For any x € domP, nonempty J C {1,..,n}, and H > 0,, H > 0,, let
d=dyu(x;J) and d = dz(z;J). Then

_ . 2
1] < 1A (@) V= 20inl@) F A @) A (Hi) | (19)

2 /\min(HJJ)

where Q = Hy;/*H;;H;7. If Hy; - Hyy, then also

= ||d]|. (20)
Amin(Hy7 — Hyy)

Proof. Since d; = d; = 0 for all j ¢ J, it suffices to prove the lemma for the case of
J =A{1,...,n}. Let ¢ = Vf(z). By the definition of d and d and Fermat’s rule [52, Theorem
10.1],

d € argmin (g + Hd)"u + cP(z + u),
d € argmin (g + Hd)Tu + cP(z + u).
Thus

(9 + Hd)'d+ cP(z + d)
(9 + Hd)"d+ cP(x + d)

(94 Hd)Td + cP(z + d),
(9+ Hd)"d+ cP(z + d).

IA A



Adding the above two inequalities and rearranging terms yield
d"Hd — d"(H + H)d+ d"Hd < 0.
Then, by completing the square on the first two terms, we have
|HY?d — HY2(H + H)d/2||> < ||H Y*(H + H)d||*/4 — d"Hd.
By making the substitution v = H'/2d, & = HY/2d, this can be rewritten as
lu— (I +Q)a/2I* < [|(I + Q)ull*/4 — 4" Q.
The right-hand side simplifies to ||(I — Q)||?/4, so taking square root of both sides yields
lu— (I + @)a/2|| < [|(I — Q)ul|/2.
We apply the triangular inequality to the left-hand side and rearrange terms to obtain
I+ Q)ull/2 = I(I = Q)all/2 < [ull.
Multiplying both sides by 2||(I + Q)al| + 2||({ — Q)@| and simplifying yields
4a" Qu < 2||ul|(|I(1 + Q)al| + [I(I — Q)al]).

Since @ > 0,, this together with ||(I + Q)%|| < (1 + Amax(@))||@]| and ||(I — Q)| <
V1= 22min(@Q) + Amax(Q)2] ] yields

207 Qi < |[ull (1 + Amax(Q) + /1 — 22min(Q) + Amax(@)2) ]

Since @7 Qi = d*Hd > Ain(H)||d||* and ||Ju]| < v/Amax(H)||d]l, |E]] < \/Amax(H)||d]|, this
yields (19).

Suppose H > H. From the definition of d and d, we have
1 v 1oom - ~
grd+ §dTHd+cP(x+d) < gld+ idTHd—i-cP(x—i-d),
S I ~ 1 .~
gld+ 5dTHd +cP(x+d) < g'd+ 5dTHd + cP(x + d).

Adding the above two inequalities and rearranging terms yields

d*(H — H)d < d"(H — H)d.

Hence 3 o
Amin(H — H)||d|]> < Amax(H — H)||d]|?,

which proves (20). =
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If H=~I and H = #7I with ¥ > 4 > 0, Lemma 3.2 yields that
7 2
ldll < lldll < ZIl]]-
Y
By switching the roles of H and H, (19) also yields ||d|| = O(||d||). However, this bound

seems mnot as sharp as (20). If A\ = H = A > 0,, then H > %I, so Lemma 3.2 and the
above bound yield

[N (H — 21) b B 2
ldu ()] < \lm ||d%1($)|| < 25 - 1||d%1(33)|| < 25 — Imax{1, X}”dl(l')”

for all z € domP.

The next lemma shows that dg(z;.J) changes not too fast with the linear coefficients
V f(z). It will be used to prove Theorem 5.1 on the linear convergence of the CGD method.

Lemma 3.3 Let h : R — R be a smooth function satisfying (Vh(u) — Vh(v))" (u — v) >
pllu—|[b for all u,v € R", for some p > 0 and p > 1. Let q satisfy zln + -~ =1. Then, for
any € domP, nonempty J C {1,...,n}, and g,§ € R",

1
q

ld —dll, < p~"llgs — 3112,

where d = argmin  §'d + h(d) + cP(z +d) and d= argmin §7d + h(d) + cP(x + d).
dld;=0 VjgJ dld;=0 Vj¢J

Proof. By assumption, A is strictly convex and coercive, so d and d are well defined. By
Fermat’s rule [52, Theorem 10.1],

de argmin (§+ Vh(d)Td+cP(x+d), de argmin (§+ Vh(d))'d+cP(z + d).
d|d;=0 VjgJ d|d;=0 VjgJ

Hence
(G + Vh(d)Td+cP(z +d) < (§+ Vh(d)Td + cP(z + d),

(§+ Vh(d)Td+cP(z +d) < (§+ Vh(d)Td + cP(z + d).

Summing the above two inequalities and rearranging terms, we have
(G-9)7(d~d) 2> (Vh(d) -~ Vh(d))"(d ~ d) > pl|d - d|}5.
Since d; = d; = 0 for all j ¢ J and ||ul|||v]l, > ©"v for any u,v € R", this yields
13 = gsllolld — dll, > plld — dI?,

which, upon simplification, proves the desired result. m

12



It can be shown that h(d) = I%||d||§, with p > 2, satisfies the assumption of Lemma 3.3
with p = 1/2P72,
We say that P is block-separable with respect to nonempty J C {1,...,n} if
P(xz) = Py(zy) + Py (2;5,) Vo eR", (21)

for some proper, convex, Isc functions P; and Pj,. In this case, the subproblem (6) reduces
to the following subproblem:

1
n(gn Vi(z)hd; + idgHJJdJ +cPy(zy+dy) (22)

where H is the principal submatrix of H indexed by J. Using this observation, we have the
next lemma concerning stepsizes satisfying the Armijo descent condition (9). This lemma
will be used to prove Theorems 4.1(f), 5.1 and 5.2.

Lemma 3.4 For any ¢ € domP, H > 0,, and nonempty J C {1,...,n}, let d = dy(z;J)
and g = Vf(x). For any v € [0,1), the following results hold with A = g¥'d + vd" Hd +
cP(x +d) — cP(x).

(a) If P is block-separable with respect to J, then, for any & € R", o € (0,1], and 2’ =
z + ad,

(9+ Hd)j (@' = 7); + cPs(aly) — cPy(T5) < (= 1) [(1 = 7)d"Hd + A] .

(b) If f satisfies

IVf(y) = Vi@l <Llly -z Vy, z € domP, (23)
for some L > 0, and H > A, where A > 0, then the descent condition
F.(z+ ad) — F.(z) < oaA, (24)

is satisfied for any o € (0,1) whenever 0 < o < min{1,2X(1 — o + o7)/L}.

Proof. (a) Since d = dy(z;J), by (22) and Fermat’s rule [52, Theorem 10.1],
d; € argmin (g + Hd) u; + cPy(z; + uy).
ug

Thus,
(9+ Hd)%d; + cPy(z; +dy) < (9+ HA) 5 (T — x) 5 + cPs(Z). (25)

Since ' = z + ad, we have

(9+ Hd)} (¢ — ) s + cPs(aly) — cPs(Z5)

= (a—1)(g+ Hd)jd; + cPs(z}y) + (9 + Hd)j(z + d — T); — cPy (7))
< (a—=1)(g+ Hd) d; + cP;s(2';) — cPr(zs + dy)

= (a—1)(g+ Hd)"d+ cP(2') — cP(z + d)

< (a—1)(g+ Hd)"d+ (1 — a)cP(x) + acP(x + d) — cP(x + d)

= (a—1)(¢"d+d"Hd+ cP(x +d) — cP(z))

= (a— 11 —~)d"Hd+ (a — 1)A,
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where the second step uses (25), the third step uses d; = 0 for all j ¢ J, and the fourth step
uses the convexity of P and 0 < o < 1. This proves the desired result.

(b) For any « € [0,1], we have from the convexity of P and the Cauchy-Schwarz in-
equality that

F.(z + ad) — F.(x)
= f(zx+ ad) — f(z) + cP(z + ad) — cP(x)

= aVf(z)'d+ cP(z + ad) — cP(z) + /Ol(Vf(a: +tad) — V f(z))" (ad) dt
< aVf(z)'d+ a(cP(z +d) — cP(x)) + a/ol IV f(x +tad) — V f(z)||||d] dt
< (V@) d+ Pz +d) — cP(z)) + a2§||d||2
— (g7 +~d"Hd + cP(z + d) — cP(z)) — aryd” Hd + a2§||d||2, (26)
where the third step uses the convexity of P; the fourth step uses (23) and the convexity of
domP, in which z and z + d lie. If a« < 2\(1 — o + 07y)/L, then d" Hd > )||d||? implies
oz§||d||2 —vd"Hd < (1-0+o07y)d"Hd—~vd"Hd

= (1-0)(1—v)d"Hd
< —(1-0)(¢"d+~vd"Hd + cP(x + d) — cP(x)),

where the third step uses (8) in Lemma 2.1. This together with (26) proves (24). =

If P is separable, then P is block-separable with respect to every nonempty J C {1, ...,n},

with P;(z;) = )_ P;j(z;). The converse also holds, since if P is block-separable with respect
jed
to J,K C {1,...,n} such that JN K # (), then P is block-separable with respect to J N K.2

4 Global Convergence Analysis

In this section we analyze the global convergence of the CGD method under the following
reasonable assumption on the choice of H*. The proof uses Lemmas 2.1, 3.1, 3.2, and 3.4(b).

Assumption 1 M > H* > M for all k, where 0 < A < \.
Theorem 4.1 Let {z*}, {d*}, {H*} be sequences generated by the CGD method under

Assumption 1, where {aF} is chosen by the Armijo rule with infy ozi’“nit > 0. Then the
following results hold.

2Why? Fix z;, = ;. for some z;, € domP;_ and vary z;. Since Pj(z;) + Py (z;.) = Px(zk) +
Pre(xke), Ps(zs) is a sum of two functions, one of zjnx only and the other of z px only.
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(a) {F.(z*)} is nonincreasing and A* given by (10) satisfies
—AF 2 (L= y)d A 2 (L= Al Y, (27)
F (2*) — F.(z*) < 0a*AF <0 VE. (28)

(b) If {z*}x is a convergent subsequence of {x*}, then {a*AF} — 0 and {d*}x — 0. If in
addition 61 = D* = &I for all k, where 0 < & < 8, then {dpk(z*; J*¥)}x — 0.

(c) If {J*} is chosen by the Gauss-Southwell-r rule (14) and 61 = D* = I for all k, where
0 < § <6, then every cluster point of {z*} is a stationary point of F,.

(d) If {J*} is chosen by the Gauss-Southwell-q rule (17), 61 = D* = §I for all k, where
0 < d <94, and either (1) P is continuous on domP or (2) infyo® > 0 or (8) ok, =1
for all k, then every cluster point of {x*} is a stationary point of F,.

