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ERROR BOUND AND REDUCED-GRADIENT PROJECTION
ALGORITHMS FOR CONVEX MINIMIZATION OVER A
POLYHEDRAL SET*

ZHI-QUAN LUO' AND PAUL TSENGH

Abstract. Consider the problem of minimizing, over a polyhedral set, the composition of an
affine mapping with a strongly convex differentiable function. The polyhedral set is expressed as
the intersection of an affine set with a (simpler) polyhedral set and a new local error bound for this
problem, based on projecting the reduced gradient associated with the affine set onto the simpler
polyhedral set, is studied. A class of reduced-gradient projection algorithms for solving the case
where the simpler polyhedral set is a box is proposed and this bound is used to show that algorithms
in this class attain a linear rate of convergence. Included in this class are the gradient projection
algorithm of Goldstein and Levitin and Poljak, and an algorithm of Bertsekas. A new algorithm in
this class, reminiscent of active set algorithms, is also proposed. Some of the results presented here
extend to problems where the objective function is extended real valued and to variational inequality
problems.
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1. Introduction. We consider the convex program

(1.1) minimize  f(z)

subject to =z € &,

where X is a polyhedral set in the n-dimensional Euclidean space R™ and f is a
real-valued function defined on R™. We assume that f is of the special form

(1.2) f(z) = g(Ez) + (g, ),

where F is some m X m matrix, g is some vector in R", and g is a continuously
differentiable function in R™ with Vg Lipschitz continuous and strongly monotone in
the sense that there exist positive scalars p > 0 and ¢ > 0 such that

(1.3) IVg(2) — Vg(w)|| < pllz —wl| Vz, Vw,
and
(1.4) (Vg(z) — Vg(w),z —w) 2 ollz —w|® Vz, Vuw.

We also assume that the optimal solution set for (1.1), denoted by X'*, is nonempty
and denote by v* the value of f on X*. In our notation, all vectors are column
vectors, superscript T denotes matrix transpose, (-,-) denotes the usual Euclidean
inner product, and || - || denotes the Euclidean norm induced by (-, -).
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There are many optimization problems that satisfy the above assumptions, in-
cluding convex quadratic programs and a certain routing problem in data networks
(see [BeG8T]). We remark that the assumption that g be real valued is made only to
simplify the analysis and can be relaxed so as to allow, for example, certain entropy
optimization problems and their dual to be captured by the problem framework. (See
86 for detailed discussions.)

A classical method for solving (1.1) is the gradient projection algorithm of Gold-
stein {Gol64] and Levitin and Poljak [LeP65], which follows each gradient step by a
projection onto the feasible set X':

z:= [z - aVf(2)l},

where [-|1 denotes the orthogonal projection onto X and « is some suitably cho-
sen positive stepsize. This method has been well studied and, when combined with
second-order scaling, has been successful in solving large quadratic programs with box
constraints (see, e.g., [Ber76], [Ber82], [GaB84], and [Mor89]). However, when X is
not a box, the projection []} cannot be easily computed and this method can suffer
from poor performance.

For the special case where X is the Cartesian product of simplices, Bertsekas pro-
posed a modification of the gradient projection algorithm which avoids the relatively
expensive operation of projecting onto the simplices (see [Ber80], [Ber82], [BeG83],
and [BeG87]). (A simplex in R" is a set of the form {x € R | Y. z; = ¢, z > 0}
for some ¢ > 0.) Instead, the algorithm of Bertsekas moves an iterate opposite the
direction of a certain reduced gradient associated with the knapsack constraints and
follows this step with a projection onto the nonnegative orthant. This algorithm
has been successfully applied to solving a certain routing problem in data networks
(see [BeG83], [BeG87], and [BeT89]) and can even be implemented in a distributed
asynchronous manner (see [Tsa89] and [TsB86]).

A key question concerns the convergence and the rate of convergence of the above
algorithms. For the gradient projection algorithm this question is largely resolved. It
was shown by Bertsekas and Gafni [BeG82|, in the more general context of variational
inequality problems, and rediscovered by Luo and Tseng [LuT92b], that the gradient
projection algorithm for solving (1.1) attains a linear rate of convergence, provided
that the stepsize « is suitably chosen. Similar results were obtained by Dunn [Dun81],
[Dun87] and Gawande and Dunn [GaD88] for the general problem of minimizing a
differentiable function over a closed convex set, but under an additional assumption
that all local minimizers are isolated and that the objective function satisfies a certain
local growth condition. Central to their analysis is a certain local error bound for
estimating the distance from a point x € X to X™*, defined as

(1.5) ¢(z) = min [|lz —z7.

