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A PATH-FOLLOWING ALGORITHM FOR LINEAR
PROGRAMMING USING QUADRATIC AND LOGARITHMIC

PENALTY FUNCTIONS*

PAUL TSENGt

Abstract. Motivated by a recent work of Setiono, a path-following algorithm for linear pro-
gramming using both logarithmic and quadratic penalty functions is proposed. In the algorithm,
a logarithmic and a quadratic penalty is placed on, respectively, the nonnegativity constraints and
an arbitrary subset of the equality constraints; Newton’s method is applied to solve the penalized
problem, and after each Newton step the penalty parameters are decreased. This algorithm main-
tains neither primal nor dual feasibility and does not require a Phase I. It is shown that if the initial
iterate is chosen appropriately and the penalty parameters are decreased to zero in a particular way,
then the algorithm is linearly convergent. Numerical results are also presented suggesting that the
algorithm may be competitive with interior point algorithms in practice, requiring typically between
30-45 iterations to accurately solve each Netlib problem tested.
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1. Introduction. Since the pioneering work of Karmarkar [Kar84], much inter-
est has focused on solving linear programs using interior point algorithms. These
interior point algorithms may be classified roughly as either (i) projective-scaling (or
potential reduction), (ii) affine-scaling, or (iii) path-following. We will not attempt to
review the literature on this subject, which is vast (see for example [Meg89], [Tod89]
for surveys). Our interest is in algorithms of the path-following type, of the sort
discussed in [GaZS1]. These interior point algorithms typically penalize the nonneg-
ativity constraints by a logarithmic function and use Newton’s method to solve the
penalized problem, with the penalty parameters decreased after each Newton step
(see, for example, [Gon89], [GMSTW86], [KMY89], [MoA87], [Ren88], [Tse89]).

One disadvantage of interior point algorithms is the need for an initial interior
feasible solution. A common technique for handling this is to add an artifical column
(see [AKRV89], [BDDW89], [GMSTW86], [Lus90], [MMS89], [MSSPB89], [MoM87]),
but this itself has disadvantages. For example, the cost of the artificial column must
be estimated, and some type of rank-1 updating is needed to solve each least square
problem which can significantly increase the solution time and degrade the numerical
accuracy of the solutions.

Recently, Setiono [Set89] proposed an interesting algorithm that combines features
of a path-following algorithm with those of the method of multipliers [HaB70], [Hes69],
[Pow69] (also see [Roc76], [Ber82]). This algorithm does not require a feasible solution
to start and is comparable to interior point algorithms both in terms of work per
iteration and, according to the numerical results reported in [Set89], in terms of the
total number of iterations. To describe the basic idea in Setiono’s algorithm, consider
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a linear program in the standard dual form

minimize --bTp
subject to t + ATp c, t >_ O,

where A is some matrix and b and c are vectors of appropriate dimension. Let us
attach a Lagrange multiplier vector x to the constraints t + ATp c and apply
the method of multipliers to the above linear program. This produces the following
iterations

1
(tk + ATpk C), k- 1, 2,x+ x + _J

where (ek} is a sequence of monotonically decreasing positive scalars and (tk,pk) is
some (inexact) solution of the augmented Lagrangian subproblem

1
(1.1) minimize --bTp + (xk)T(t + ATp- c)- -k[It + ATp- c[I 2

subject to t >_ 0.

(An advantage of the above multiplier iterations is that they do not need a feasible
solution to start.) A key issue associated with the above multiplier iterations con-
cerns the efficient generation of an inexact solution (tk,pk) of the convex quadratic
program (1.1) for each k. (Note that as ek decreases, the objective function of (1.1)
becomes progressively more ill-conditioned.) Setiono’s algorithm may be viewed as
the method of multipliers in which (t,pk) is generated according to the following
scheme, reminiscent of the path-following idea: Add a logarithmic penalty function
_/k -jm__ ln(tj) to the objective of (1.1), where k is some positive scalar monoton-

ically decreasing with k, and apply a single Newton step, starting from (tk-l,pk-l),
to the resulting problem. (If the tk thus obtained lies outside the positive orthant, it
is moved back towards tk-1 until it becomes positive. 1)

In this paper, inspired by the preceding work of Setiono, we study an algorithm
that also adds to the objective a quadratic penalty on the equality constraints and a
logarithmic penalty on the nonnegativity constraints; and then solves the penalized
problem using Newton’s method, with the penalty parameters decreased after each
Newton step. Unlike Setiono’s algorithm, our algorithm does not use the multiplier
vector x (so it may be viewed as a pure penalty method) and allows any subset of
the equality constraints to be penalized. We show that if the problem is primal non-
degenerate and the iterates start near the optimal solution of the initial penalized
problem, then the penalty parameters can be decreased at the rate of a geometric
progression and the iterates converge linearly. To the best of our knowledge, this
is the first (global) linear convergence result for an noninterior point path-following
algorithm. We also present numerical results indicating that the algorithm may po-
tentially be competitive with interior point algorithms in practice. We remark that
enalty methods that use either the quadratic or the logarithmic penalty function
have been well studied (see, for example, [Ber82], [FiM68], [Fri57], [JIO78], [Man84],

More precisely, k is given by the formula

k k- + .98AkAtk,
where Atk is the Newton direction (projected onto the space of t) and Ak is the largest A E (0, 1]
for which k-

_
/ktk is nonnegative. (The choice of .98 is arbitrary--any number between 0 and

1 would do.)
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[WBD88]), but very little is known about penalty methods that use both types of
penalty functions (called mixed interior point-exterior point algorithms in [FiM68]).

Upon completion of this paper, the author learned from Professor O. L. Man-
gasarian that the algorithm discussed here is essentially the IDLN (Interior Dual
Least Norm) algorithm described in the recent Ph.D. thesis of Setiono [Set90] (also
see the report [Set91]), with minor differences in the choice of the penalty parameters.
The same reference includes an (asymptotic) linear rate convergence analysis and ex-
tensive numerical results showing that the IDLN algorithm outperforms the popular
simplex code MINOS by a factor of 2 or more on the 63 Netlib problems tested. In
short, Setiono’s independent work provides further evidence of the practical efficiency
of the mixed interior point-exterior point solution approach. Finally, we note that
while this paper was under review, other noninterior point methods relating to that
studied here have been proposed. One method, brought to our attention by one of
the referees, is a certain augmented Lagrangian algorithm for stochastic programming
(see [MuR90]); another method is a primal-dual exterior point algorithm for linear
programming (see [KMM91]). However, neither of these methods has been shown to
possess the nice theoretical/numerical properties enjoyed by the algorithm studied
here. For example, no convergence result is given for the method in [MuR90] and no
numerical or rate of convergence result is given for the method in [KMM91].