(e) If {J*} is chosen by the generalized Gauss-Seidel rule (11), P is block-separable with re-
spect to J* for all k, and sup,, of < oo, then every cluster point of {z*} is a stationary
point of F.,.

(f) If f satisfies (23) for some L > 0, then infy of > 0. If limg_ o F.(2*) > —00 also, then
{AF} — 0 and {d*} — 0.

Proof. (a) The inequalities (27) follow from (10), (8) in Lemma 2.1, 0 < v < 1, and
HF = M. Since z**! = 2F + ofd* and oF is chosen by the Armijo rule (9), we have (28)
and hence {F,(z*)} is nonincreasing.

(b) Let {z*}« be a subsequence of {z*} converging to some Z. Since F, is Isc, F.(7) <
lim inf F,(z*). Since {F.(z*)} is nonincreasing, this implies that {F,(z*)} converges to a

kEK

finite limit. Hence, {F,(z*) — F.(z**')} — 0. Then, by (28),
{a*AF} — 0. (29)

Suppose that {d*} /4 0. By passing to a subsequence if necessary, we can assume that, for
some § > 0, [|d*|| > ¢ for all k € K. Then, by (29), {o*}x — 0. Since infz o > 0, there
exists some index k£ > 0 such that of < ai’i ., and of < B for all k € K with k > k. Since of
is chosen by the Armijo rule, this implies that

F (2 + (*/B)d*) — F.(a%) > o(a*/B)A* VE €K, k> k.
Thus
oA*F = o (ngdk + ’ydkTdek + cP(2* + d¥) — cP(xk))
f(@* + (¥/B)d") — f(a*) + cP(a* + (¥ /B)d") — cP(a*)
ok/p

o f@*+ (@"/B)d") — f(a*) + (a*/B)eP(a* + d*) + (1 — o /B)cP(a") — cP(a")
- ok/p

f(@* + (o*/B)d*) — f(a*)

= P(z* + d*) — cP (" >k
o /B + cP(z" +d¥) —cP(z") Vke K, k> k,

15



where the second inequality uses 0 < o/ < 1 and the convexity of P. Using the definition
of A¥, we can rewrite this as

f* + (af/B)d") — f(a*)
at/p

Since, by (27), the left-hand side is greater than or equal to ((1 — o)(1 — ) + 7)A||d*|?,
dividing both sides by ||d*|| yields

—(1 = o)A 4 d*" H ¥ < — """,

Flat + akd /) — F(o4) g
&+ ]

(1= o)1 =) +Alld*|| < VkeK, k >k, (30)

where we let &% = oF||d*||/B. By (27), —a*A* > (1 — y)AaF||d¥||? > (1 — v)AaF||d¥||d for
all k € K, so (29) and (1 — )X > 0 imply {a¥||d*||}x — 0 and hence {&*}x — 0. Also,
since {d*/||d¥||}x is bounded, by passing to a subsequence if necessary, we can assume that
{d*/||d*||}x — some d. Taking the limit as k € K, k — oo in the inequality (30) and using
the smoothness of f, we obtain

0<((1—0o)(1—9)+7)A < VFE)d—VFE)d = 0,
a clear contradiction. Thus {d*}x — 0.

Suppose that, in addition, 61 > D* > §1 for all k. Then, for each k,

- )
1 5(Hb )™ = () ™2 Dl ()™ = 8 )™ = 5.

[>] <

Then (19) in Lemma 3.2 yields

ldpe (%5 T < a1 (31)

1+ 3/A+ /1= 20/X+ (5/2)? A
2 s
Since {d*}x — 0, this implies {dp«(z*; J*)}x — 0.

(c) Suppose that J* is chosen by the Gauss-Southwell-r rule and 61 = D* > §I for all k.
Suppose that Z is a cluster point of {z*}. Let {z*}« be a subsequence of {z*} converging
to Z. Then, by (b), {dp«(z*; J*)}x — 0. By the Gauss-Southwell-r rule (14), this in turn
implies {r*}x — 0, where we denote for simplicity r* = dpx(z*). By (6) and (13), we have

1 1
gk iTkTDkT‘k +cP(z*+1F) < ng(x —z*) + 5(36 — 2" D¥(x — 2%) + cP(z) Vz e R,

so passing to the limit as k € K,k — oo and using the smoothness of f and lsc of P yields

cP(a) < VI(@)" (s~ 7) + 5(¢ ~ 2)" Dl — ) + cP(x) Va € R,

where D is any cluster point of {D*}. Since D* = §I for all k € K, D > 0,,. This shows
that dp(Z) = 0 so that, by Lemma 3.1, 7 is a stationary point of F,.
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(d) Suppose that J* is chosen by the Gauss-Southwell-q rule, and 61 = D* = I for all
k. Suppose that 7 is a cluster point of {z*}. Let {z*}x be a subsequence of {z*} converging
to . By (b), {d*}x — 0 and {d*}x — 0, where we denote d* = dpx(z*; J*).

Suppose furthermore that either P is continuous on domP or of, = 1 for all k or
inf, o > 0. We will show that
{qpr(z¥; JF) e — 0. (32)
Then, by (17), {gpx(z¥)}x — 0. Since, by (15), (16), (8) in Lemma 2.1, and D* = &I, we
also have
qpr(¥) < —%dm(fv'“)TD'“de (a") < —%Ildm(ﬂf'“)ll2 vk, (33)

this implies that {dp«(z¥)}x — 0. Then, arguing as in the proof of (c), we obtain that Z is
a stationary point of F.

We prove (32) by contradiction. Suppose that (32) is false, i.e.,
qpr(2F; JF) < -6 Vk e K, (34)
for some § > 0 and X' C K with infinitely many elements. We show below that

{P(z*F + d¥) — P(z*)} o — 0. (35)

Case (}) Suppose P is continuous on domP. Since z*, z* + d* € domP, {z*}x — 7, and
{d*}x — 0, (35) readily follows.

Case (2): Suppose infy o® > 0. By (b), {A*}xr — 0. We also have from d* = dyx (z¥; J*)
and d* = dpx (z*; J*) for all k that

1 1
A4 (5 —d B = gFdE 4+ Jd HEE o cP(ab 4 dF) - cP(ab)

< ¢y %(Jk)TchZk +eP(* + d) — cP(a¥)

< (CZk)THka . (Czk)TDka’

1
2
where the last step uses (8) in Lemma 2.1. Since {d*}x» — 0 and { H*} is bounded, the
left-hand side tends to zero as k € K', k — co. Since {d*}x» — 0 and {D*} is bounded,
the right-hand side tends to zero as k € K', k — oc. Thus the quantity between them
also tends to zero as k € K', k — co. Since f is smooth so that {¢g*}x — Vf(Z), (35)
follows.

Case (3): Suppose af;, = 1 for all k. By further passing to a subsequence if necessary, we

can assume that either o = 1 for all k € K' or o < 1 for all k € K'. In the first
subcase, the same argument as in Case (2) proves (35). In the second subcase, we
have from the Armijo rule that F,(z* + d*) > F.(z*) + 0 A¥ or, equivalently,

Fa* +d¥) — F(2%) + (1 — 0)e(P(a* + d*) — P(z*)) > o(g*" d¥ + vd*" H*d*)
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for all k£ € K'. Since 0 < 1, {z*}xr — 7, {d*}x» — 0, and {H*} is bounded, this
shows that liingnf(P(ac’C +dF) — P(z*)) > 0. Since
€ ’

k—o00
0> AF = gk dF 4 @ H*dF + cP(aF + d¥) — cP(a¥)  VE,

this in turn yields that {A*},» — 0. Then, the same argument as in Case (2) proves
(35) also.

We have from (15) that
o 1 - . -
qpr(zF; JF) = g d + i(dk)TDkd'c + cP(z" + d*) — cP(2*) Vk e K.

Since f is smooth, {z*}xs — %, {d*}» — 0, and {D*}: is bounded, this together with (35)
yields {qpr(z¥; J*)}xr — 0, contradicting (34).

(e) Suppose that {J*} is chosen by the generalized Gauss-Seidel rule (11), P is block-
separable with respect to J* for all k, and sup, o < oo. The latter implies {a*} is bounded.
Suppose that Z is a cluster point of {z*}. Let {z*}x be a subsequence of {z*} converging
to Z. By further passing to a subsequence if necessary, we can assume that {H*}x — some
H and J¥ = J for all k € K. Since H* > ) for all k, we have H > A > 0,. By the
definition of d* and J* = J, we have from (21) that

T 1
gy dy+ 5(d5)" Hyydy + cPy(ay + dj)

T 1 n
< g"} (x—xk)J+5(3}—xk)§H§J(x—xk)J+cPJ(xJ) Ve € R™.

Since {d*}x — 0 by (b), passing to the limit as k € K, k — oo and using the smoothness of
f and lsc of P; yields

Py(as) < V(@)@ — )y + g (x — D)3 Hysla —2); + cPylzs) Vi€ R

This shows that dz(z;J) = 0 so that, by Lemma 3.1, Z is a stationary point of F, with
respect to the components indexed by J, i.e., F!(z;d) > 0 for all d € ®" with d; = 0 for
jéeJ.

Since {d*}x — 0, the boundedness of {a*} implies {z*"1}x — Z. This in turn implies
{d**1}x — 0 by (b), and so {z**2}x — z. Continuing in this manner, we obtain that
{x¥*}x — z, for £ = 1,...,T — 1. Thus, we can apply the above argument to {z*t¢} to

obtain
Fc’(:E;d) >0 VdeR" withd; =0V5¢J,, £=0,1,..,T -1,

where Jy, J1, ..., Jy_1 are nonempty subsets of {1,...,n} whose union equals {1,...,n}; see
(11). Since f is differentiable and P is block-separable with respect to Jy, Ji, ..., Jr_1, this
in turn implies that F(Z;d) > 0 for all d € R", so 7 is a stationary point of F,.
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(f) Since o is chosen by the Armijo rule, either o* = of or else, by Lemma 3.4(b),

of/B > min{1,2\(1 — 0 + 07)/L}. Since infyof > 0, this implies infyo* > 0. If
limy_, o Fi.(2¥) > —o0 also, then this and (28) imply {A*} — 0, which together with (27)
imply {d*} - 0. =

Notice that the assumption 61 >= D* > §I in Theorem 4.1(b), (c), (d) is automatically
satisfied if we choose D* = I or D* = diag(H*) under Assumption 1. Also, the assumption
sup, o < oo in Theorem 4.1(e) is automatically satisfied if we choose sup, o . <o0o. In
the case where P is separable, in addition to being proper convex lsc, P is automatically
continuous on domP [52, Corollary 2.37].