In particular, it was shown in [LuT92b] that ¢(z) can be bounded above by some
constant times

Iz — [o - VF@)I,

the norm of the “natural residual” at z, provided that the latter quantity is small.
The same local error bound also extends to affine variational inequality problems
(see [Rob81] and [LuT92c]) and holds globally if f is strongly convex [Pan87]. For
the Bertsekas algorithm, however, no comparable result was known. We remark that
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bounds for ¢ have been studied quite extensively, although the focus has been on
global bounds and on using the bounds to terminate iterative algorithms and to
extract sensitivity/stability information near the optimal solution set (see [MaS87],
[MaD88], [Pan87], and [Rob82]).

The goals of this paper are twofold. First, we propose a generalization of the
above error bound based on a certain decomposition of the polyhedral set X. More
specifically, let us express X as

(1.6) X=Cn{zeR"| Bx=c},

for some (simpler) polyhedral set C € R™, some I x n matrix B, and some vector c in
R!. We will show that ¢(z) can be bounded above by some constant times

(L.7) lz — [& — V() + BTpl¢ || + || Bz — cll,

for any € C and any p € R for which the above quantity is “sufficiently” small.
Here []g denotes the orthogonal projection onto C. Some obvious advantages of this
new local error bound, relative to the earlier one, are (i) z is only required to be in
C, not X, and (ii) instead of projecting onto X, we project onto the simpler set C.

Second, we propose a class of feasible descent algorithms for solving the special
case of (1.1) where C is a box. At each iteration of these algorithms, we compute a 2
according to the projection step

z:= [z — a(Vf(z) - BTp)l¢,

for some stepsize a > 0 and some multiplier vector p, and then adjust a subset of
the coordinates of z to obtain a new iterate in X. Both the gradient projection
algorithm and the algorithm of Bertsekas described earlier can be shown to belong to
this class. By using the new local error bound, we show that the iterates generated
by any algorithm in this class converge at least linearly to an optimal solution. (Here
and throughout, by linear convergence we mean R-linear convergence in the sense
of Ortega and Rheinboldt [OrR70].) We also propose a new algorithm in this class
reminiscent of active set algorithms.

The remainder of this paper is organized as follows. In §2 we prove some technical
facts concerning the problem (1.1); in §3 we use these facts to establish the new local
error bound. In §4, we describe the class of feasible descent algorithms mentioned
above and relate them to the gradient projection algorithm and to the algorithm of
Bertsekas. In §5, we use the error bound of §3 to show that any algorithm in this
class which uses an Armijo-like stepsize rule is linearly convergent. In §6, we give our
conclusion and discuss extensions.

Throughout this paper, we -adhere to the following notations. For any vector =
in R*, we denote by z; the jth component of z and, for any subset J C {1,...,k},
we denote by z; the vector with components z;, j € J. For any matrix A, we
denote by ||A|| the matrix norm of A induced by the vector Euclidean norm || - ||, i.e.,
Al = maxg=1 [|Az]|.

2. Technical preliminaries. In this section we will prove a number of interest-
ing facts concerning the solution set X* and the level sets of f over certain subsets of
C. These facts will be used in the analysis of subsequent sections.

First, by using the strict convexity of g (cf. (1.4)) and the special structure of f
(cf. (1.2)), we have the following simple lemma which says that the linear mapping
x +— Ez is invariant over the solution set X* (also see [LuT92a] and [Tse91}).
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LEMMA 2.1. There exists a t* € R™ such that Ex* = t* for all * € X*.
From (1.2) and the chain rule for differentiation, we have

(2.1) Vf(z) = ETVg(Ez) +q, Vaz.

Then, (1.3) yields that V f is Lipschitz continuous with Lipschitz constant p| ET ||| E||,
that is,

(2.2) IVF@) = VWl < pllETIIElllle - yll, vz, Vy,
and Lemma 2.1 yields that V f is invariant over X™* or, more precisely,
(2:3) Vf(z*) =d*, Vz*ea&r,

where we let d* = ETVg(t*) + q.

The optimality conditions for (1.1), together with (2.3), imply that X* is equiv-
alently the solution set of the linear program ming,ex(d*, z). Then, as we shall see in
the next section, the question of finding a local error bound for (1.1) translates into
a perturbation analysis on the solution set to this linear program. To perform this
analysis, we will need the following result, due originally to Hoffman [Hof52] (see also
[Rob73] and [MaS87]), on the Lipschitzian continuity of the solution set to a linear
system as a multifunction of the right-hand side. This result will be used in the proofs
of Lemma 3.1 and Theorem 3.2 which follow.

LEMMA 2.2. Let C and D be any r X k and s X k matrices. Then, there exists
a constant @ > 0 depending on C and D only such that, for any T € R* and any
(d,e) € R™ x R® such that the linear system Cy = d, Dy > e is consistent, there is a
point § satisfying Cg = d, Dg > e with

Iz—gll < 6(|Cz—d|| + || Dz — el)).
For each v > v* and 6 > 0, define the level set
F§={z€C||Bz—c| <6 f(z) <v}

(Note that FY" = X* and .7-'3’,/ C Fy whenever v' < v,8’ < 4.) By using the
polyhedral structure of X' (cf. (1.6)) together with the strict convexity of g (cf. (1.4)),
we can show the following boundedness property of EFy. This property will be used
in the proofs of Lemma 3.1 and Theorem 5.3. Its proof is patterned after that of
Fact 4.1 in [Tse91] and is based on the observation that a strictly convex function has
bounded level sets whenever its infimum is attained at some point.