This paper proceeds as follows: In 2 we describe the basic algorithm; in 3 we
analyze its convergence; and in 4 we recount our numerical experience with it. In 5
we discuss extensions of this work.

In our notation, every vector is a column vector in some k-dimensional real space
k, and superscript T denotes transpose. For any vector x, we denote by xj the jth
coordinate of x, by Diag(x) the diagonal matrix whose jth diagonal entry is xj, and
by IlXlll, Ilxll, Ilxll the Ll-norm, the L2-norm, and the L-norm of x, respectively.
For any matrix A, we denote by Aj the jth column of A. We also denote by e the
vector of l’s (whose dimension will be clear from the context) and denote by ln(.) the
natural logarithm function.

2. Algorithm description. Let A be an n m matrix, B be an m matrix, b
be an n-vector, c be an m-vector, and d be an/-vector. Consider the following linear
program associated with A, B, b, c, and d:

minimize --bTp
subject to t + ATp-- c, Bt d, t >_ 0,

which we call the dual problem. The dual problem may be viewed as a standard linear
program in t, in which we arbitrarily partition the equality constraints into two subsets
and express one subset in the generator form t + ATp c. (To see this, consider the
problem of minimizing aTt subject to t E R N S, t _> 0, where a is an m-vector and R
and S are affine sets in m. We can always express R { t t c-ATp for some p }
and S { t Bt d } for some matrices A and B and some vectors c and d. Using
t c-ATp to eliminate t from the objective function, the problem is now in the form
(7:)).) The constraints t + ATp c can be thought of as the complicating constraints
which, if removed, would make (7:)) much easier to solve. The advantages of splitting
the constraints in this manner will be explained at the end of 2. Finally, we note that
the form in which we write the equality constraints is unimportant, and the above
form is adopted for notational convenience only.

By attaching Lagrange multiplier vectors x and y to the constraints c- ATp t
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and Bt d, respectively, we obtain the following dual of (7))"

(:P) minimize C
T
X -- dTysubject to Ax b, x + BTy >_ O,

which we call the primal problem.
We make the following blanket assumptions, which are standard for interior point

algorithms, regarding (7)) and (P).
Assumption A.

(a) { (x, y) Ax b, x + BTy > 0 } is nonempty.
(b) { (t, p) Bt d, t > O, t + ATp c } is nonempty.
(c) A has full row rank.

It is well known that, under parts (a) and (b) of Assumption A, both (7)) and
(P) have nonempty bounded optimal solution sets.

Consider the dual problem (7)). Suppose that we place a quadratic penalty on
the constraints t + ATp c with a penalty parameter 1/e (e > 0) and we place a
logarithmic penalty on the constraints t _> 0 with a penalty parameter 7 > 0. This
gives the following approximation to (7))"

minimize f,(t,p)
subject to Bt d, t>0,

where f, (0, c)" n is the penalized objective function given by

m

(2.1) f,v(t, p) -llc t ATpll 2 /E ln(tj) ebTp Vt > O, /p.
j=l

The penalized problem (7),v) has the advantage that its objective function f,v is twice
differentiable and the Hessian V2f,v is positive definite everywhere (via Assumption
A(c)). Since the feasible set of (7),v) is nonempty (by Assumption A(b)) and its
intersection with any level set of f,v is bounded (by Assumption A(a)), it is readily
seen that (7),v) has an optimal solution which, by the strict convexity of f,v, is
unique.

Note 1. We can use penalty functions other than the quadratic and the logarith-
mic. For example, we can use a cubic in place of the quadratic and tj ln(ty) in place of
-ln(tj). The quadratic and the logarithmic function, however, have nice properties
(such as the second derivative of the logarithmic function equals minus the square of
its first derivative) which make global convergence analysis possible.

It is well known (see [Roc70]) that (t,p) is the optimal solution of (7),) if and
only if it satisfies, together with some u E z, the Kuhn-Tucker conditions

BTu(2.2) t > 0, Bt d, Vf,v(t, p) + 0
O.

Straightforward calculation using (2.1) finds that

(2.3) Vf,(t,p) ( t + ATp-c-e7(T)-le )A(t / ATp- c) b

(2.4) V2f,(t,p)= ( I + e(T)-2 AT)A AAT
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where T Diag(t). The above formulas will be used extensively in the subsequent
analysis. Note that V2f, is ill-conditioned at the boundary of its domain.

It is not difficult to show that, as e and tend to zero, the optimal solution of
(7),) approaches the optimal solution set of (/)) (see Lemma 3.1). This suggests the
following algorithm for solving (:D,). At each iteration, we are given e, and a (t, p)
which is an approximate solution of (T),); we apply a Newton step to (7:),) at (t, p)
to generate a new (t, p) and then we decrease e and 7- In other words, we consider a
sequence of penalized problems (7)e,), k 1, 2, with e 0 and /k 0, and we
use a Newton step to follow the optimal solution of one penalized problem to that of
the next. We now formally state this algorithm, which we call the QLPPF (short for
Quadratic-Logarithmic Penalty Path-Following) algorithm.

QLPPF Algorithm
Iteration 0. Choose e > 0 and , > 0. Choose (t, p) (0, (:X:))m X n with Bt d.
Iteration k. Given (tk,pk) E (O,(:x:))m X }n with Btk --d, compute (/ktk,/kpk,uk) to
be a solution of

(2.5) V2fek,k(tk, pk) l Atklapk BTuk I+ Vfk, (t, pk) + 0 O, BAt O,

and set

(2.6) tk+l t + Atk, pk+l__ pk + Apk,
(2.7) +1= a, e+= ck,
where ck is some scalar in (0,1).