To our knowledge, Theorem 4.1 is new even in the unconstrained smooth case (i.e.,
P = 0). Theorem 4.1(e) shows that the CGD method has stronger global convergence
properties than the coordinate minimization method when both update coordinates in a
Gauss-Seidel manner. In particular, the CGD method cannot cycle on Powell’s example
[47].

If we choose J* = {1, ...,n} and H¥ = AT for all k£ with A > A\¥ > )\ > 0, then the CGD
method is closely related to the method of Fukushima and Mine [22]. Since J* satisfies
(14), Theorem 4.1(c) implies that every cluster point of {z*} is a stationary point of F..
In contrast, the convergence result in [22, Theorem 4.1] further assumes that Vf has a
Lipschitz property and P'(z;-) has a continuity property.

5 Convergence Rate Analysis

In this section we analyze the asymptotic convergence rate of the CGD method under the
following assumption, analogous to that made for constrained smooth optimization [33]. In
what follows, X denotes the set of stationary points of F, and

dist(z, X) = min ||z — Z|| Vr e R™.
zeX
Assumption 2 (a) X # 0 and, for any ¢ > min,F,(z), there exist scalars T > 0 and
€ > 0 such that
dist(z, X) < 7||d;(z)|| whenever F.(z) <¢, ||di(2)| < e (36)
(b) There exists a scalar 6 > 0 such that

|z —yl|| >6 whenever z€ X, ye X, F.(z) # F.(y).

Assumption 2 is a generalization of Assumptions A and B in [33] for constrained smooth
problems. Assumption 2(a) is a local Lipschitzian error bound assumption, saying that the
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distance from z to X is locally in the order of the norm of the residual at z. Error bounds
of this kind have been extensively studied. Assumption 2(b) says that the isocost surfaces
of F, restricted to the solution set X are “properly separated.” Assumption 2(b) holds
automatically if f is a convex function. It also holds if f is quadratic and P is polyhedral,
as can be seen by applying [30, Lemma 3.1] to (5).

Our analysis will use ideas from the proof in [33, Appendix]| for smooth constrained
problems, i.e., P is the indicator function for a nonempty closed convex set. However, the
nonsmooth nature of the objective function F, requires new proof ideas. In particular, the
proof in [33, Appendix]| relies on using the error bound (36) to derive an inequality like

Fc(mk“) - S 7"||3:k+1 o xk“Q

for all k sufficiently large, where 7/ > 0 and © = limy_,o, F.(z"); see [33, page 175]. For

the nonsmooth case, we cannot derive this same inequality but instead work with a weaker

k+1 __ k||2

inequality whereby the quadratic term ||z is replaced by —A¥*.

We first have the following technical lemma.

Lemma 5.1 Assume that f satisfies (23) for some L > 0. If {z*}x is a subsequence of a
sequence {z*} in R™ satisfying {z* — "} — 0 and

F.(z*)=0 Vkek, k>k, (37)
for some index lAc, veER, KC{0,1,..}, and z* € X, then

hmlan( "> 0.

lc—}oo

Proof. Fix any index k € IC, k > k. Since z* is a stationary point of F,, we have
V(@M («* — z%) + cP(a¥) — cP(z%) > 0.
We also have from the Mean Value Theorem that

f@®) = f(@*) = VFWHT (" - 3),

for some 1* lying on the line segment joining #* with z*. Since z*, Z* lie in the convex set
domP, so does ¥*. Combining these two relations and using (37), we obtain

(Vf(@*) = V()" (@* —3%)
IV£(@") = VE@Hll" - 2|
L|jz* — z*|P%,

0 — F, (2F)

ININIA

where the last inequality uses (23), the convexity of domP, and |[¢* — z*|| < [|z* — Z¥].

This together with {z* — z*}x — 0 proves the desired result. =
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The next two theorems establish, under Assumptions 1-2 and (23), the linear rate of
convergence of the CGD method using either the restricted Gauss-Seidel rule or the Gauss-
Southwell-g rule to choose {J*}. Their proofs use Theorem 4.1 and Lemmas 2.1, 3.2,
3.3, 3.4(a), 5.1. In what follows, by Q-linear and R-linear convergence, we mean linear
convergence in the quotient and the root sense, respectively [45, Chapter 9.

Theorem 5.1 Assume that f satisfies (23) for some L > 0. Let {zF}, {H*}, {d*} be
sequences generated by the CGD method satisfying Assumption 1, where {J*} is chosen by
the restricted Gauss-Seidel rule (12) with T C {0,1,...}. Then the following results hold.

(a) ||dr(z*)|| < sup;of Cr* for all k € T, where r* = SIE @ and C > 0 depends on
n, L\, .

(b) If F, satisfies Assumption 2, P is block-separable with respect to J* for all k, and
{a*} is chosen by the Armijo rule with sup, of < 1 and infyof >0, then either
{F.(z%)} | —oc or {F.(z*)}+ converges at least Q-linearly and {x*}+ converges at
least R-linearly.

Proof. (a) Let g* = Vf(2*) for all k. For each k € T, we have from (12) and (13) that

l=k

7(k)—1 (k)—1
ldr (z* |I—J > lldi(zk; J9))12 < 2 \lds(z*; 79

Since 2%, = z*,, we obtain from Lemma 3.3 with h(u) = ||ul|?/2,p =2, p =1, J = J",

d = dr(z*; J*), d = di(a%; J*), § = ¢, § = ¢* that
ldr(z®; J¢) — dr(z®; T < llghe — glell < Llja* — 2*|,

where the second inequality uses (23) and 2%, z¥ € domP. Combining the above two relations
and using triangle inequality yield

k
i (z®)]| < Z (||dz LT + Lt - 2¥]))
k

e
< Z (Ol e (2% T4 + Li2* — 2*]])
T(k

(k)-1

IN

-1
(9||de|| +L}, Ozjlld”H)

o=k j=k

where the second step uses Lemma 3.2 with H = H¢ and H = I, and we denote 0 =
(1+1/A+ \/1 — 2/X+ 1/2*)X/2; the last step uses [|z°—2*|| = || ZiZ} odd?|| < Ti2; o |||
Since 7(k) — k < n, this yields the desired result.
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(b) By Theorem 4.1(a), {F.(z*)} is nonincreasing. Thus either {F.(z*)} | —oo or
limg_, o, F.(z¥) > —oo. Suppose the latter. Since aof is chosen by the Armijo rule with
infy a® > 0, Theorem 4.1(f) implies {d*} — 0. Since 7(k) — k < n for all k € T, this
implies that {r*} — 0 and hence, by (a), {dI( ¥)}7 — 0. Since {F.(x*)} is nonincreasing,
this implies that F,(z*) < F,(z°) and ||d;(z*)|| < € for all k € T with k > some k. Then,
by (a) and Assumption 2(a), we have

|z* —z*F|| < 7'k VR e T, k >k, (38)

where 7 > 0 and z*¥ € X satisfies ||z* — z*|| = dist(z*, X). Since {r*};+ — 0, this implies
{#* — 2*}7 — 0. Since {z**! — 2*} = {a*d*} — 0, this and Assumption 2(b) imply that
{z*}+ eventually settles down at some isocost surface of Fy, i.e., there exist an index E>k
and v € R such that F,(z%) = o for all k € 7 with k > k. Then, by Lemma 5.1 with £ =T,

.. k _
llIlgle%pch(.T ) > 0. (39)

k—oo

Fix any k € T. For £ € {k,k+1,...,7(k) — 1}, we have from the Armijo rule (9) that
F (2" — F (2% < oafAl

Summing this over £ =k, k+ 1,...,7(k) — 1 yields that
T(k)fl

F,(z™®) — F (%) oatAL. (40)
=k
Also, using (21) and letting £¢ = Py (m}ﬁk)), = Pj(z%,), we have that, for k > k,
F(z™®) — o
= f(@™®) +cP(@W) — f(z*) - cP(")
7(k)—1
— Vf(.f?k)T(l'T(k) _ jk) + [Cé-ﬁ _ Cgé]
=k
T(k)—
= (Vf(@") = ¢") (a7 )+ Z [ g — g 5@t — 7) ]
O T 1 _ T(k ¢ e\T el -k ¢ _ gt
_;c(Hd)ﬂ(x e + Z [(g +Hd)ﬂ(:v —:v)ﬂ-l—cﬁ—cf]
T(k)—-
< Lt = 2Fllla™® — 2+ Y Lllﬂ?’c =zl = 2|
T(k)—1 7(k)—1 T _
F Mt -+ S [(gqudf)ﬂ (2t — ) +cgf—cgf]
=k =k
T(k)—1
< LY —aMl2™® =2+ 30 Lla® - 2t - 2¥|
T(k)-1 T(k)-1 .
+ 30 Md ettt =2+ > (of = 1) [(1 = y)d” HYdE+ A, (41)
=k =k
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where the second step uses the Mean Value Theorem with Z* a point lying on the segment
joining z7®) with Z*; the third step uses (12) and x}&’“) = 25" for k < £ < 7(k); the
fourth step uses A\ > H¢ = 0, (23), and the convexity of domP and the last step uses
¢ = Pu(ai'), of <af <1, and Lemma 3.4(a).

Fix any k € T, k > k. Using the inequalities ||Z% — z*|| < ||z™® — z¥|| + ||2% — Z¥],
¢

|zt — ZF|| < ||zt — 2k + [|o* — z¥]|, |2 — 2F] < DD o ||d| for k < £ < 7(k), we see
=k
from (38) and o? < 1 that the right-hand side of (41) is bounded above by

T(k)— 7(k)—1
Cy Z 4+ 3 (o =1 [ — y)d* H'd + A']

for some constant C; > 0 depending on L,7',n, A only. Since, by (27), we have —Af >
(1 —)d  Hd* > (1 — v)A||d||?, the above quantity is bounded above by

7(k)—1
—Cy 3 A

=k

for some constant Cy > 0 depending on L, 7', n, A, ),y only. Combining this with (40), (41),
and infj, o > 0 (see Theorem 4.1(f)) yields

F.(z"®) — 0 < C3(F,(a*) — F,(z™™)) VkeT, k >k,
where C3 = Cy/(0 infy o*). Upon rearranging terms and using (39), we have

0< F(z®) -5 < (F.(z¥)—0) VkeT, k>k,

so {F.(z*)}7 converges to ¥ at least Q-linearly.

Finally, (27) implies Af < (y — 1)A||d4||?, so that (40) and 2¢T! — 2t = ofd? yield

e+l _ )2 R
sl < F.(zF) = F,(z™™) VkeT, k>k.