LEMMA 2.3. For any v > v* and any 6 > 0, the set EFy is nonempty and
bounded.

Proof. Fix any v > v* and any § > 0. The set EFy is clearly nonempty since Fy
is nonempty. If EF§ were not bounded, then the closed convex set

L= {(t,.’l),() € Rmtntl | t=Ez, z€C(, ”B(L‘—C” <4, f("l") < C}

would have a direction of recession (v,u,0) with v # 0 (see [Roc70]). Let z* be any
element of X*. Then, by Lemma 2.1, (¢*,z*,v*) is a point in £, so (t*,z*,v*) +
0(v,u,0) is also in £ for all > 0. This implies z* + u € C and f(z* + Gu) < v* for
all 6 > 0. Moreover, we see from the structure of £ that Bu = 0 and Fu = v. The
former implies B(z* + 6u) = Bz* = c for all § > 0, so =* + fu € X* for all § > 0.
On the other hand, the latter, together with v # 0, implies that E(z* + 6u) is not
constant for 8 > 0, a contradiction of Lemma 2.1. 0
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3. A new local error bound. In this section we show that the distance from
a point & in C to X* can be bounded above by the quantity (1.7) when the latter
quantity is small and f(z) is bounded. The proof of this is analogous to an argument
used in [LuT92b] and is based on a certain property of (1.7) for identifying (locally)
those constraints which are “active” at some optimal solution. By treating these active
constraints as equalities, we then apply Hoffman’s result (Lemma 2.2), together with
the Lipschitz continuity and strong monotonicity properties of Vg (cf. (1.3) and (1.4)),
to establish the desired bound.

First, since C is a polyhedral set, we can express it as

(3.1) C={ze®R"| Az > b},

for some k x n matrix A and some b € R*. For convenience, we denote by A; the
ith row of A and, for any subset I C {1,...,k}, by A the submatrix of A obtained
by removing all rows i of A with i ¢ I. Then, for any (z,p) € C x R, the vector
z = [z — Vf(z) + BTp]} satisfies, together with some multiplier vector A € R*, the
following Kuhn—-Tucker conditions:

(82) z—2+BTp+ATA=Vf(z), \=0, VidlI, Az=b;, Viel,

(3.3) Az>b, A>0,

where I is some (possibly empty) subset of {1,...,k}. We say that an I C {1,...,k}
is identifiably basic at a vector (z,p) € C x R! if (z, p), together with z = [z — V f(z) +
BTp]! and some X € [0, 00)*, satisfies (3.2).

By using Lemmas 2.1, 2.2, and 2.3, we show the following lemma which roughly
says that if ¢ € C is sufficiently close to X*, then those indices which are identifiably
basic at (z,p) for some p are also identifiably basic at some element of X* x R!.

LEMMA 3.1. Fiz any v > v*. There exists an € > 0 such that, for any (z,p) €
F2 xR with ||z — [z — Vf(z)+BTplt|| < € and any I C{1,...,k} that is identifiably
basic at (z,p), there is some (z*,p*) € X* x R at which I is identifiably basic.

Proof. We argue by contradiction. If the claim does not hold, then there would
exist an I C {1,...,k} and a sequence of vectors {(z",p")}r=12,.. in FY x R with I
identifiably basic at (z",p") for all r and

(34) ' —-2" -0, Bz" — ¢,
where we let
(8.5) 2" =[z" - Vf(z")+BTp"|F, Vr,

and yet there is no (z*,p*) € X* x R! at which I is identifiably basic.
Since =" € FY for all r, it follows from Lemma 2.3 that {Exz"} is bounded. Let
t> be any cluster point of {Ez"} and let R be a subsequence of {1,2,...} such that

(3.6) (Ea"} g — .

We show below that t>° is equal to t*.

Since Vg is continuous everywhere, then we obtain from (3.6) (and using the fact
Vf(z") = ETVg(Ez") + q for all r) that

(3.7) {Vf(a")}r — ETVg(t™) +g.



48 ZHI-QUAN LUO AND PAUL TSENG

For each r € R, consider the following linear system in z, p, 2, and A:

BTp+ ATA=Vf(z")+ 2" —a", Az>b, A>0,
Ai=0, Vigl, Aiz=b;, Viel,
Ex=FEz", z—xz=2"—2z", Bx= Bzx.