Note 2. As we noted earlier, the QLPPF Algorithm is closely linked to the
algorithms proposed by Setiono. In particular, it can be seen from (2.3), (2.4) that,
in the special case where B is the zero matrix, the direction finding problem (2.5) is
identical to that in the IDLN algorithm of Setiono (see [Set91, Eq. (16)]) and differs
from that in the IDPP algorithm of Setiono (see [Set89, Eq. (6)]) by only an order ek

term on the right-hand side (which tends to zero as ek tends to zero).
Note 3. A unique feature of the QLPPF Algorithm lies in its handling of the

two sets of constraints t + ATp c and Bt d, whereby quadratic penalties are
placed only on the first set while the second set is maintained to be satisfied at all
iterations. This feature has the advantage that it enables the QLPPF Algorithm to
provide a unified framework for interior point methods and exterior point methods.
As an example, if we put all the equality constraints into Bt d (and correspondingly
set A I and c- 0), then it can be seen that the QLPPF Algorithm with 7k 1
for all k reduces to the well-known primal path-following algorithm for maximizing
bTt subject to the constraints Bt d, t >_ 0 (see [Gon89], [Wse89], [Ye87]). If we
put all the equality constraints into t + ATp c (and correspondingly set B 0
and d 0), then, as was noted above, the QLPPF Algorithm reduces to the IDLN
algorithm for maximizing bTp subject to the constraints t + ATp c, t >_ O. For
other choices of constraint splitting, we obtain algorithms somewhere in between.
We can then envision choosing a constraint splitting so the corresponding QLPPF
Algorithm is in some sense most efficient (e.g., fastest convergence) for the given
problem. Alternatively, we may choose a constraint splitting so to ensure that certain
"critical" equality constraints are satisfied exactly at all iterations (by putting these
constraints into Bt- d).
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3. Global convergence. In this section, we show that if (7)) is in some sense
primal nondegenerate and if (ti, pi) is "close" to the optimal solution of (7)1,1) in the
QLPPF Algorithm, then, by decreasing the k’s at an appropriate rate, the iterates
((tk, pk)} generated by the QLPPF Algorithm approach the optimal solution set of
(7)) (see Theorem 3.4). Because the Hessian V2f, is ill-conditioned at the boundary
of its domain, the proof of this result is quite involved and relies critically on finding
a suitable Lyapunov (i.e., merit) function to monitor the progress of the algorithm.

For any e > 0 and ’y > 0, let p, (0, oo)m x n x l be the function given by

(3.1)

1
p,(t,p, u) max{ -llT(c t ATp BTu) + e’yell

-L-IIA(c- t ATp) + ebll } Vt > O, Vp,

where T Diag(t). From (2.2) and (2.3) we see that (t,p) is a solution of (7),) if
and only if (t,p) satisfies Bt d, t > 0 and p,(t,p, u) 0 for some u. Hence p,
acts as a Lyapunov function which measures how far (t, p) is from solving (7),). This
notion is made precise in the following lemma.

For any e > 0, let

y={ (t,p) A(c- t- ATp) -eb, Bt d, t > O }.

The following lemma shows that any (t,p) E J; that satisfies p,(t,p, u) <_ , for
some u, is within an order of e + (1 + )’y of being an optimal solution of (7)).

LEMMA 3.1. Fix any > O, "y > 0 and (0, 1]. For any (t, p) that satisfies
p,(t,p, u) <_ for some u, the vector (x, y) given by

(3.3) x (t + ATp- c)/e, y u/e

is feasible for (P) and, together with (t, p), satisfies

cTx Jr- dTy <_ v* + vi* e + m(1 + )’y,
bTp >_ v* --m(1 +/)’y,

It + ATp- cll 2 <_ 2(* (e)2 + m(1 + )e’y),

where v* denotes the optimal cost of (:P) and * min{ IIx*ll2/21(x*,y*) is an

o ti. a  o utio (7’) }.
Proof. Since (t, p) is in J;, it follows from the definition of J; (see (3.2)) and (3.3)

that Ax b. Since p,(t,p,u) <_ , we have from the definition of p, (see (3.1))
and (3.3) that IT(-x- BTy)+ "Yell <_ "y, where T Diag(t). Thus

(3.4) ’y(1 )e _< T(x + BTy) <_ ’y(1 + )e.

Since t > 0 and/ _< 1, the first inequality in (3.4) yields x+BTy >_ ’y(1-)T-le _> 0.
Hence, (x, y) is feasible for (7)).

Let

1 led(T, 7r) bTu + ATr 1 V(, ),

p({, ) ll{ll 2 + cT{ + dT V(, b).
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Straightforward algebra using (3.3) yields

pc(x, y) de(t, p) + tT (x + BTy).

Also, it follows from strong duality for a convex quadratic program and its dual that

min Pe(, ) A b, + BT >_ 0 } max{ de(T, r) BT d, >_ 0 }.
(,)- (,)

Thus, by letting (x*, y*) be any optimal solution of (7) with Iix*]12/2 *, we obtain
from the above two relations and cTx 4- dTy v* that

l[Xll 2 4- cTx 4- dTy pc(x, y)

de(t, p) + tT (x + BTy)
<_ pe(x*,y*) + tT(x + BTy)

erl* 4- v* 4- tT(x 4- BTy),

Similarly, by letting (t*, p*) be any optimal solution of (T)), we obtain from the same
two relations and the facts bTp v* and t* 4- ATp c that

1bTp- llt + ATp- c de(t,p)

 o(x, t +
>_ de(if,p*)- tT(x + BTy)

v* tT (x 4- BTy).

Since 0 <_ tT(x + BTy) <_ m(1 +) (cf. (3.4)), the above two relations yield

cTx 4- dTy <_ v* 4- erl 4- m(1 4-

bTp >_ v* --m(1 +
Finally, since (x, y) is feasible for (7)) so that cTx 4- dTy >_ v*, the first of these two
relations also yields

12 V* V* llxl / /m(l/

Canceling v* from both sides and using (3.3) completes the proof, r3

Since we are dealing with linear programs, Lemma 3.1 implies that, as e $ 0 and

7 $ 0, the (x, y) given by (3.3) approaches the optimal solution set of (7)) and (t,p)
approaches the optimal solution set of (7)). In fact, it suffices to decrease e and as
far as 2L, where is some scalar constant and L is the size of the problem encoding
in binary (defined as, say, in [Kar84]), at which time an optimal solution of (P) and
of (T)) can be recovered by using the techniques described in, for example, [Kar84]
and [PaS82].

For each A > 0, let 0" (0, oc)m - [0, oo) be the function given by

where

Ox(t) (lie + ED/eATFAD1/eE]I + IIED/eATFll) Vt > O,

D (I + AT-2) -1,
E I- DI/2BT[BDBT]-IBD1/2,
F [A(I- D1/2ED/2)AT] -1,
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and T Diag(t). (F is well defined because IEII _< 1 (E is a projection matrix) and

IIDII < 1, so that I- D1/2ED1/2 is positive definite. We also use the assumption
that A has full row rank.) The quantity 0h(t) estimates the norm squared of certain
projection-like operator depending on A and t, and it will be used extensively in our
analysis. In general, 0 (t) is rather cumbersome to evaluate, but, as we shall see, it
suffices for our analysis to bound 0h (t) from above (see Lemma 3.3(b)).