This implies

(k)—1
l27® — 2F|| < Z |zttt — 2t

< \n%(mxk) — F(z"®)) VkeT, k>k

Since {F,(z*) — F.(z7®)}+ — 0 at least R-linearly and sup, af < 1, this implies that {z*}+
converges at least R-linearly.? m

3More precisely, writing 7 = {k1, k2, ...}, we have ||zF+1 — zFt|| = (\/F (xke) — IL‘kH—l)) =0)
fort=1,2,..., where ¥ =

15303. Thus {z** }i=1,2,... satisfies Cauchy’s criterion for convergence, implying
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Theorem 5.2 Assume that f satisfies (23) for some L > 0. Let {zF}, {H*}, {d*} be
sequences generated by the CGD method satisfying Assumption 1, where {J*} is chosen by
Gauss-Southwell-q rule (17) with P block-separable with respect to J* and 61 = D* = §I for
allk (0 <§ <3). If F, satisfies Assumption 2 and {c*} is chosen by the Armijo rule with
sup, o <1 and infyaf >0, then either {F,(z*)} | —oo or {F.(a*)} converges at least
Q-linearly and {z*} converges at least R-linearly.

Proof. For each k =0,1,..., (10) and d* = dyx(z*; J*) imply that

AF + (% — ’y) IR = ngdk + %dkTdek + cP(z* + d*) — cP(2")
< ngJk + %(cik)Tchik + cP(zF + d*) — cP(z¥)
= gpe(zF: JF) + %(Jk)T(ch _ DMy
< qpr(2¥; J7) + wl|df|f?, (42)

where we let d* = dp(2*; J*), and the last step uses (31) and (d*)" (H* — D¥)d* < (X —
9)||d*||?>. Here, w is a constant depending on A, ), 4, only.

By Theorem 4.1(a), { F.(2*)} is nonincreasing. Thus either { F.(z*)} | —oc or lim_, o, F,(2*) >
—o00. Suppose the latter. Since o is chosen by the Armijo rule with inf}, ai’i . > 0, Theorem
4.1(f) implies inf o > 0, {A*} — 0, and {d*} — 0. Since {H*} is bounded by Assumption
1, we obtain from (42) that 0 < limy_, inf gpr(z*; J¥). This together with (17) and (33)

yields {dpx(z¥)} — 0.
By Lemma 3.2 with H = D* and H = 1I,

()] < 14+ 1/8+ /1 —2/8 + (1/4)?
! = 2

§ ||dpe(z®)]|  Vk.

Hence {d;(z*)} — 0. Since {F,(z*)} is nonincreasing, this implies that F,(z*) < F,(z°)
and ||d;(z*)|| < € for all £ > some k. Then, by Assumption 2(a), we have

2" — 2% < 7lldi (M)l VE > &, (43)

where 7 > 0 and z¥ € X satisfies ||z* — z¥|| = dist(z*, X). Since {d;(z*)} — 0, this implies
{z¥ — 7%} — 0. Since {zF*! — 2%} = {a*fd*} — 0, this and Assumption 2(b) imply that
{7*} eventually settles down at some isocost surface of Fy, i.e., there exist an index k>k
and a scalar © such that F,(z*) = © for all k¥ > k. By Lemma 5.1 with K = {0,1,...},

lim inf F,(z*) > . (44)

k—00

it has a unique limit Z. Moreover, for any #' > t, we have ||z%t —zkv || < E;:tl [|zki+r —ghi|| < O(Zz:tl ¥) =
O(¥"). Taking ' — oo yields [|z** — Z|| = O(¥?) for any t, so limsup,_, ., [|z* — Z||*/* <9 < 1.
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Fix any k > k. Letting J = J* and d* = dp(z*; J*), we have from (21) that

Fc(xk+1) -9
= f(@*) +cP(a*) = f(2*) — cP(z¥)
= Vf(@")T(a"" = 2%) + cPy(aTh) + cPy (ah) — cPs(ah) — Py (25)
= (VF(#) — g = 2%) — (H*dM)] (&P = 2%), — (DFaY)] (o8 — 2°),,
+(g" + H*d*)T (2" — %) ; + cPy(a%tY) — ePy(zh)
+(g* + D*dM)J (aF — 2°);, — Py (&) + cPr.(2)
LY\ — a®|| |+ — 25| + | H ¥ ||||l* " — 25| + || D¥a¥|||| % — 2|
ok —1)(1 = 7)d* HEdE + (of — 1)A*
+(g" + DFA*)] (" — 7°),, — Py (35,) + P ()
L)|#* — 2 |||2*" — 25 + Alld¥|l |5 — 2| + 5| d"|l[|=* — 2|
+oFA||dH|)? + (oF — 1)A% — (g% + DEA¥)T d¥ — cPy (¥ + d%) + cPy (2%)
= L||&* — o*|[[|lz* — 2| + X ||[|*+" — 2¥|| + 5]1d*||||=* — 2¥|

- 1 - A
+afN[dM[* + (o — 1)AF —qpe(af; J) — 5 ()" D", (45)

IN

IN

where the second step uses the Mean Value Theorem with Z* a point lying on the segment
joining z**! with z*; the third step uses :c’}jl = x’ﬁc; the fourth step uses (23), the convexity
of domP, o < ai’fm < 1, and Lemma 3.4(a); the fifth step uses Lemma 3.4(a) (applied to
x*, DF J., and o = 1) as well as A = H* = 0,, 61 = D* = 0,, v < 1; the last step uses

d¥ = dpe(z*; J.), (15), and (21).

Using the inequalities ||Z% — z*|| < ||2*T! — 2F|| + ||zF — Z¥||, ||2*T! — ZF|| < ||zF T —2¥|| +
||z¥ — z*|| and ||z**! — 2*|| = oF||d¥||, we see from (43), D* = 0,, and sup, of < 1 that the
right-hand side of (45) is bounded above by

Crld*] + 11°]l + llds (")) + (o = 1)A* — gpe (a*; JE) (46)

forall k > ];J, where C; > 0 is some constant depending on L, 7, , § only. Since 61 = D* > §I
and AT = H* = A, we have from (19) in Lemma 3.2 that

1+ 1/A+ /1 —2/A+1/)2

Idr () e 5 A,
14+1/8+/1-2/64+1/8% _ .
ldr(@®) el < \/2 0 [l
Thus the quantity in (46) is bounded above by
Colld*|[* + Colld*[|* + (o — 1)AF — gpr (a*; JE) (47)

for all £ > /;', where Cy > 0 is some constant depending on L, 7, A, A, 8,8 only.
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By (27), we have
Ad*||? < d* B < R
1—7

Similarly, by (8) in Lemma 2.1 and (15), we have gpx(z*; J¥) < —%(Jk)Tchz’“ <0, so that

AF V. (48)

8||d*|* < (d¥)TDFd* < =2 qpe (o TF).
Thus, the quantity in (47) is bounded above by
Cy (—AF — gpi(a*; J5)) (49)

for all £ > ]Af, where C5 > 0 is some constant depending on L, 7, ), A, 8, 8,y only.

By using (16), (17), and the block-separability of P and block-diagonal structure of D*
with respect to J*, we have

qpr (2% J%) < v gpr(2¥) = v (qu(mk; Y + qpr (2% Jf)) ,

implying
v qu(xk; Jck) > (1-w) qu(fck; Jk). (50)

Combining (42) with (48) yields
1
g (et ) < —AF 4 (’y - 5) & HE G 4 w||d|)?

1 1 w
< —AF_ {0 — —}—Ak— — Ak 51
< max 0,7 = 51— 31— (51)

Combining (50) and (51), we see that the quantity in (49) is bounded above by
—C,AF

for all k£ > l;:, where Cy > 0 is some constant depending on L, T, \, ), d,d,7,v only. Thus
the right-hand side of (45) is bounded above by —C,A* for all k¥ > k. Combining this with
(28), (45), and infy o > 0 (see Theorem 4.1(f)) yields

F(z"Y) — 0 < C5(F,(a*) — F.(z"tY)  VEk >k,

where C5 = Cy/ (0 infy, of). Upon rearranging terms and using (44), we have

Cs
1+ Cs

0< F,(zF) —ou < (F.(z®) —v) Vk >k,

so {F.(x*)} converges to ¥ at least Q-linearly.
Finally, by (28), (48), and 2**! — 2% = o*d*, we have

)\”xkﬂ _ xk||2

ak

vV
x>

o(1—7) < F,(2%) — F (") Vk
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This implies

k
L k|| < | (Fu(2F) — Fy(zk+1)) Yk > k.

|z z ”_Ja(l—v)A( c(aF) = Fe(akt1)) >
Since {F,(z*) — F.(z*™)} — 0 at least R-linearly and sup, o < 1, this implies that {z*}
converges at least R-linearly; see the footnote in the proof of Theorem 5.1 for more details.
| ]

The assumption (23) in Theorems 5.1 and 5.2 can be relaxed to Vf being Lipschitz
continuous on domP N (X + pB) for some g > 0, where B denotes the unit Euclidean ball
in " and X° denotes the convex hull of the level set {z | F.(z) < F.(z%)}. For simplicity,
we did not consider this more relaxed assumption.

As we noted in Section 2, we have been unable to establish the local linear convergence
of the CGD method using the Gauss-Southwell-r rule to choose {J*}. Only in the simple
case where f and P are separable, in addition to the assumptions of Theorem 5.2, have we
been able to prove local linear convergence. In fact, even in this case our proof is nontrivial,
even though the problem decomposes into n univariate problems. This is because different
coordinates can converge at different rates, which needs to be explicitly taken into account
in the proof.

6 FError Bound

In this section we show that Assumption 2(a) is satisfied under problem assumptions anal-
ogous to those for constrained smooth optimization. In fact, we will show that error bound
for (4) is closely related to that for constrained smooth optimization problems.

By using epiP = {(z,&)|P(z) < &}, we can reformulate (1) as the constrained smooth
optimization problem (see (5)):

min { fl@)+c€ | (2,§) €epilP }. (52)

For any (z,£) € epiP, the corresponding projection residual is the optimal solution of the
subproblem:

1 1
min {Vf(x)Td+§||d||2+§52+cé | (¢ +d,€+6) € epiP } (53)

The following lemma shows that if P is Lipschitz continuous on domP, then the norm
of this projection residual is bounded above by a multiple of ||d;(z)|| whenever & = P(z).
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Lemma 6.1 Suppose that P is Lipschitz continuous on domP. There exists a scalar k > 0
(depending only on the Lipschitz constant of P) such that, for any x € domP and £ = P(x),

1(d, 9)I| < xlldr(x)]

where (d,6) is an optimal solution of the subproblem (53).

Proof. Fix any z € domP and ¢ = P(z). By (6) and (13), (dr(x), ) is the optimal solution
of the subproblem:

1
min {Vf(x)Td+§||d||2+cc5 | (z+d, &+ 6) € epiP }

where we let § = P(z + d;(z)) — P(z). By Fermat’s rule [52, Theorem 10.1],

(di(z),0) € argllﬁr)lin{ (V@) +di(@)"d+co | (z+d,&+0) € epiP }.