The above system is consistent since, by I being identifiably basic at (z",p") and by
(3.2)—(3.3), (z7,p", 2"), together with some A" € R*, is a solution of it. Then, by
Lemma 2.2, it has a solution (Z",p", 2", 5\") whose size is bounded by some constant
(depending on A, B, and E only) times the size of the right-hand side. Since the
right-hand side of the above system is clearly bounded as r — oo, r € R (cf. (3.4),

(3.6), and (3.7)), we have that {(2",p", 27, \")} g is bounded. Moreover, every one of
its cluster points, say (z°°,p>, z2>°, A\*°), satisfies (cf. (3.4), (3.6), and (3.7))

BTp>® 4+ ATA® = ETVg(t>®) +q, Az®>b, A*® >0,
A;)o:O, V@g[, Aiz°°=b,-, Viel,
Ex>® =t*, 2*-z*=0, Bxz*=c

Upon using (cf. (2.1)) ETVg(Ez*®)+q = V f(2*°), we can simplify the above relations
to

BTp® + ATX® = Vf(z™), Az™®>b, A>® >0,
AX° =0, Vigl, Aax®=b, Viel, Bz®=c.

This shows that > € X and that (Vf(z*),z —2*) > 0 for all z € X (cf. (1.6) and
(3.1)). Thus z*®° € X* and, by Lemma 2.1, t>° = t*. Moreover, I is identifiably basic
at (z*°,p™) (cf. (3.2)), so a contradiction is established. o
Lemmas 2.1, 2.2, and 3.1 together yield the main result of this section.
THEOREM 3.2 (local error bound). Fiz any v > v*. There exist scalars e > 0
and k > 0 (depending on v and the problem data only) such that

¢(z) < K|z — [z — Vf(z) + BTpl¢|| + || Bz — )

for any (z,p) € F¥ x R with ||z — [z — Vf(z) + BTp|f|| <e.

Proof. Let € be the scalar in Lemma 3.1 corresponding to v. Consider any
(z,p) € F? x R! satisfying the hypothesis of the theorem and let I be any subset of
{1,...,k} that is identifiably basic at (z,p) and let z = [z — V f(z) + BTp]{. By (3.2)
and (3.3), there exists some A € R* satisfying, together with z, p, and z,

BTp+ AT A=2-24+Vf(z), Az>b+A(x—2), A>0,
=0, Vidl, Aix=b+A(xz—2), Viel

By Lemma 3.1, there exists an (z*,p*) € X* x R! such that I is identifiably basic at
(z*,p*), so the following linear system in z*, p*, and A\*:

BTp* + ATX* =d*, Az*>b, A >0,
Af=0, Vigl, Auxx*=b;, Viel, Ez*=t*, Bzx"=c

is consistent (cf. (2.3), (3.2)—(3.3), and Lemma 2.1). Conversely, it can be seen that
every solution (z*,p*, A*) to this linear system satisfies z* € A*. Upon comparing
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the above two systems, we see that, by Lemma 2.2, there exists a solution (z*,p*, A*)
to the second system such that

(@, p, A) = (@, 0", X)|| < O(llz—2+V f(2) - ||+ | A(z = 2) || + || Ez —¢*|| + || Bz — <)),

where 0 is some scalar constant depending on A, B, and E only. By (2.1), the
definition of d*, and the Lipschitz condition (1.3), we also have ||V f(z) — d*|| =
|ETVg(Ex) — ETVg(t*)|| < p||ET||||Ex — t*||, so the above relation yields

(2, %) = (", 2%, X < 6((1AI + Dlle = 21l + (P ET|| + 1)[| Bz — t*|| + | Bz — cl])-

Upon rewriting some of the above relations and by using the fact d* = V f(z*)
(cf. (2.3)), we have

(3.8) z—z+BTp+ ATA\; =Vf(z), BTp*+ AT)\}=Vf(z*),
(3.9) AIZ = b[, AII:* = b], Bzx* = C,

and

(3.10) I(z,p,A) — (%, p*, A")|| < O(|Ez — t*|| + ),

where we let v = ||z — 2|| + || Bz — ¢|| and, for convenience, use the notation oo < O(3)
to indicate that a < wp for some scalar w > 0 depending on v and the problem data
only. In addition, I is identifiably basic at (z*,p*) and (cf. (1.4))

(3.11) ol|Ex — t*||? < (Ezx — t*,Vg(Ex) — Vg(t*)).

We will use (3.8)—(3.11) to show that ||z —z*|| < O(7), which would then complete
the proof. Since Ex* = t* (cf. Lemma 2.1) and Vf(z) — Vf(z*) = ETVg(Ezx) —
ETVg(Ezx*) (cf. (2.1)), then (3.11), together with (3.8)—(3.9), yields

o|Ex - t*||* < (Exz — Ex*,Vg(Ez) — Vg(Ez"))
= (z -z, Vf(z) - Vf(z))
=(z—z*,BTp+ AT\; +2— 2 — BTp* — AT)})
=(B(z—z"),p—p") + {Ar(z — %), A = A]) + (¢ — 2", 2 — 2)
=(Bz—c,p—p*) +(A1(z — 2), At = A) + (¢ — 2", — 2)
< 1Bz —cllllp — p*Il + llz — 2| (NAIIA = A" + [z — ™))
< 1Al =™l + 1A = A* [ + [z — 2*{]),

where the last inequality follows from the definition of y. Applying the above relation
once and (3.10) twice then gives

lz — 2|1 < O((Il B — t*[| + 7))
< O(| Bz —t*||* ++%)
<O(lp =2 I+ 1A = X[ + lle — 2 [}y +7°)
<O((IBz = t*[| +7)7 + 7).