3.1. Analyzing a Newton step. In this subsection we prove a key lemma that
states that if (,/3) is "close" to the optimal solution of (79,#), then (t, p) generated by
applying one Newton step to (79) at (,/3) is close to the optimal solution of (79,) for
some e < and some - < . The notion of "closeness" is measured by the Lyapunov
function p, and the proof of the lemma is based on the ideas used in [Tse89, 2].

LEMMA 3.2. For any > O, any > 0 and any (,, z) E (0, cx)m x n l with
B- d, let (t, p, u) be given by

(3.9) t- + At,
(3.10) p p + Ap,

where u and (At, Ap) together solve the following system of linear equations

()(3.11) + + 0 0, BAt O.

Suppose that p,#(-, p, fi) < Z for some/ < min{1, 1/0(t-)}. Then the following hold:
(a) (t,p) e Y.
(b) For any a satisfying

/0#(t--)(fl) 2 + 1 } < a < 1(3.12) max V I+ZX/Ilbll
we have pa,a#(t,p, u) <_ .

Proof. Let

(3.13)
(3.14) g A(c- - ATp) + b,

where T- Diag(t-). Then, by (3.1),

(3.15)

By using (2.3), (2.4) and (3.13), (3.14), we write (3.11) equivalently as

D-1At + ATAp + BT(u z) -1,
AAt + AATAp ,

BAt 0,

where for convenience we let D (I + -2)-1. Solving for At gives

1/2 T 1/2At D1/2(E -- ED A FAD E)D1/2-1 D1/2ED1/2ATF,
where we let E I- D/2BT[BDBT]-IBD/2 and F [A(I- D/2ED/2)AT]-.
(F is well defined by the same reasoning that the matrix given by (3.8) is well defined.)
Then, we can bound -At as follows:

1/2 T 1/[[T-1At[I _< [[-ID1/2II2[IE-I--ED A FAD 2E[II[II-+-I[-’-ID1/2II[IED1/2ATF[[[[,5[[.
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Since -2D is diagonal and each of its diagonal entry is less than 1/(g), we obtain
that 1[-2Dl[ < 1/(g)and hence

[[-At[I _< []E + ED/2ATFAD/2E[I]III/()+ [IED/2ATFI[[Ill/x/
(3.16) _<

where the last inequality follows from (3.15) and the definition of T, D, E, F, and
0(t-) (see (3.5)-(3.8)).

Now, by using (2.3) and (2.4), we can write (3.11) equivalently as BAt 0 and

(3.17) -lAt
(3.18) 0 A(c- - At ATp- ATAp) + b,

so from (3.9) and (3.10)we obtain

T(c- t ATp- BTu) +e
(c- -- At- AT- ATAp- BTu)

+ e + AT(c- - At- ATp- ATAp- BTu)
-lAt + AT(c- - At AT- ATAp BTu)
-IAT(e + ’(c- - At- ATp ATAp BTu))
9-2ATAt,

where T Diag(t), AT Diag(At), and the third and the last equality follow from
(3.17). This implies

(3.19) _< gO#(t-)(/3) 2,

where the third inequality follows from (3.16).
(a) We have from (3.16) and the hypothesis / < 1/0(t-) that II-Atll _<

0#(t-)(/) </ < 1, so (3.9) and > 0 yields t + At > 0. Also, B-= d together
with BAt 0 (see (3.11)) and (3.9) yields Bt d, and (3.18) together with (3.9),
(3.10) yields 0 A(c- t ATp) + b. Hence (t, p)

(b) Fix any a satisfying (3.12) and let - a, c a. (Note that because
0(t-)/ < 1, the left-hand quantity in (3.12) is strictly less than 1, so such an

exists.) Let

r T(c- t ATp BTu) -t-

Then the triangle inequality and (3.19) imply

Ilrll/() _< IIT(c- t- ATp- BTu) + ’ell/(e) + (1 (a)2)/(a)2

<_ 0(t--)03)2/()2 + (1/(c)2- 1)V/-,

which together with the fact (see (3.12)) (0(t-)(/3)2 + v/)/(/ + x/) _< (c)2, yields

(3.o) I[,’11/() <_ Z.
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Let s A(c- t ATp) 4- eb. By using (3.9), (3.10), and (3.1S), we have

s A(c- - At ATp- ATlkp) 4- ab (a 1)b,

which together with the fact (see (3.12))

1/(1 / < 1,

yields

Ilsll/x/g- -- (l/a- 1)llbl] v"-Z/ff’ _</3.

This together with (3.20) and the definition of p,,(t, p, u) (see (3.1)) proves our
claim, r]

3.2. Bounds. Lemma 3.2 shows that if the rate c at which the penalty pa-
rameters e and - are decreased is not too small (see (3.12)), then a single Newton
step suffices to keep the current iterate close to the optimal solution of the penalized
problem (T),,). Thus, in order to establish the (linear) convergence of the QLPPF
Algorithm, it suffices to bound c away from 1 which, according to (3.12), amounts
to bounding O.(t) by some quantity independent of t and e, 7- It is not difficult to
see that such a bound does not exist for arbitrary t. Fortunately, we need to consider
only those t that, together with some p, are close to the optimal solution of (77,,), in
which case, as we show below, such a bound does exist (provided that a certain primal
nondegeneracy assumption also holds). The proof of this is somewhat intricate: For e
and - large, we argue by showing that t cannot be too large, i.e., of the order e +- + 1
(see Lemma 3.3(a)) and, for and -y small, we argue by showing that, under the primal
nondegeneracy assumption, the columns of A corresponding to those components of
t which are small (i.e., of the order 3’) are of rank n.