Hence
(Vf(x)+ dr(x) dr(z) + ¢d < (Vf(x)+ di(x))"d+ .

Also, since (d, ) is the optimal solution of the subproblem (53), we have
75, Lpse 1o, & T 1 2 Lo <
Vi(x) d+ §||d|| + 5(5 +cd < Vf(z) di(z) + §||d1(3:)|| + 55 + co.
Adding the above two inequalities and simplifying yield
1 2 75, lpse 1 1l
Z — Z 0% < 2482,
@) = dy(2)d+ 5P + 55 < 53
Multiplying both sides by 2 and rewriting the first three terms into a square, we have
dr(z) — d||?> + 62 < 6°.

Thus 42 < 62 and ||d;(z) — d||* < §2. Taking square root of both sides and using the triangle
inequality yield 3 ) 3 )
ol <fol,  ldll = lldz ()] < []. (54)

Now, the Lipschitz continuity of P on domP implies that |§| = |P(z + d;(z)) — P(z)| <
K||d;(x)||, where K is the Lipschitz constant. Then (54) yields that

0] < Klldr(@)ll,  lldll < (K +1)llds ()]

which proves the desired result. m

The following local error bound results from [30, 31, 32, 48] show that, for all x sufficiently
close to X, dist(x, X) can be bounded from above by the norm of the solution of the
subproblem (53) under certain problem assumptions.
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Lemma 6.2 Assume that X # (0 and any of the following conditions hold.

C1 f is quadratic. P is polyhedral.

C2 f(z) = g(Ex)+q"x for allx € R™, where E € R™ " q € R", and g is a strongly conver
differentiable function on R™ with Vg Lipschitz continuous on R™. P is polyhedral.

C3 f(z) = maxyey{(Ex)Ty — g(v)} + ¢"z for all z € R", where Y is a polyhedral set in
R™E € R™*" g € R™, and g is a strongly convez differentiable function on R™ with
Vg Lipschitz continuous on ™. P is polyhedral.

Then, for any ¢ € R, there exist scalars 7' > 0 and € > 0 such that
dist(z, X) < 7'||(d,d)|| whenever F.(z) <, ||(d,d)]| <€, (55)

where (cz, 5) is the optimal solution of the subproblem (53) with £ = P(x).

Proof. Since epiP is convex, each stationary point (Z,€) of (52) satisfies
Vi@ (z-2)+c§ =& 20 V() € epiP,

from which it readily follows that £ = P(z) and z € X. Under C1, the objective function
of (52) is quadratic and epiP is a polyhedral set. Fix any ¢ € R. By applying [30, Theorem
2.3] (also see [48]) to (52), there exist scalars 7/ > 0 and € > 0 such that

min ||(z, P(2)) — (7, P(2))|| < 7'l|(d,0)]| whenever F.(z) <, |I(d,0)] <€,

TeEX

where (d,0) is the optimal solution of (53) with & = P(z). Since ||z — Z|| < ||(z, P(z)) —
(z, P(z))|| for all z € X, this proves (55).

Under C2, the objective function of (52) has the form g ([E 0] [?]) +[q" (] [2] and epiP
is a polyhedral set. Then, by applying [31, Theorem 2.1] to (52) and arguing similarly as
above, (55) can be proved. Under C3, a similar argument using [32, Theorem 4.1] (also see
[33, Theorem 2.1]) proves (55). =

By using Lemmas 6.1 and 6.2, we obtain the main result of this section.

Theorem 6.1 Assumption 2(a) is satisfied if X # 0 and any of the conditions C1, C2, C3
in Lemma 6.2 holds or if the following condition holds.

C4 f is strongly convex and satisfies (23) for some L > 0.
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Proof. Under C1 or C2 or C3, P is polyhedral so, by Example 9.35 in [52], P is Lipschitz
continuous on domP. Then Lemmas 6.1 and 6.2 yield that Assumption 2(a) holds.

Under C4, for any = € domP, since dr(z) is a solution of the subproblem (6) with
J=4{1,..,n} and H = I, by Fermat’s rule [52, Theorem 10.1],

di(z) € arg;nin (V£(x) +di(z)Td + cP(z + d).

Hence, for any Z € X (in fact, X is a singleton), we have
(Vf(z) +di(x))" di(2) + cP(z + di(2)) < (V(2) + di(2))" (7 — z) + cP(Z).
Since Z is a stationary point of F,, we also have
cP(7) < Vf(2)" (z +di(z) — 7) + cP(z + di(z)).
Adding the above two inequalities and simplifying yield
(Vf(2) = V(@) (z = ) + |di(@)[]* < (Vf(z) = Vf(2))"dr(2) + dr(2)" (2 - @).
It follows from the strong convexity of f and (23) that
Ml = z||* + lldr(2)]I* < Lllz — z||llds (@)l + |z — z[llld: ()],
for some scalar constants 0 < A < L. Thus
Mz = zlI* < (L + 1)z — zllldr(2)]-

Dividing both sides by A||z — Z|| whenever x # & shows that Assumption 2(a) is satisfied
with 7= (L + 1)/ and € = co (independent of (). =

Notice that the objective function of (52) is not strongly convex under C4. Thus existing
error bound results for strongly convex objective function (e.g., [15, Proposition 6.3.1])
cannot be applied to (52).

7 Implementation and Numerical Experience

In order to better understand its practical performance, we have implemented the CGD
method in Matlab, using Matlab’s vector operations, to solve the ¢;-regularized problem
(4). In this section, we describe the implementation, together with convergence acceleration
techniques, and report our numerical experience on test problems with n = 1000 from
Moré et al. [40] and the CUTEr set [23]. In particular, we compare the performance of the
CGD method using either the Gauss-Seidel rule or the Gauss-Southwell-r rule or the Gauss-
Southwell-q rule, with or without acceleration. We also reformulate the ¢;-regularized test
problems as bound-constrained smooth optimization problems and solve them using the
well-known Fortran codes MINOS [42] for constrained smooth optimization and L-BFGS-B
[62] for large-scale bound-constrained smooth optimization.
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Name Description
BAL | 1000 | Brown almost-linear function, nonconvex, with dense Hessian.
BT 1000 | Broyden tridiagonal function, nonconvex, with sparse Hessian.
DBV | 1000 | Discrete boundary value function, nonconvex, with sparse Hessian.
ER 1000 | Extended Rosenbrook function, nonconvex, with sparse Hessian.
TRIG | 1000 | Trigonometric function, nonconvex, with dense Hessian.
EPS | 1000 | Extended Powell singular function, convex, with sparse Hessian.
2
LR1 | 1000 | f(z) = z i Zja:j — 1] , convex, with dense Hessian.
i=1 j=1
n—1 n—1 2
LR1Z | 1000 | f(z) = (i—1) Zja:j —1] 42, convex, with dense Hessian.
=2 j=2 A )
LFR | 1000 f(x)—; w,—n—szzlxj—l + n—H;x1+1 ,
strongly convex, with dense Hessian.
VD 1000 | Variably dimensioned function
f(z) = Z (z:—1)" + (Zl(fvz - 1)) + < i(zi — 1)) ;
i=1 i=1 i=1
strongly convex, with dense Hessian.
Table 1: Nonlinear least square test functions from [40, pages 26—28].
Name n Description
EG2 1000 | A nonconvex function, with sparse Hessian.
EXTROSNB | 1000 | The extended Rosenbrock function (nonseparable version),
nonconvex, with sparse Hessian.
INDEF 1000 | A nonconvex function which is a combination of quadratic
and trigonometric functions, with sparse Hessian.
LIARWHD | 1000 | A simplified version of the NONDIA (Shanno’s nondiagonal extension
of Rosenbrock function), nonconvex, with sparse Hessian.
NONCVXU2 | 1000 | A nonconvex function with a unique minimum value,
with sparse Hessian.
PENALTY1 | 1000 | f(z) = ; 107°% (z; — 1)° + ;xj -1l
nonconvex, with dense Hessian.
WOODS 1000 | The extended Woods function, nonconvex, with sparse Hessian.
QUARTC 1000 | A simple quartic function, convex, with sparse Hessian.
DIXON3DQ | 1000 | Dixon’s quadratic function, strongly convex, with tridiagonal Hessian.
TRIDIA 1000 | Shanno’s TRIDIA quadratic function, strongly convex,
with tridiagonal Hessian.

Table 2: CUTEr test functions [23].

31




7.1 Test functions

For the function f in (4), we chose 10 test functions with n = 1000 from the set of nonlinear
least square functions used by Moré et al. [40]. These functions, listed in Table 1, were
chosen for their diverse characteristics: convex or nonconvex, sparse or dense Hessian, well-
conditioned or ill-conditioned Hessian. Two functions ER and EPS have block-diagonal
Hessians. Since we wish to see how solution sparsity (i.e., number of nonzeros) changes with
¢, we modified the Extended Powell singular function slightly, replacing “5Y/2(24_; — &4;)”
with “51/2(a:4i_1 — x4; — 1)” so that the solution is not always at the origin. We coded the
function, gradient, and Hessian diagonals in Matlab using vector operations.

We also chose 10 functions with n = 1000 from the unconstrained problems in the
CUTEr set [23]. These functions, listed in Table 2, were similarly chosen for their diverse
characteristics, as well as Hessian availability. The function, gradient, and (sparse) Hessian
are called within Matlab using the CUTEr tools “ufr”, “ugr” and “ush”.

7.2 Implementation of the CGD method

In our implementation of the CGD method, we choose a diagonal Hessian approximation

H* = diag [min{maX{VQf(xk)jj, 1072}, 109}]]__1 .
which has the advantage that d* has a closed form and can be computed efficiently in
Matlab using vector operations. We tested the alternative choice of H* = I, which does not
require Hessian evaluation, but its overall performance was worse. If Hessian computation
is expensive, a compromise would be to recompute the Hessian diagonal once every few
iterations. We choose the index subset J* by either (i) the Gauss-Seidel (cyclic) rule,
whereby J* cycles through {1}, ..., {n} in that order or (ii) the Gauss-Southwell-r rule (14)
with DF = H*,

max{10™%,v*/10} if o* > 1073
T = {5 1 1dpe (@ 5)| = 0¥l dpr (@)oo}, 0" =< min{.9,500F}  if o < 107

vk else

(initially v° = .5) or (iii) the Gauss-Southwell-q rule (17) with D¥ = H*,

max{10~* v*/10} if of > 1073
JF = {j | gpr(z*;5) < o* mzinqm(:c’“;z‘)}, v** = ¢ min{.9, 500k} if af <1076

vk else

(initially v° = .5). The above updating formulas for v* in (ii) and (iii) are guided by the
observation that smaller v* results in more coordinates being updated but a smaller stepsize
o, while a larger v* has the opposite effect. Thus if o is large, we decrease v* and if o is
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small, we increase v*. The thresholds 1072 and 10~ were found after some experimentation
to work well on our test problems. The stepsize of is chosen by the Armijo rule (9) with

k—1
c=.1, B=25 ~v=0 o =1, o :min{o‘—, 1} Vi > 1.
init init B
We experimented with other values of 0 < v < 1, but the cpu times and the number of
iterations did not change appreciably in our tests.