Since ||Exz — t*|| < | E||||z — =*||, the above relation implies that there exists a scalar
constant w > 0 (depending on v and the problem data only) such that

Bz — t** < w(|| Bz — t*|ly + 7).
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This is a quadratic inequality of the form a? < w(ay + ¥?), which implies a < J(w +
Vw? + 4w)y and therefore

|Ez —t*|| < %(w + Vw? +4w)y.

Combine this bound with (3.10) and we obtain ||(z, p, A) — (z*, p*, A*)|| < O(y). 0

We note that the proof of Theorem 3.2 in fact yields the stronger result that, for
any (z,p) € F¥ x R satisfying ||z — [z — Vf(z) + BTp|{|| < eand any I C {1,...,k}
that is identifiably basic at (z,p), there exists an (z*,p*) € X* x R! such that I is
identifiably basic at (z*,p*) and ||z —z*|| < k(||z — [z — V f(z) + BTp|¢ || + | Bz —cl]),
for some scalar k depending on v and the problem data only. Roughly speaking, we
can bound ¢ and identify the active constraints at the same time. Finally, we remark
that, at the price of forgoing this stronger result, the proof of Theorem 3.2 can be
simplified further by appealing to a result of Robinson [Rob81] on the local upper
Lipschitzian nature of polyhedral multifunctions.

4. RGP algorithms. In this section, we introduce a general class of feasible
descent algorithms for solving the special case of (1.1) where C is the nonnegative
orthant in R”, i.e.,

(4.1) ¢ = [0, 00)™.

An algorithm in this class updates an iterate by first moving it opposite a certain
reduced-gradient direction, then projecting it onto C, and finally adjusting a subset of
the coordinates with zero reduced gradient, so that the new iterate remains in X'. We
will show that both the gradient projection algorithm and the algorithm of Bertsekas
mentioned in §1 belong to this class. We also propose a new algorithm in this class
reminiscent of active set algorithms and, in particular, of a projected Newton method
of Bertsekas [Ber82]. Unlike most active set algorithms, this algorithm can add/drop
many constraints from its active set at each iteration. We remark that the above class
of algorithms readily extends to the case where C is a bor in R", i.e., the Cartesian
product of closed intervals, but, for simplicity, we will not consider this more general
case here.

In what follows, we denote by B; the jth column of B and, foreach J C {1,...,n},
by Bj the matrix obtained by removing all columns B;, j ¢ J, from B. We define
V,f and V;f analogously. We also denote by J the complement of J with respect
to {1,...,n}.

To motivate our algorithms, consider an iteration of the gradient projection algo-
rithm: 2’ = [z — aV f(z)]}, where z is the current iterate, a is the stepsize, and ' is
the new iterate. Let [-]+ denote the orthogonal projection onto [0, 00)"™. By using the
structure of X given by (1.6) and (4.1), we can rewrite this iteration as ' € X’ and,
for some p € R,

(4.2) o' = [z~ &(Vf(z) — B p)]+.

(It can be seen that p is in fact an optimal Lagrange multiplier vector associated with
the constraints Bz = c in the problem of projecting z/a — V f(z) onto X.) Thus, the
above iteration is equivalent to the problem of finding a p € R! so that z’ given by
(4.2) is in X. Can the restriction (4.2) be relaxed so it would be relatively easy to
find such a p?

To answer this question, suppose that, in addition to (4.1), wehave B=[11 --- 1]
and ¢ =1 (so X is the unit simplex). Consider the algorithm of Bertsekas mentioned
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in §1 for solving this special case of (1.1), which operates as follows: Given an iterate
x € X, it chooses an index j € {1,...,n} for which

(43) V(@) = min Vif(z),
and computes a new iterate ' € X according to
(44) oy = [zx — a (Vif(z) = Vif(2)]+ Yk #3J,
(45) zj=1-) i,
k#j

where a is some positive stepsize. (The fact that z; > 0 follows from the observation
that zj, < zj, for all k # j, so the fact 35, zx = 1 =3, x} yields 2 > x;.) A moment
of reflection shows that the iteration (4.4) is simply the following relaxed version of
(4.2):

(4.6) i = ok — (Vi f(z) —~ Bip)l+, Vk#3,
with p = V, f(z). Moreover, by combining (4.4) with (4.5), we see that
(4.7) o’ — 2|l < Vnllz — [z — a(Vf(z) — BTp)]+.