LEMMA 3.3. (a) For all e > O, all " > O, and all (t,p) E , satisfying
p,(t,p, u) <_ 1 for some u, we have

Iltll <_ Mx(e + 7 + 1),

where Mx > 0 is some scalar depending on A, B, b, c, and d only.
(b) Suppose that (7>) is primal nondegenerate in the sense that, for every optimal

solution (x*, y*) of (P), those columns of A corresponding to the positive components
of x* + BTy have rank n. Then, for all e > O, all7 > O, all ) >_ 7/2, and all
(t,p) E satisfying pe,(t,p, u) <_ 1 for some u, we have

0 (t) <

where we define

(w) M2(vr + l/yr.)4 V w > 0,

with M2 >_ 1 some scalar depending on A, B, b, c, and d only.
Proof. (a) The proof is by contradiction. Suppose the contrary, so that there

exists a sequence {(tk, pk, uk, ek, .),k)} such that ek > 0 and .),k > 0 and

(3.22) (tk, pk) e k, pk, (tk, pk, uk) <_ 1 Vk,

(3.23) IIt ll/( + "r ----, oo, oo.
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By passing into a subsequence if necessary we will assume that (t
converges to some limit point, say (t,poo) (so (t, poo) 0). We have from (3.22)
(also using (3.1) and (3.2)) that

Btk d, tk >0 Vk,

and from Lemma 3.1 that

bTpk >_ v* 2m7k, ]Itk + ATpk cll <_ V/2(r/* (ek)2 + 2rnekk) Vk.

Upon dividing both sides of the above four relations by I[(tk, pk)[ and letting k --, c,
we obtain from (3.23) and (tk,pk)/[l(tk,pk)[ - (too,poo) that

Btoo O, too >_ O, bTpoo >_ O, [[too+ATp[l=0.

Then, any optimal solution to (73) would remain optimal when moved along the
direction (too, poo), contradicting the boundedness of the optimal solution set of (73)
(via Assumption A(a)).

(b) Fix any > 0, - > 0, A >_ e-/2, and any (t,p) E Y satisfying p,(t,p, u) <_ 1
for some u. Let T-- Diag(t) and let D, E, F be given by, respectively, (3.6), (3.7),
and (3.8). Then, F-1 A(I- D1/2ED1/2)AT, I]E[[ _< 1 and D (I + AT-2) -1.
From the definition of 0h (t) (see (3.5)) we then obtain

(3.24)

O(t) (lie + ED1/2ATFAD1/2E[I + IIED1/UATFII)
_< ([[El[ / []E[[2[[D/[12[[A[I[[F[[ / I[E[[[ID/2I[[IAll[[F[[)2

where the strict inequality follows from the facts I[D]l < 1, IIEl[ 1. Now we bound
[[F][. We have

zT(F-I)z zTA(I- DI/2ED1/2)ATz
>_ zTA(I D)ATz

m

+
j=l

(3.25) >_ A E(Az)2/(tj)
j=l

>_ A E(Ayz)2/l[t[le
j=l

where the first inequality follows from [IE[[ _< 1 and a > 0 denotes the smallest
eigenvalue of AAT. (a > 0 because A has full row rank.) Hence, A >_ e7/2 yields

(3.26) IIFll < 211tl12/(r).

For e and q, near zero, we give below a different bound on IFII- By the primal
nondegeneracy assumption, there exists a constant 5 > 0 depending on A, B, b, c,
and d only such that if (x, y) is any feasible solution of (P) with cTx + dTy <_ v* + ,
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then the columns { Aj J e {1,..., m} with xj + Byy _> 5 } have rank n. Consider
the case in which *e + 2m- < 5, where * is defined as in Lemma 3.1. Since
(t, p) E :P and p,(t, p, u) _< 1, we have from Lemma 3.1 that the columns { A J E
{1,..., m} with (t + Ayp + Bfu- c)/e _> 5 } have rank n. Since (t,p) e :P and
p,(t,p, u) _< 1, we have T(c- t-ATp- BTu) _> --2ee (cf. (3.1) and (3.2)) so that
(tj + Ayp + Bfu- c)/e >_ implies tj <_ 2,/5. Hence, we obtain from (3.25) that

m

z(-l) > ,(y)/(t)
j=l

>_ () (Yz)/(e)

> (5)’llzll/(e) w,
where the last inequality follows from the fact that those Aj for which tj

_
2"),/5 have

rank n, and a’ is some positive scalar depending on A only. Since A >_ e7/2, we then
have

I111 (2)/((5)’) <_ 8/((5)’) 8/((5)’),
where for convenience we let w /3’. Now, consider the remaining ce where

* + 2my 6. Then, 6/(2m), so part (a) and (3.26) together yield

IIFII 2(M1)(e + 7 + 1)2

2(M1)2 ( 1

<2(M1) ( 1 2m)+ +

Combining the above two ces and we conclude ha

IFII < { K/w if *e + 2m7 < 5;
K(+1/)2 otherwise,

for some positive scalar K depending on A, B, b, c, and d only. Combining the above
bound with (3.24) and we conclude that O(t) M(+ 1/)4 for some scalar
M2 1 depending on A, B, b, c, and d only.

3.3. Main convergence result. By combining Lemm 3.1 to 3.3, we obtain
the following global convergence result for the QLPPF Algorithm.

THEOREM 3.4. Suppose that (P) is primal nondegenerate in the sense ofLemma 3.3(b)
d t (.) n@ (3.21). fn th QLPPF Atoth (t,p) toth th om
u satisfies

(.)
(3.28)
(.eg)

for some scalar

(3.30)

t > 0, Bt d,

o,. (t) _< (/),
,Oe, (t1, pl, U1)

_
fl,

0<<
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and if we choose

(iOkk(tk)()2+x/- 1 ) Vk,(3.31) ak max
Z + v/ 1 + V/71/el/llbl[

then ek O, 7
k 0 linearly, and {((tk + ATpk- C)/ek,uk/ek)}, {(tk,pk)} approach

the optimal solution set of, respectively, (79) and (T)).
Proof. First note from (w) > 1 for all w > 0 (see (3.21) and M2 > 1) and (3.30)

that < 1. Also note from (2.7) that

(3.32) ek/7k
We claim that

(3.33) (tk, pk)

_
pk_,_x (tk, pk, Uk) <_ , p, (tk, pk, Uk) <_ 3,

for all k > 2. It is easily seen by using (3.27)-(3.31) and (2.5)-(2.7) and Lemma 3.2
that (3.33) holds for k 2. Suppose that (3.33) holds for all k < h, for some
h > 2. Then, (th,ph) E 3;-1 and p-l,-l(th,ph, uh) < /3 < 1. Since we also have
from (2.7) that eh ah-leh-1 and 7

h ah-17h-1 and from (3.31) that (ah-1)2 _>
y/-/(1 -4- X/-) > 1/2, we can apply Lemma 3.3(b) to conclude that

(3.34) Oh9/h(th)
_
?D(h-1/7h-l) ) (1/71)

where the equality follows from (3.32). Then, by (3.30), fl < 1/0 (th). Since (3.33)
holds for k h, we also have p,(th,ph, uh) < , so Lemma 3.2 together with
(2.5)-(2.7) and (3.31), (3.32)yields

(th+l,ph+l) , pe,/(th+l,ph+l,uh+l)
_ , pe+,+(th+l,ph+l,uh+l)

_ .
Hence, (3.33) holds for k h + 1.