Each CGD iteration requires 1 gradient evaluation and 1 Hessian diagonal evaluation
to find the direction d*, and at least 1 function evaluation to find the stepsize o*. These
are the dominant computations. For the CUTEr test functions, Hessian evaluation is the
most dominant computation when the Hessian is dense. (CUTEr does not offer the option
of evaluating only the Hessian diagonals.)

Since H* is diagonal, the CGD method resembles a block coordinate version of a diag-
onally scaled steepest descent method [4, page 71] when ¢ = 0. As such, the convergence
rate of the method is likely slow when the Hessian V?f(z*) is far from being diagonally
dominant, as was observed on some of the functions from Table 1, such as LR1, LR1Z, and
VD. This motivated us to introduce two techniques to accelerate the convergence, which we
describe below.

The first technique uses an active-set identification strategy of Facchinei, Fischer, and
Kanzow [14] (also see [15, Section 6.7]) to estimate which components of  would be nonzero
at a solution and then uses a fast method for unconstrained smooth optimization to update
these components. The method we chose is the limited-memory BFGS (L-BFGS) method
of Nocedal [43, 44]. In particular, we store the m (m > 1) most recent pairs of Az and
Ag that make sufficiently acute angles. More precisely, we store Az*¥ = z*¥ — zF~! and
Agk = g8 — gF ! (with ¢ = V f(2¥)) whenever

AkaAgk 1010

> .
1AgH[> ~ max; HJ;

1Ag*] > 1077,

In an acceleration step at z*, we use the L-BFGS formula (with m = 5) to construct a
positive definite Hessian inverse approximation B* and set

d5e = =B i Vo  Fo(z"), dh=0vj¢J",

—.0001
E A k k . . . . : —_
where J* = {] 25> p (||de (x )||oo)} with identification function p(t) = I (min{.1, 01}

We then update 2%t = 2% + ofd* with o chosen by the Armijo rule with ¢ = .1, 8 = .5,
v = 0, and O‘ikn . = 1. This acceleration step is invoked at iteration k& whenever £ > 10
and £ < 50 (mod 100). We choose 50 since L-BFGS typically terminates in less than 50
iterations on the test functions when ¢ = 0.

The second technique is motivated by the rank-1 Hessian for the functions LR1 and
LR1Z. In an acceleration step at z*, we choose h* to satisfy the rank-1 secant equation

(W*0t")s* = o,
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where s¥ and 9* are the most recently stored pair of Az and Ag. This yields h* =
y* 4/ s*Tyk. We next solve the subproblem with rank-1 Hessian

1
min ¢+ 5(hde)2 + c||z* + d|;.

This subproblem need not have an optimal solution (e.g., when h% = 0 and |g¥| > ¢ for some
), but if it has an optimal solution, then there exists an optimal solution d* with at most one
nonzero component, which can be computed efficiently using Matlab’s vector operations.
(In general, if the subproblem with rank-p Hessian has an optimal solution, then there exists
an optimal solution with at most p nonzero components.) We then update x**! = z* 4 a*dF
with o chosen as in the L-BFGS acceleration step. This second acceleration step is invoked
once every 10 consecutive CGD iterations.

We terminate the CGD method when
| H*dgr (2%) || oo < 1072 (56)

Here we scale dgx(2*) by H* to reduce its sensitivity to H*. We can alternatively use the
criterion ||d;(2¥)||c < 107%. The advantage of (56) is that dy«(z¥) is already computed by
the CGD method, unlike d;(z*). In a few cases where V2f is ill-conditioned, the Armijo
descent condition (9) eventually cannot be satisfied by any o* > 0 due to cancellation error
in the function evaluations. (In Matlab Version 7.0, floating point subtraction is accurate
up to 15 digits only.) In these cases, no further progress is possible so we exit the method
when (9) remains unsatisfied after o* reaches 10730,

7.3 L-BFGS-B and MINOS

The ¢;-regularized problem (4) can be formulated as a bound-constrained smooth optimiza-
tion problem:

. _ T
,min fly—2)+ce (y+2),

where e is the vector of 1s, to which many methods can be applied for its solution. Thus,
it is of interest to compare the CGD method with such methods. We considered two such
methods. One is L-BFGS-B, a Fortran implementation of a limited memory algorithm
for large-scale bound-constrained smooth optimization [62]. This public domain code was
downloaded from http://www.ece.northwestern.edu/ nocedal/lbfgsb.html. A sec-
ond is MINOS (Version 5.5.1), which has a Fortran implementation of an active-set method
for linearly constrained smooth optimization [42]. To accommodate problems with n = 1000,
we set Superbasics limit to 2n + 1 and Workspace to 5,000,000 in MINOS. The objective
function and its gradient are coded in Fortran, with f taken from Table 1. For a given
starting point x° for (4), we accordingly initialize y° = max{z°,0} and 2° = max{—z°, 0},
with the “max” taken componentwise.
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Name c CGD-GSeidel CGD-GS-r CGD-GS-q

fnz/obj/cpu fnz/obj/cpu fnz/obj/cpu
BAL 1 21000/249755/.7 | ©1000/1000.00/.1 | 1000/1000.00/.1
10 21000/259247/.04 | 21000/9999.98/.1 | 21000/9999.98/.2
100 21000/344302/6.3 >5h >5h
BT 1 1000/70.3320/40.0 | 1000/70.3320/.1 | 1000/70.3320/.1
1 1000/671.819/48.2 | 1000/671.819/.2 | 1000/671.819/.2
10 0/1000.00/6.4 0/1000.00/.02 0/1000.00/.02
DBV 1 3/0.00000/20.3 2/0.00000/.04 2/0.00000/.04
1 0/0.00000/3.0 2/0.00000/.01 2/0.00000/.02
10 0/0.00000/3.0 0/0.00000/.01 0/0.00000/.02
ER 1 | 1000/436.250/1642.3 | 1000/436.250/.8 | 1000/436.250/.8
10 0/500.000/28.3 0/500.000/.1 0/500.000/.1
100 0/500.000/5.9 0/500.000/.01 0/500.000/.01
TRIG 1 0/0.00000/131.7 0/0.00000/.1 0/0.00000/.1
1 0/0.00000/8.8 0/0.00000/.02 0/0.00000/.02
10 0/0.00000/2.3 0/0.00000/.01 0/0.00000/.01
EPS 1 1000/351.146/194.6 | 1000/351.146/.3 | 1000/351.146/.3
10 250/1250.00/20.8 | 250/1250.00/.03 | 250/1250.00/.04
100 0/1250.00/6.1 0/1250.00/.01 0/1250.00/.01
LR1 1 21000/50399.4/.1 >5h >5h
1 21000/501748/.1 >5h >5h
10 21000/5015230/.1 >5h >5h
LR1Z 1 21000/44894.4/.1 >5h >5h
1 21000/446684/.1 >5h >5h
10 21000/4464582/.1 >5h >5h
LFR 1 1000/98.5000/.9 | 1000/98.5000/.01 | 1000/98.5000/.01
1 1000/751.000/.9 | 1000/751.000/.01 | 1000/751.000/.01
10 0/1001.00/.9 0/1001.00/.01 0/1001.00/.01
VD 1 999/3.51-1011/.1 >5h >5h
10 999/3.51-1011 /.1 >5h >5h
100 999/3.52.1011 /.1 >5h >5h

Table 3: Comparing the CGD method using the Gauss-Seidel rule and the Gauss-Southwell
rules, without acceleration steps, on the test functions from Table 1, with z° given as in
[40].

2CGD exited due to an Armijo stepsize reaching 10739,

7.4 Numerical Results

We now report the performance of the CGD method using either the Gauss-Seidel rule or
the Gauss-Southwell-r (GS-r) rule or the Gauss-Southwell-¢ (GS-q) rule, with or without
the aforementioned acceleration techniques, and we compare it with the performances of
L-BFGS-B and MINOS. All runs are performed on an HP DL360 workstation, running
Red Hat Linux 3.5 and Matlab (Version 7.0). All Fortran codes are compiled using the
Gnu F-77 compiler (Version 3.2.57). Tables 3-7 show the final objective value, the cpu
time (in seconds), and the number of nonzero components (fnz) in the final solution found.
(A component is considered to be nonzero if its absolute value exceeds 107'°.) For each
function, three different values of ¢ are chosen to track changes in the solution sparsity fnz.
In Tables 4-6, different starting points are used. In Tables 4-7, the number of L-BFGS
acceleration steps and rank-1 acceleration steps are also shown.

From Table 3, we see that CGD-GS-r and CGD-GS-q are typically much faster than
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Name | c

CGD-GS-r

CGD-GS-r-acc

CGD-GS-q

CGD-GS-q-acc

inz/obj/cpu(iter)

#inz/obj/cpu(CGD/L-BFGS/R1)

inz/obj/cpu(iter)

#inz/obj/cpu(CGD/L-BFGS/R1)

BAL 1 21000/1000.00/.1(12) 1000/1000.00/.1(10/22/1) | >1000/1000.00/.1(20) 1000/1000.00/.2(10/29/1)
10 | 1000/9999.98/.1(12) $1000/9999.97/.1(10/16/1) | ®1000/9999.98/.2(56) 1000/9999.97/.1(10/21/1)

100 >5h 1000/99997.5/.1(10/9/1) >5h 1000/99997.5/.1(10/18/1)

BT 1 1000/70.3320/.1(55) 1000/70.3320/.1(10/15/1) 1000/70.3320/.1(55) 1000/70.3320/.1(10/14/1)
1 1000/671.819/.2(71) 1000/671.819/.1(10/19/1) 1000/671.819/.2(71) 1000/671.819/.1(10/19/1)

10 0/1000.00/.02(6) 0/1000.00/-03(8/0/1) 0/1000.00/.02(6) 0/1000.00/-03(8/0/1)

DBV 1 270.00000/.04(10) 0/0.00000/.02(2/0/1) 270.00000/.04(10) 0/0.00000/.02(2/0/1)
1 270.00000/.01(3) 0/0.00000/.02(2/0/1) 270.00000/.02(3) 0/0.00000/.02(2/0/1)

10 0/0.00000/.01(3) 0/0.00000/-02(2/0/1) 0/0.00000/-02(3) 0/0.00000/.02(2/0/1)

ER 1 1000/436.250/.8(346) 1000/436.250/.3(11/40/1) | 1000/436.250/.8(309) 1000/436.250/.2(10/38/1)
10 0/500.000/.1(32) 0/500.000/.3(11/38/1) 0/500.000/.1(28) 0/500.000/.3(11/40/1)