We remark that, for simplicity, we considered only the unscaled version of the Bert-
sekas algorithm. See [BeG87, §5.7] for a description of the full algorithm; see [Ber82,
§3] and [BeG83] for a related algorithm in which j is chosen by the maximum compo-
nent rule: j = arg maxy, . This latter algorithm is closely linked to the active-set-
type algorithm to be described below.

The formulas (4.6) and (4.7) suggest the following generalization of the gradient
projection algorithm and the Bertsekas algorithm for solving (1.1) (under the condi-
tion (4.1)) whereby, given an iterate z € X, we choose a positive stepsize a and we
compute a new iterate ' which, together with some p € R, satisfies

(4.8) zh = [z — (Vi f(z) — BIp)ly, Vk with Vif(z) # Blp,
and
(4.9) 2’ — z|| < millz — [z — (V£ () = BTp)l+l,

with 73 some scalar constant. In order to maintain feasibility, we assume that the
new iterate x’ has the property that

’ T2
(4.10) ' € X whenever a < @
with 7 some scalar constant (possibly 7 = 00). Thus 2’ is feasible whenever « is
chosen to be sufficiently small.

We will call any iteration a reduced-gradient projection (RGP) iteration if it gen-
erates, for a given iterate z € X and a stepsize a > 0, a new iterate z’ satisfying
(together with some p € R!) the relations (4.8)-(4.10). Roughly speaking, at each
RGP iteration we take a step opposite the reduced-gradient direction V f(z) — BTp,
project onto [0,00)™, and then adjust those coordinates with zero reduced gradient
so as to remain in X. Any algorithm that generates iterates in X by successive ap-
plications of RGP iterations will be called an RGP algorithm. We now describe three
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example RGP algorithms, the first two of which we have encountered earlier. The
issue of stepsize rules will be addressed in the next section.

Ezample 4.1. Gradient projection algorithm. By (4.2), the gradient projection
algorithm is an RGP algorithm with 7 = 1, 79 = 00, and p an optimal multiplier
vector associated with Bz = ¢ in the problem of projecting z/a — V f(z) onto X.

Ezample 4.2. Bertsekas algorithm. By (4.6) and (4.7), the Bertsekas algorithm
(4.3)—(4.5) is an RGP algorithm with 71 = /n, 72 = 00, and p = min, Vi f(z).

Ezample 4.3. An active-set-type algorithm. Consider the following algorithm for
solving (1.1), under the condition (4.1): Fix any v > 0. Given an iterate x € X, we
choose a positive stepsize o and a (possibly empty) subset J C { j € {1,...,n} | z; >
~ } with B having full column rank, and we compute a new iterate z’ as the (unique)
solution of a convex quadratic program, given by

. 1
(411) 2’ = arg ¢ wilin D Vif(@)(& — ) + % > &k — (zx — aVif (@)
£, >0 VkgJ k€J kgJ

We will show that the iteration (4.11) is well defined and the z’ thus generated,
together with some p, satifies (4.8)—(4.10) for some scalar constants 71 and 72.

The above algorithm may be viewed as a generalization of the gradient projec-
tion algorithm in which projection is omitted for coordinates that are far from the
boundary. In particular, if we take J to be the empty set, then we recover the gradi-
ent projection algorithm (see Example 4.1). A key advantage of the algorithm is its
flexibility. For example, we can choose the set J so that the work in solving (4.11)
is less than that for performing the full projection (see discussions to follow). The
parameter v, however, needs to be chosen with care. If 7 is too large, the choices for
J would be restricted; if «y is small, then, as we shall see, & may need to be small (cf.
(4.14)), in which case the algorithm would take small steps. Finally, we note that ~
need not be fixed but can be adjusted dynamically, provided that it remains bounded
away from zero.

We now show that the iteration (4.11) is a well-defined RGP iteration. If J is the
empty set, then (4.11) reduces to a gradient projection iteration, so it is well defined
and the z’ generated by it, together with some p, satisfies (4.8)—(4.10) with 3 = 1
and 75 = oo (cf. Example 4.1). Thus, it remains to prove the above assertion for the
case where J is nonempty. First, notice that the feasible set for the minimization in
(4.11) is nonempty (since it contains X’) and bounded (since the objective function is
strongly convex in €5 and, by virtue of By having full column rank, £ is determined
uniquely by &5 on the feasible set). Thus, the minimization in (4.11) has an optimal
solution. It is easily seen that this optimal solution is unique, so (4.11) is well defined.
From the optimality conditions for the minimization in (4.11) we have that Bz’ = ¢
and

(4.12) oy =gy - a(Vif(z) - Bip)l+,  Vuf(z) =BJp,

where p is any optimal Lagrange multiplier vector associated with the constraints
B¢ = cin (4.11). The former, together with the fact Bz = ¢, implies 0 = B(z' —z) =
Bj(a/; — ;) + Bj(z; — x7) so, multiplying both sides by B} and using the fact that
Bj has full column rank, we can solve for /; — x; to obtain

&y —zy = —(B]By) "' B} B5(z; — z7),
implying
(4.13) lley — x|l < 1(BF Bs)~* BT Bjllllz’; — z5ll.
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Relations (4.12) and (4.13) show that z’, together with p, satisfies (4.8) and (4.9) with
m =1+ |/(BFBs)~'BY Bj|.