Since (3.33) holds for all k > 2, we see that (3.34) holds for all h > 2. Then, by
(3.30), O(th) is less than 1 and bounded away from 1 for all h > 2, so that, by
(3.31), ak is less than 1 and bounded away from 1 for all k. Hence ek 0, 7k 0 at
the rate of a geometric progression. The remainder of the proof follows from (3.33)
and Lemma 3.1. 0

Note that instead ofOk (tk) we can use, for example, the upper bound 1/(el/71)
in the formula (3.31), and linear convergence would be preserved. However, this bound
is typically loose and difficult to compute. There is also the issue of finding el, 71, ,
(t1, pl) and u satisfying (3.27)-(3.30), which we will address in 3.4.

3.4. Algorithm initialization. By Theorem 3.4, if the primal nondegeneracy
assumption therein holds and if we can find e, 7, (t, p) and u satisfying

(3.35)
(3.36)
(3.37)

t > 0, Bt d,

O(t) <_ (/),
p,(t,p, u) <

then we can set/3 p,(t,p, u) (assuming p,(t,p, u) # 0) and start the QLPPF
Algorithm with e, 7, (t,p), and we would obtain linear convergence. But how do we
find such e, 7, (t, p), and u?
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One obvious way is to fix any e > 0, any > 0, and then solve the penalized
problem (T),). The solution (t,p) obtained satisfies

t > 0, Bt d, BTu) -0vf,(t,p) + 0

for some u (see (2.2)) so, by (2.3) and (3.1), (3.2), we have pe,(t, p, u) 0 and
(t,p) e ;. Hence (3.35) and (3.37) hold and, by Lemma 3.3(b), O(t) <_ (e/-), so

(3.36) also holds. (Of course (T),) need not be solved exactly.) To solve the problem
(T),), we can use any method for convex differentiable minimization (e.g., gradient
descent, coordinate descent), and we would typically want e small and /large so that
(T),) is well conditioned.

Suppose that there holds Be 0 and Ae b. (This holds, for example, when
B is the zero matrix (which corresponds to the case when all equality constraints are
penalized), and a change of variable x’ ()-lx, where 2 is any interior feasible
solution of (P) (i.e., A b, > 0) and Z Diag(), has been made in (P).)
Then we can find a usable e, /, (t,p), u immediately: Fix any e > 2(1)([Ic[I +
IIBT(BBT)-ldII) and let - e. Also let w BT(BBT)-ld and

p (AAT)-IA(c- w),
t:eew
u -(BBT)-d.

Then Bw d, A(c- ATp) Aw, At eb + Aw and BTu ee t, so that

Bt- Bw d,
A(c- t ATp) -eb,

T(c- t ATp BTu) + e/e (I + W)(c- ee ATp) + (e)ee
(eI + W)(c- ATp) ew,

where T Diag(t) and W Diag(w). Also from b(1) > 1 and our choice of e we
have e > Ilwll, so t > 0. Hence, by (3.2), we have (t,p) e J; and, by (3.1) and e 7,
we have

p,(t, p, u) II(eI + W)(c ATp) wll/()2

<-- II-- ATplI/ + IIWIIIIc- ATp)II/()2

I1(I AT(AAT)-IA)(c
+ IIWIIII(I AT(AAT)-IA)c + AT(AAT)-IAwlI/(e)2

< I1- wll/ / Ilwll(llcll / Ilwll)/(),
where the last inequality follows from the triangle inequality and the nonexpansive
property of projection matrices. From our choice of e we see that (llcll + Ilwll)/e <
.5/(1), so the right-hand side of (3.38) is bounded above by .5/(1)+ (.5/(1))2 _<
1/(1) 1/(e/), where the inequality follows from (1) _> 1 and the equality
follows from 7 e. Hence (3.35) and (3.37) hold. Also, since (t, p) e J), then (3.37)
together with Lemma 3.3(b) shows that (3.36) holds.

4. Numerical results. To study the performance of the QLPPF Algorithm in
practice, we have implemented the algorithm to solve the special case of (7:)) and
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in which B is the zero matrix, i.e., (P) is of the form

(4.1) minimize cTx

subject to Ax b, x > O.

(This corresponds to penalizing all equality constraints in the corresponding dual
problem.) Below we describe our implementation and present our very preliminary
numerical experience.

1. Initialization. In our implementation, we set for all problems

e1-- x= lO41[clll/m,

and set (somewhat arbitrarily)

pl -0, t max{e, c/2},

where "max" is taken componentwise. (Note that since B is the zero matrix, t can
be set to any positive vector.) We have chosen t so to minimize IITl(c t ATpl)II
subject to t _> e. Also, care must be exercised in choosing e and -" if their values
are set too low, then the QLPPF Algorithm may fail to converge; if their values are
set too high, then the QLPPF Algorithm may require many iterations to converge.
(Notice that we set e and 7 directly proportional to the average cost Iclll/m so
their values scale with c.)

2. Steplength selection. To ensure that the tk’s remain inside the positive
orthant, we employ a backtracking scheme similar to that used by Setiono: whenever
tk + Atk is outside the positive orthant, we replace the formula for t+1 in (2.6) by

(4.2) tk+l tk H-.98AkAtk,

where

k

(4.3) Ak= min
tj

However, this raises a difficulty, namely, for A much smaller than 1, the vector
(.98AkAtk, Apk) may be far from the Newton direction (Atk, Apk) and, as a conse-
quence, the iterates may fail to converge. To remedy this, we replace (analogous to
(4.2)) the formula for pk+ in (2.6) by

pk+l pk -t-.98AkApk,

whenever nonconvergence is detected. (The parameter value .98 is chosen somewhat
arbitrarily, but it works well in our tests.)