100 0/500.000/.01(5) 0/500.000/.03(8/0/1) 0/500.000/.01(5) 0/500.000/-04(8/0/1)

TRIG 1 0/0.00000/.1(42) 1000/0.00028/.1(11/10/0) 0/0.00000/.1(42) 0/0.00000/.1(12/9/0)
1 0/0.00000/.02(5) 0/0.00000/-02(5/0/0) 0/0.00000/.02(6) 0/0.00000/.02(6/0/0)

10 0/0.00000/.01(1) 0/0.00000/-01(1/0/0) 0/0.00000/-01(1) 0/0.00000/.01(1/0/0)

EPS 1 1000/351.146/.3(72) 1000/351.146/.3(10/37/1) 1000/351.146/.3(71) 1000/351.146/.2(10/30/1)
10 250/1250.00/.03(10) 249/1250.00/.1(10/0/1) 250/1250.00/.04(10) 250/1250.00/.05(10/0/1)

100 0/1250.00/.01(3) 0/1250.00/.01(2/0/1) 0/1250.00/.01(3) 0/1250.00/.02(2/0/1)

LR1 1 >5h 1/249.625/.1(10/0/2) >5h 1/249.625/.1(10/0/2)
1 >5h 1/249.625/.1(10/0/1) >5h 1/249.625/.1(10/0/2)

10 >5h 1/249.625/.1(10/0/2) >5h 1/249.625/.05(8/0/1)

LRIZ 1 >5h 1/251.125/.1(10/0/2) >5h 1/251.125/.1(10/0/2)
1 >5h 1/251.125/.1(10/0/1) >5h 1/251.125/.1(10/0/1)

10 >5h 1/251.125/.1(10/0/2) >5h 1/251.125/.1(10/0/1)

LFR 1 1000/98.5000/.01(1) 1000/98.5000/.01(1/0/0) 1000/98.5000/.01(1) 1000/98.5000/.01(1/0/0)
1 1000/751.000/.01(1) 1000/751.000/.01(1/0/0) 1000/751.000/.01(1) 1000/751.000/.01(1/0/0)

10 0/1001.00/.01(1) 0/1001.00/.01(1/0/0) 0/1001.00/.01(1) 0/1001.00/.01(1/0/0)

VD 1 >5h 1000/937.594/1.7(191/240/21) >5h 1000/937.594/.6(56/80/5)
10 >5h | P1000/6726.81/64.6(5635/6247/626) >5h 51000/6726.81/42.6(3791 /4199/420)

100 >5h $999/55043.1/51.8(4600/5106/511) >5h | P1000/55043.1/106.2(8291/9198/920)

Table 4: Comparing the CGD method using the Gauss-Southwell rules, with or without
acceleration steps, on test functions from Table 1, with z° given as in [40].
2CGD exited due to the Armijo stepsize in an CGD iteration reaching 10~3°.

bCGD exited due to the Armijo stepsize in an L-BFGS acceleration step reaching 1039,

CGD-GSeidel, especially if f is not separable. But CGD-GS-r and CGD-GS-q are still too
slow (more than 5 hours of cpu time) on functions whose Hessian are far from being diago-
nally dominant, like BAL, LR1, LR1Z, and VD. From Table 4, we see that the acceleration
steps improve the performance of CGD-GS-r and CGD-GS-q significantly on these func-
tions. We did not test CGD-GSeidel with acceleration steps since it is not expected to be
competitive.

From Tables 5 and 6, we see that CGD-GS-r and CGD-GS-q with acceleration steps are
competitive with MINOS in terms of solution accuracy (as measured by the final objective
value), and are generally faster in terms of cpu time (except on VD). L-BFGS-B is fast, but
often exits when still far from a solution with a large projected gradient. This is due to
the relative improvement in objective value being below factr - epsmch, where factr = 107
and epsmch is the machine precision generated by the code (about 107'% in our tests). We
experimented with factr set to zero but it did not change significantly the results.

Thus MINOS seems more robust than L-BFGS-B, though it is slower (possibly due
to the many active bounds at a solution). For the nonconvex functions BT and TRIG,
multiple local minima exist and, depending on the starting point, the methods can converge
to different local minima with different objective value.

Table 7 reports the performance of CGD-GS-r and CGD-GS-q with acceleration steps

36



| Name | c | L-BFGS-B | MINOS | CGD-GS-r-acc | CGD-GS-q-acc
[ [ [ #nz/obj/cpu [ #inz/obj/cpu | #nz/obj/cpu(CGD/L-BFGS/R1) | #nz/obj/cpu(CGD/L-BFGS/R1) |
BAL 1 €1000/1000.00/.02 1000/1000.00/49.9 1000/1000.00/.1(10/17/1) 1000/1000.00/.1(10/10/1)
10 ©1000/9999.98/.03 | 1000/9999.97/48.4 1000/9999.97/.1(10/14/1) 1000/9999.98/.2(10/9/1)
100 €1000/99997.5/.1 | 1000/99997.5/48.9 v1000/99997.5/.1(10/18/1) 51000/99997.5/.1(10/15/1)
BT .1 €1000/84.0033/.02 1000/71.725/100.6 1000/72.2619/.9(109/117/4) 1000/71.7481/.9(111/97/0)
1 ©981/668.724/.2 097/672.418/94.7 1000/626.670/41.8(4219/4267/42) 1000/626.670/42.4(4156/4154/5)
10 0/1000.00/.00 0/1000.00/56.0 0/1000/.01(1/0/0) 0/1000.00/.01(1/0/0)
DBV 1 ©999/83.4557/.01 0/0.00000/51.5 0/0.00000/.5(11/40/2) 0/0.00000/.5(11/40/2)
1 0/0.00000/.01 0/0.00000/50.8 0/0.00000/.03(5/0/1) 2/0.00000/.03(3/0/1)
10 0/0.00000/.00 0/0.00000/52.5 0/0.00000/.01(1/0/0) 0/0.00000/.01(1/0/0)
ER 1 1000/436.250/.1 1000/436.250/71.5 1000/436.250/.2(10/38/1) 1000/436.250/.1(10/24/1)
10 €500/1721.15/.00 0/500.000/50.2 449/500.006/.3(11/40/1) 0/500.000/.3(11/40/1)
100 0/500.000/.00 0/500.000/52.4 0/500.000/.03(7/0/1) 0/500.000/.03(7/0/1)
TRIG 1 ©1000/14.1282/.1 0/0.00000/58.5 6/3.13589/.6(55/45/6) 1/.626211/.6(29/40/4)
1 0/0.00000/.1 1/6.21995/62.0 6/31.2477/.7(55/47/6) 1/6.21364/.5(47/40/6)
10 0/0.00000/.1 0/0.00000/61.9 1/187.021/.6(47/40/6) 1/61.2209/.5(38/40/5)
EPS 1 €999/352.526/.05 1000/351.146/60.3 1000/351.146/.3(10/40/1) 1000/351.146/.3(13/40/2)
10 1/1250.00/.01 243/1250.00/44.2 250/1250.00/.1(9/0/1) 249/1250.00/.1(8/0/1)
100 0/1250.00/.01 0/1250.00/51.5 0/1250.00/.01(1/0/0) 0/1250.00/.01(2/0/1)
LR1 1 ©1000/424.663/.00 42/249.625/59.7 1/249.625/.1(10/0/2) 1/249.625/.1(10/0/2)
1 €1000/2000.00/.01 91/249.625/57.2 1/249.625/.1(10/0/1) 1/249.625/.1(10/0/2)
10 €1000/17753.4/.01 1/249.625/58.0 1/249.625/.1(10/0/2) 1/249.625/.05(8/0/1)
LR1Z 1 €1000/426.087/.00 94/251.125/59.2 1/251.125/.1(10/0/2) 1/251.125/.1(10/0/2)
1 €1000/2000.75/.01 d3/251.125/58.4 1/251.125/.1(10/0/1) 1/251.125/.1(10/0/1)
10 ©1000/17747.3/.00 1/251.125/59.7 1/251.125/.1(10/0/2) 1/251.125/.1(10/0/1)
LFR 1 1000/98.5000/.00 | 1000/98.5000/77.2 1000/98.5000/.01(1/0/0) 1000/98.5000/.01(1/0/0)
T 1000/751.000/.01 | 1000/751.000/73.8 1000/751.000/.01(1/0/0) 1000/751.000/.01(1/0/0)
10 0/1001.00/.00 0/1001.00/53.3 0/1001.00/.01(1/0/0) 0/1001.00/.01(1/0/0)
VD 1 ©1000/1000.00/.00 1000/937.594/43.0 1000/937.594/.9(100/139/11) 1000/937.594/.5(55/59/6)
10 | ©974/5.18-1012 /2.3 413/6726.81/56.9 | P1000/6726.81/59.9(5230/5803/581) | P1000/6726.81/60.3(5140/5698/571)
100 €996/75135.5/.2 136/55043.1/57.4 | P1000/55043.1/83.3(6850/7604/761) | P1000/55043.1/88.1(7030/7804/781)

Table 5: Comparing the CGD method using the Gauss-Southwell rules and acceleration
steps with L-BFGS-B and MINOS on test functions from Table 1, with z° = (1,1, ..., 1)T.
®CGD exited due to the Armijo stepsize in an L-BFGS acceleration step reaching 1039,

°L-BFGS-B exited due to the objective value cannot be improved upon.

4MINOS exited due to the current point cannot be improved upon.

on the CUTEr test functions from Table 2. Both are able to meet the termination criterion
(56) in typically under a second, except on NONCVXU2 and PENALTY1. On PENALYTI,
the termination tolerance 10~ in (56) was too loose, with the final objective value accurate
up to only 1 or 2 significant digits, so we tightened it to 107°. The final objective value for
other functions appear to be accurate up to 5 significant digits, as tightening the tolerance to
10~ did not change them. Notice that, on INDEF, LIARWHD, NONCVXU2, PENALTY]1,
WOODS, for which f is nonconvex, CGD-GS-r and CGD-GS-q can terminate at different
solutions, depending on the starting point z°.