It only remains to show that z’ satisfies (4.10) for some scalar constant 5. For
any subset I of {1,...,m} and any subset J of {1,...,n}, let Br; denote the matrix
obtained by removing from Bj all rows i with i € I. We show below that ' € X
whenever

o< minge s{zr}
= (BYBs)~'BY B;lllIV s f(x) — Bf#(BT,)"*Vif()ll’

(4.14)

where I is any subset of {1, ..., m} such that By is invertible. This, together with the
fact z; > « for all j € J, would then complete the proof. First, we observe that the
constraints B¢ = c can be rewritten as Br;€5 + B; 37 = c; and Bj ;&5 + B = cj,
where I is the complement of I relative to {1,...,m}. Using the first set of constraints
to eliminate £ 5 from the second set and from the objective function in (4.11), we reduce
the minimization in (4.11) to the following problem:

minimize % Z |€k — (zk — aka(fl?))|2 —(Vsf(z), (BIJ)_IBIj£f>
kgJ

subject to (Bjy — Bj;(Bryj) 'Bj) &5 =c; — Bi;(Brs)"ter, €520,

to which z'; is an optimal solution. Then, z'; satisfies the optimality conditions:

¢y = [z7 - a(Vf(2) - B{;(BI;})"'Vif(2)]3,

where D denotes the feasible set for the reduced problem. This, combined with the
observation that 7 € D (cf. z € X’), implies

ey =21l = llz5 — a(V 5 f(z) — B{;(Bf;) "'V f (@) — [z

< a||V;f(z) - Bf;(Bi;) "'V f (@)l

where the last inequality follows from the nonexpansive property of the projection
mapping [-]5. Combining this with (4.13) gives

Iz = 241l < all(BF By)~* BT BV ;£ (z) — B;(Bf;) "' Vi (@),

and it follows that z’; > 0 whenever « satisfies (4.14). Since Bz’ = ¢ and (cf. (4.12))
x'; > 0, this shows that ' € X (cf. (1.6) and (4.1)) whenever « satisfies (4.14).

The iteration (4.11) admits an interesting interpretation as an active-set-type
iteration. To see this, let us assume for simplicity that the matrix Bj; therein is
invertible. Then, since V;f(z) = BYp (cf. (4.12)), we can eliminate p from the first
expression in (4.12) to obtain

¢ = ey — a(Vsf(e) - BF(B]) 'V f(@))]+
Also, since Bz’ = ¢, we can solve for z’; to obtain
z’y = (By)"'(c — Bya’}).

Thus we may interpret (4.11) as an iteration in which we first take a reduced-gradient
projection step, and then we adjust those coordinates for which the reduced gradient
is zero so that the new iterate z’ satisfies Bz’ = c. This philosophy of taking a descent
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step with respect to those coordinates “active” at their respective bounds (i.e., z )
is reminiscent of active set schemes for solving problems with simple bounds. In fact,
it can be seen that the above iteration is very similar to an unscaled version of a
projected Newton method studied by Bertsekas [Ber82, §3] and Bertsekas and Gafni
[BeG83]. In contrast to conventional active set schemes, the above scheme has the
advantage that it can add and drop many elements from its currently active set J at
each iteration.

5. Convergence of RGP algorithms. In this section we show, by using the
local error bound of §3, that every RGP algorithm with the stepsizes chosen according
to an Armijo-like rule is linearly convergent. The proof of this is analogous to a proof
given in [LuT92b].

First, we describe the rule for choosing the stepsizes . This rule is based on the
efficient Armijo-like rule proposed by Bertsekas for the gradient projection algorithm
[Ber76]. Let 71 and 72 be the parameters of a given RGP iteration (cf. (4.9) and
(4.10)). We fix two parameters 8 € (0,1) and 73 > 0 and we let

74 = | BT Ellp(r1)* + 7s.

Given an iterate £ € X, we choose a number ap with ag > min{1/74,72/||V f()|}
and we set

(5.1) o= aof,

where k is the first nonnegative integer for which an z’ and a p generated by the RGP
iteration with a given as above (i.e., ' and p together satisfy (4.8)—(4.10)) satisfies
2’ € X and the sufficient descent condition

(5.2) f(2) — f(a') 2 mellz — [z — Vf(z) + B pl4 .

We remark that, instead of the Armijo-like rule given above, we can also use a stepsize
rule analogous to one proposed by Goldstein [Gol74] and the analysis can be adapted
accordingly.