The proper choice of the ak’s is very important for the QLPPF Algorthm: if the
ak’s are too near 1 (so the penalty parameters decrease slowly), then the algorithm
would converge slowly; if the ak’s are too near 0 (so the penalty parameters decrease
rapidly), then the algorithm may fail to converge. In our implementation we adjust
the ak’s dynamically according to the following rule:

max{.3, .95ok-1 }
Ok .6

ok-1

if Ak 1;
if A _< .2;
otherwise

Vk _> 2,
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with 61 set to .5. The rational for this adjustment rule is that, if Ak 1, then the
current iterate is closely following the solution trajectory (so we can decrease the
penalty parameters at a faster rate and still retain convergence) and, if Ak _< .2, then
the current iterate is unable to follow the solution trajectory (so we must decrease
the penalty parameters at a slower rate).

3. Termination. To avoid numerical problems, we stop decreasing the penalty
parameters e and , when they reach some prespecified tolerances min and min,

respectively. In our tests we set

(min-- lo-lellClll/m, min lO-llClll/m.

We terminate the QLPPF Algorithm when the relative duality gap and the violation
of primal and dual feasibility are small. More specifically, we terminate whenever the
current iterate, denoted by (t,p), satisfies

(4.4)
IIX(ATp- c)111 _< 10-7,

(4.5) max{llAx bll , II[-x]+ll t -< 10-,
(4.6) II[ATp- c]+ll 10-7,

where x (t + ATp- )1 (see Lemma 3.1), X Diag(x), and [.1+ denotes the
orthogonal projection onto the nonnegative orthant. Only for three of our test prob-
lems could the above termination criterion not be met (owing to violation of (4.4)
and (4.6)) in which case the algorithm is terminated whenever primal feasibility (4.5)
is met and IcTx v* I/Iv*l is less than 5.10-7, where v* denotes the optimal cost of
(4.1).

4. Solving for the direction. The most expensive computation at each iter-
ation of the QLPPF Algorithm lies in solving the system of linear equations (2.5).
This can be seen to entail solving a single linear system of the form

(4.7) AQATw z,

for w, where z is some n-vector and Q is some m m diagonal matrix whose jth
diagonal entry is

(4.8) +
with e > 0, > 0, and t some positive m-vector. (Linear system of the form (4.7) also
arise in interior point algorithms, but (4.7) has the nice property that the condition
number of Q can be controlled by adjusting the penalty parameters e and ’.) In our
implementation, (4.7) is solved using YSMP, a sparse matrix package for symmetric
positive semidefinite systems developed at Yale University (see [EGSS79], [EGSS82])
and a precursor to the commercial package SMPAK (Scientific Computing Associates,
1985). YSMP comprises a set of Fortran routines implementing the Cholesky decom-
position scheme and, as a preprocessor, the minimum-degree ordering algorithm (see,
e.g., [GeL81]). In our implementation, the minimum-degree ordering routine ORDER
is called first to obtain a permutation of the rows and columns of the matrix AAT so
that fill-in is reduced during factorization. Then, AAT is symbolically factored using
the routine SSF. (SSF is called only once since the nonzero pattern of AQAT does
not change with Q.) At each iteration, the matrix AQAT is numerically factored by
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the routine SNF (taking advantage of information generated by SSF concerning the
location of the nonzeros in the factorization), and the two triangular systems thus
generated are solved by the routine SNS to obtain a solution of (4.7). (We also ex-
perimented with the public domain version of the sparse matrix package SPARSPAK
[GeL81], presently avaliable from Netlib. We found SPARSPAK to be comparable to
YSMP in solution time but somewhat inferior in solution accuracy.)

5. Data structure. The data structure used in our implementation is similar
to that described in [AKRV89] and [MoM87]. Each matrix is stored in sparse format
by row. To compute the nonzero entries of the matrix AQAT efficiently for any Q,
we also store the nonzero entries of the outer products Aj(Aj)T, where Aj denotes
the jth column of A. AQAT is then computed using the formula

m

A TAO,A
j-’l

where qj denotes the jth diagonal entry of Q and the product of qj is taken with each
nonzero entry of Aj (Aj)T.

6. Test problems. Our test problems comprise the first 25 of the Netlib lin-
ear programming problems (see [Gay86]) used in the test of Monma and Morton
[MoM87].2 These problems range in size from 27 rows and 51 columns up to 1042
rows and 2869 columns and, for some of them, slack columns must be added and
null rows must be removed to transform them into the form (4.1). (We also wrote a
routine to convert these problems from their original MPS format to that used by our
implementation.) The statistics for the test problems (after problem transformation)
are summarized in Table 1.

7. Computing environment. Our implementation was written in Fortran and
was compiled and ran on a Decstation 5000 under the Ultrix 4.2 operating system
(similar to Berkeley 4.2 with some 4.3 enhancements). The default optimization
setting for the compiler was used.

Table 2 summarizes the computational results obtained with our implementation
of the QLPPF algorithm. Columns 2 and 3 show, respectively, the total number
of iterations and the CPU time. Columns 4 and 6 show, respectively, the cost and
the accuracy of the final primal solution (the latter is measured by the left-hand
quantity in (4.5)). Analogously, columns 5 and 7 show, respectively, the cost and the
accuracy of the final dual solution (the latter is measured by the left-hand quantity
in (4.6)). For most of the problems, the primal cost agrees with the optimal cost in
the first 7 digits and the accuracy of the primal solution is between 10-7 and 10-14.
Thus the quality of the computed solutions compares favorably with that of solutions
generated by interior point algorithms. The number of iterations varies between 29
and 48 (except for Scagr25 which required 62 iterations) and the CPU time varies
between 0.3 and 22 seconds, depending on the problem size and the sparsity of the
constraint matrix. For most of the problems, over half of the CPU time is devoted
to solving the linear system (4.7) at every iteration. (We also performed tests on a

#VAX-2000 Workstation under the operating system VMS 4.1. The resulting number
of iterations is roughly the same; the accuracy of the final solutions improves slightly;
and the CPU times are from 10 to 15 times that on the Decstation 5000.)