8 Conclusions and Extensions

We have presented a block coordinate gradient descent method for minimizing the sum of a
smooth function and a convex separable function. The method may be viewed as a hybrid
of gradient-projection and coordinate descent methods, or as a block coordinate version of
descent methods in [6, 22]. We analyzed the global convergence and asymptotic convergence
rate of the method. We also presented numerical results to verify the practical efficiency of
the method.
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L-BFGS-B

MINOS

CGD-GS-r-acc

CGD-GS-q-acc

4
w
3
o

#inz/obj/cpu

#inz/obj/cpu

#nz/obj/cpu(CGD/L-BFGS/R1)

#nz/obj/cpu(CGD/L-BFGS/R1)

BAL 1 ©1000/1000.00/-1 1000/1000.00/39.9 1000/1000.00/.2(10/29/1) 1000/1000.00/-2(10/27/1)
10 ©1000/9999.97/.2 1000/9999.97/50.0 1000/9999.97/.1(10/25/1) 1000/9999.97/.2(10/29/1)
100 ©1000/99997.5/.2 1000/99997.5/50.6 1000/99997.5/.1(10/26/1) 1000/99997.5/.2(10/34/1)
BT 1 ©1000/70.9405/.1 1000/70.3320/99.0 1000/70.3320/.1(10/15/1) 1000/70.3320/.1(10/14/1)
1 999/671.773/.1 999/671.773/101.1 1000/671.819/.1(10/19/1) 1000/671.819/.1(10/19/1)
10 0/1000.00/.01 0/1000.00/77.1 0/1000.00/.03(8/0/1) 0/1000.00/.03(8/0/1)
DBV 1 | °1000/82.7786/.01 0/0.00000/66.0 0/0.00000/.4(11/40/2) 0/0.00000/.4(11/40/2)
1 ©4/6.47238/.01 0/0.00000/65.8 0/0.00000/.03(5/0/1) 0/0.00000/.02(3/0/1)
10 0/0.00000/.01 0/0.00000/66.1 0/0.00000/.01(1/0/0) 0/0.00000/.01(1/0/0)
ER 1 1000/436.250/.04 1000/436.250/86.9 1000/436.250/.2(10/33/1) 1000/436.250/.1(11/22/0)
10 0/500.000/.03 0/500.000/74.2 0/500.000/.3(11/40/1) 1000/500.024/.2(15/34/0)
100 0/500.000/.01 0/500.000/62.1 0/500.000/.03(7/0/1) 0/500.000/.01(2/0/0)
TRIG 1 ©1000/12.7569/.1 0/0.00000/104.4 1/1.25435/.6(55/44/6) 1/71.6259/.6(55/48/6)
1 ©1000/181.247/.1 0/0.00000/106.8 3/50.1248/.7(56/48/6) 1/364.351/.6(55/44/6)
10 ©1000/2818.55/.1 0/0.00000/110.1 1/124.051/.6(47/40/6) 1/1820.88/.5(55/42/6)
EPS 1 1000/351.146/.1 1000/351.146/106.7 1000/351.146/.2(10/22/1) 1000/351.146/.2(10/26/1)
10 249/1250.00/.01 0/1250.00/74.6 250/1250.00/.1(9/0/1) 250/1250.00/.1(8/0/1)
100 0/1250.00/.00 0/1250.00/63.4 0/1250.00/.01(1/0/0) 0/1250.00/.02(2/0/1)
LRi .1 | ©1000/424.663/.00 24/249.625/85.0 1/249.625/.1(10/0/1) 1/249.625/.1(10/0/2)
1 ©1000/2000.00/.01 91/249.625/85.4 1/249.625/.1(10/0/2) 1/249.625/.1(10/0/1)
10 | °1000/17753.4/.00 1/249.625/82.0 1/249.625/.1(10/0/1) 1/249.625/.1(10/0/2)
LR1Z .1 | ©1000/426.087/.00 42/251.125/84.3 1/251.125/.1(10/0/2) 1/251.125/.1(10/0/1)
1 ©1000/2000.75/-00 1/251.125/85.3 1/251.125/.1(10/0/1) 1/251.125/.1(10/0/1)
10 | °1000/17747.3/.01 1/251.125/84.8 1/251.125/.1(10/0/1) 1/251.125/.1(9/0/1)
LFR 1 1000/98.5000/.01 1000/98.5000/57.4 1000/98.5000/.01(1/0/0) 1000/98.5000/.01(1/0/0)
1 1000/751.000/-00 1000/751.000/59.2 1000/751.000/.01(1/0/0) 1000/751.000/.01(1/0/0)
10 0/1001.00/.00 0/1001.00/66.4 0/1001.00/.01(1/0/0) 0/1001.00/.01(1/0/0)
D 1 ©1000/1836.78/.3 | ©999/100401e+24/.1 1000/937.594/2.6(235/271/26) 1000/937.594/.6(56/77/5)
10 ©1000/25653.0/.2 | €999/100401e4+24/.1 | 1000/6726.81/27.7(2665/2954/296) 1000/6726.81/29.6(2711/3002/300)
100 ©1000/248974/.2 | ©999/100401le+24/.1 | ©999/55043.1/50.9(4600/5135/511) | P1000/55043.1/105.0(8156/9052/905)

Table 6: Comparing the CGD method using the Gauss-Southwell rules and acceler-
ation steps with L-BFGS-B and MINOS on test functions from Table 1, with z° =
(-1,-1,..., —1)T.

bCGD exited due to the Armijo stepsize in an L-BFGS acceleration step reaching 10739,

°L-BFGS-B exited due to the objective value cannot be improved upon.

4MINOS exited due to the current point cannot be improved upon.

eMINOS exited due to the problem being badly scaled.

We can relax the Armijo descent condition (9) by replacing A with its upper bound
(v — l)dkTdek (see (27)), i.e.,

F.(z* + o¥d*) < F(z*) + oFo(y — 1)d*" H*d", (57)

The global convergence analysis in Theorem 4.1 (except (d)) can be extended accordingly.
The convergence rate analysis in Theorem 5.1 can be similarly extended, provided that
of =1 for all k sufficiently large (so that the last term in (41) equals zero). Using Lemma
2.1 and the fact that, under assumption (23), f(z +d) — f(z) < Vf(z)"d + L||d|*/2 for
all z,z +d € domP (see [4, page 667] or the proof of Lemma 3.4(b)), it is readily seen
that the latter holds if we choose of =1 and v > L/(2)). A similar convergence rate
result was shown by Fukushima and Mine for their method [22, Theorem 5.1] under the
additional assumption that f is (locally) strongly convex. On the other hand, Theorem
5.2 does not seem amenable to a similar extension, due to the presence of an additional
term —qpk (z¥; (J*)¢) in (45), which is in the order of —AF; see (50) and (51). If the
Lipschitz constant L is unknown, we can still ensure that of = 1 by adaptively scaling H*
when generating d*, analogous to the Armijo rule along the projection arc for constrained
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Name c CGD-GS-r-acc CGD-GS-g-acc
fnz/obj/cpu(CGD/L-BFGS/R1) | fnz/obj/cpu(CGD/L-BFGS/R1)
EG2 .1 1/-998.890/.02(2/0/1) 1/-998.890/.02(2/0/1)
1 1/-998.377/.02(2/0/1) 1/-998.377/.02(2/0/1)
10 1/-993.290/.02(2/0/1) 1/-993.290/.02(2/0/1)
EXTROSNB | .1 5/.235809/.8(61/42/2) 5/.235809/.8(59/50/2)
1 3/.873442/.2(14/13/1) 2/.873441/.8(59/48/2)
10 0/1.00000/.04(4/0/1) 0/1.00000/.5(12/40/1)
INDEF 1 %1000/-499.000/1.5(58/41/3) 1000/-499.000/.9(30/40/1)
10 2/-301.161/.2(10/5/1) 2/-18.4175/.2(11/5/0)
100 2/-197.836/.2(10/4/1) 3/499.605/.1(5/0/0)
LIARWHD .1 1000/101.025/.2(10/19/1) 1000/97.5328/.1(10/8/1)
1 1000/750.203/.3(10/26/1) 1000/750.203/.1(10/5/1)
10 0/1000.00/.5(11/40/2) 0/1000.00/.04(4/0/1)
NONCVXU2 | .1 948/2390.60/7.0(375/440/40) 957/2710.90/12.3(625/690/40)
1 683/3120.28/13.2(687/712/24) 677/3124.66/8.7(451/452/10)
10 0/4000.00/1.9(91/90/9) 5/4000.00/1.9(92/90/8)
PENALTY1 | .01 F1/.0149673/37.7(11/15/1) F1/.0149673/88.8(25/40/2)
.1 /1/.0571739/14.9(10/0/1) 70/.072500/14.9(10/0/0)
1 70/.072500/12.1(8/0/1) 70/.072500/14.7(10/0/0)
W0ODS 1 1000/985.710/2.1(149/160/12) 1000/985.710/2.1(149/157/12)
10 750/8655.68/.8(59/56/2) 1000/8655.70/.2(11/25/0)
100 249/10500.0/.5(11/40/1) 750/10500.7/.5(12/40/0)
QUARTC 1 1000/50028.1/.2(11/18/0) 1000/50028.1/.2(11/25/0)
1 1000/500028/.1(11/15/0) 1000/500028/.2(11/22/0)
10 999/4.99482-10°/.1(11/13/0) 1000/4.99482-10°/.2(11/26/0)
DIXON3DQ | .1 6/.470417/.6(52/40/0) 6/.470417/.6(46/40/0)
1 2/1.62500/.02(3/0/1) 2/1.62500/.05(7/0/0)
10 0/2.00000/.01(1/0/0) 0/2.00000/.02(4/0/0)
TRIDIA .1 8/.185656/.5(51/40/6) 8/.185656/.6(58/48/3)
1 2/.911765/.5(40/40/3) 2/.911765/.5(43/40/2)
10 0/1.00000/.3(11/40/2) 0/1.00000/.3(12/40/1)

Table 7: Comparing the CGD method using the Gauss-Southwell rules and acceleration
steps on CUTETr test functions from Table 2, with z° as given.

bCGD exited due to the Armijo stepsize in an L-BFGS acceleration step reaching 1039,

fCGD is terminated using tolerance 10~7.

smooth optimization [4, page 236]. In particular, we choose s* to be the largest element of
{sB7}=0,1,... (s > 0) such that

d* = A /s (z*; J*)
satisfies the relaxed Armijo descent condition (57) with o* = 1. This adaptive scaling
strategy is more expensive computationally since d* needs to be recomputed each time s*
is changed. Still, if P is separable and we choose H* to be diagonal, then d* is relatively
cheap to recompute.

There are many directions for future research. For example, in our current implemen-
tation of the CGD method, we used diagonal H*. How about block-diagonal H*? (For
efficiency, this may need to be coded in Fortran since Matlab’s vector operations might
not be usable.) Can other acceleration techniques be developed? How would the CGD
method perform on bound-constrained problems? Can the CGD method be extended to
handle linear equality constraints (as arises in support vector machine applications) or,
more generally, smooth equality constraints? Can the assumption on P in Theorem 4.1(d)
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be dropped? Can a linear convergence rate result similar to Theorem 5.2 be proved when
{J*} is chosen by the Gauss-Southwell-r rule?

Acknowledgement. We thank Michael Saunders for providing us with MINOS Version
5.9.1.
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