The number of iterations for the QLPPF Algorithm is comparable to that for the
projected Newton barrier method of Gill et al. [GMSTW86], but is typically more

2 Possibly due to conversion error, our version of Scorpion has an optimal cost very different from
that reported in [Gay86] and hence the problem is excluded.
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TABLE 1
Test problem characteristics

Problem Number Number Constraint Hessian Optimal
Name of Rows of Cols Nonzeros Nonzeros2 Cost3

Afiro
Adlittle
Scagr7
Sc205

Share2B
SharelB
Scagr25
ScTap1
BrandY

Scsdl
Israel

BandM
Scfxml
E226
Scrs8

Beaconfd
Scsd6

Ship04s
Scfxm2
Ship041
Ship08s
ScTap2
Scfxm3
Ship12s
Scsd8

27
56
129
205
96
117
471
300
193
77

174
305
330
223
490
173
147
360
660
360
712
1090
990
1042
397

51
138
185
317
162
253
671
660
303
760
316
472
600
472
1275
295
1350
1506
1200
2166
2467
2500
1800
2869
2750

102
424
465
665
777

1179
1725
1872
2202
2388
2443
2494
2732
2768
3288
3408
4316
4400
5469
6380
7194
7334
8206
8284
8584

90
384
629
656
871
1001
2393
1686
2734
1133

11227
3724
3233
2823
2198
2842
2099
3272
6486
4588
5440
6595
9739
6387
4280

-4.6475314E+2
2.2549496E+5
-2.3313892E+6
-5.2202061E+1
-4.1573224E+2
-7.6589319E+4
-1.4753433E+4
1.4122500E+3
1.5185099E+3
8.6666666E+0
-8.9664482E+5
-1.5862801E-2
1.8416759E+4
1.8751929E+1
9.0429695E+2
3.3592486E+4
5.0500000E+1
1.7987147E+6
3.6660261E+4
1.7933245E+6
1.9200982E+6
1.7248071E+3
5.4901254E+4
1.4892361E+6
9.0499999E+2

The number of nonzero entries in A.
2 The number of nonzero entries in AAT.
3 Cited from [GayS6].

than that for the affine-scaling algorithm or for Setiono’s algorithm. Specifically, by
comparing column 3 of [MoM87, Table 5] (also see [BDDW89], [MSSPB89]) with
column 2 of Table 2, we see that the number of iterations for the QLPPF Algorithm
can be up to times that for the affine-scaling algorithm. Similarly, the number of
iterations for the QLPPF Algorithm can be up to times that for Setiono’s algorithm
(compare column 3 of [Set89, Table 3] with column 2 of Table 2). On the other hand,
there are some problems on which the number of iterations is less for the QLPPF
Algorithm than for the other algorithms.

In conclusion, our computational results indicate that, for linear programming,
a mixed interior point-exterior point penalty method, as exemplified by the QLPPF
Algorithm, can perform near the level of interior point algorithms. On the other hand,
we caution that these results are very preliminary and. thus should be viewed only as
encouraging. In particular, the performance of the QLPPF Algorithm can be very
sensitive to the choice of the initial parameters and the initial iterate. Of course, this
also gives us hope that the performance of the QLPPF Algorithm can be improved
with further fine tuning.

Finally, we remark it is typically beneficial to operate the QLPPF Algorithm
with a large ratio of /k/ek. An intuitive explanation for this is that, if /k/ek is small,
then /k is not a sufficiently large penalty (relative to ek) to maintain tk - Atk within
the positive orthant. This results in small stepsizes Ak (cf. (4.3)) and hence slow
convergence.
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TABLE 2
Computational results for the QLPPF Algorithm.

Problem CPU Primal
Name [Iters. (sec.)l Cost2

Afiro 29 0.30 -4.6475313E+2
Adlittle 37 0.64 2.2549499E+5
Scagr7 43 0.98 -2.3313889E+6
Sc205 36 1.07 -5.2202055E+1

Share2B 33 0.99 -4.1573226E+2
SharelB 38 1.48 -7.6589327E+4
Scagr25 62 6.39 -1.4753429E+7
ScTapl 40 2.67 1.4122500E+3
BrandY 35 3.62 1.5185099E+3

Scsdl 37 2.65 8.6666685E0
Israel 44 21.10 -8.9664482E+5

BandM 37 4.31 -1.5862801ET2
Scfxml 36 4.78 1.8416759E+4
E226 43 4.71 -1.8751926ET1
Scrs8 48 7.43 9.0429699ET2

Beaconfd 29 3.78 3.3592487E+4
Scsd6 39 3.87 5.0500003E+1

Ship04s 35 4.43 1.7987148E+6
Scfxm2 36 10.15 3.6660263E4
Ship041 35 6.32 1.7933246E+6
Ship08s 40 9.68 1.9200982E+6
ScTap2 45 22.52 1.7248071E3
Scfxm3 36 17.93 5.4901256E+4
Shipl2s 38 12.44 1.4892362ET6
Scsd8 38 8.80 9.0500002ET2

Dual
Cost2

-4.6475316E+2
2.2549497E+5
-2,3313912E+6
-5.2202058ET1
-4.1573228E+2
-7.6585942E+4
1.4753437ET7
1.4122499E+3
1.5185098E+3
8.6666668E+0
-8.9659623E+5
-1.5862802E+2
1.8416758E+4
-1.8751927E+1
9.0429694E+2
3.3592485E+4
5.0500000E+1
1.7987147E+6
3.6660260E+4
1.7933245E+6
1.9200981E+6
1.7248071ET3
5.4901252E+4
1.4892361E+6
9.0499999E+2

Obtained using the intrinsic function SECNDS on the Decstation 5000:
read the problem.
2 Shown first 8 digits only.
3 Shown first digit only.

Primal Dual
Feas.3 Feas.3
2E-08 0
3E-11 8E-09
3E-10 0
1E-10 6E-12
1E-10 0
8E-08 2E-06
3E-09 9E-07
3E-12 0
6E-08 1E-11
2E-15 0
4E-08 5E-05
4E-10 9E-10
2E-08 3E-09
7E-12 8E-11
6E-12 1E-08
1E-09 3E-09
3E-13 0
8E-09 9E-09
6E-08 3E-09
1E-10 0
2E-12 0
6E-13 3E-10
2E-08 3E-09
1E-11 0
2E-13 0

does not include time to

5. Some extensions. We have thus far assumed that the parameters e and
are decreased at the same rate in the QLPPF Algorithm. Alternatively we can de-
crease them at different rates. For example, Setiono’s algorithm employs the strategy
whereby e is first decreased with held fixed and, once e reaches a prescribed tolerance,
then is decreased with held fixed. (In [Set89], the product - is what is referred
to as -.) We can also use different penalty parameters for different coordinates.

Our convergence results very possibly also extend to linear complementarity prob-
lems with positive semi-definite matrices--in the same manner that the results in

[Wse89] can be extended to these problems (see [Tse92]). This is a topic for further
study.
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