We next show that the stepsize rule (5.1)—(5.2) is well defined and that the stepsize
generated is sufficiently large.

LEMMA 5.1. The stepsize rule (5.1)—(5.2) is well defined. Moreover, the stepsize
a generated by this rule is bounded below by B min{1/74,72/||V f(x)|}.

Proof. First, we show that, for a given z € X and a positive number « strictly
less than min{1/74,72/||Vf(z)||}, any =’ and any p € R’ that together satisfy (4.8)—
(4.10) also satisfy ' € X and (5.2). Since V f is Lipschitz continuous with Lipschitz
constant |[ET||||E||p (cf. (2.2)), we have

IETIIEllp

(5.3) f(@) - f@) 2 (Vf(2),z —a') - —

Iz’ — x>,

Let J = {j € {1,...,n} | Bfp = V,f(z)}. Then, by (4.8), ’; is the orthogonal
projection of 7 — a(Vjf(z) — B"Il—ﬂp) onto the nonnegative orthant. Since z > 0, this
implies

(5 — 25+ a(Vif(z) — Bip),z5 — a5) > 0.
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Since Bz = Bz’ (cf. z € X and ¢’ € X), we have from the definition of J and the
above relation that

(Vf(z),z —a') = (Vf(z) - BTp,x — a")
(5.4) = (V;f(z) - Bip,z; — )

1
> —|xy — 5|2
= oz”w" 5|l
Upon combining (5.3) with (5.4), we obtain

F@) - 1) 2 Lay — oy - LEIIELR

so (4.8), (4.9) together with the definitions of J and 74 yield

lz — '],

1@) = 1) > (5 = m+n) e~ o - a(VS@) - BTa) P

Since ||z — [z — ad]+| > a||z — [z — d]+|| for any d € R™ (see, for example, Lemma 1
in [GaB84]), this shows

f@) = f(z') 2 (1 = ma+ ma)|lz ~ [z — Vf(z) + BTpl+|*.

Thus z’ together with p satisfies (5.2) whenever « is less than 1/74. Since z’ satisfies
(4.10), we also have that ' € X whenever « is less than /|| V f(z)||.

The above result implies that, for a given x € X, if the integer k is sufficiently
large, then any z’ and p satisfying (4.8)—(4.10), with a given by (5.1), also satisfies
z' € X and (5.2). There must be a first k for which this occurs, so the stepsize rule
(5.1)-(5.2) is well defined. Now we prove the second claim. Let @ be the stepsize
given by this rule. Then, either @ = ap or @ < ap. In the former case the second
claim holds trivially (by choice of ag). In the latter case, there must exist some z’
and p satisfying (4.8)—(4.10), with « set to &/8, such that either ' ¢ X or (5.2) fails
to hold. By the result proven above, this means that &/ must be greater than or
equal to min{1/74, 72/||V f(2)||} or, equivalently, & is greater than or equal to 3 times
the latter quantity. The second claim then follows. 0

Our final lemma bounds the cost difference f(z') — v* in terms of the inezact
residual = — [z — V f(z) + BTp]*. This bound is analogous to the cost bounds used
in the convergence analysis of gradient projection methods (see [Dun87, eq. (23)],
[GaD88, Lemmas 2 and 3|, and [LuT92b, Thms. 2.1 and 3.1]).

LEMMA 5.2. Fiz any v > v* and let € be the corresponding scalar given in
Theorem 3.2. For any x € X, any p € R, and any ¢’ € X satisfying f(z) < v,
lz — [z — Vf(z) + BTp|+| < € and (4.8)—(4.9), we have

1) = v <7 (141 ) o= lo = V(@) + BTl I,

where 5 > 0 is some scalar constant depending on v and the problem data only.

Proof. Fix any z, z’, and p satisfying the hypothesis of the lemma. Let z =
[z — Vf(z) + BTp]*. Then, (z,p) € F x R and ||z — z|| < ¢, so (z,p) satisfies the
hypothesis of Theorem 3.2. Upon invoking Theorem 3.2, we have that there exists
some z* € X* such that

(5.5) llz — *|| < kllz - 2|,
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where k is the scalar in Theorem 3.2.
Since Bz’ = Bz*, then

(Vf(z),a' —a*) = (Vf(z) ~ BTp,a' — &)
= (Vif(z) ~ BIp,z’; — z7),
where we let J = {j € {1,...,n} | Bfp = V;f(z)}. Since z'; is the orthogonal
projection of z; — a(V ;f(z) — BTp) onto the nonnegative orthant (cf. (4.8)) and
w} > 0, we also have
(2ly = 25 + AV 3f(2) - Byp), 2y - z3) <0,

which, when combined with the previous relation, yields

1
(Vf(z),z' —2*) < ‘&(-'L'j - w'j,w'j —z%).

Also, by the Mean Value Theorem, there exists some { lying on the line segment
joining z’ with z* such that

f@) = f(&") = (VF(Q), 2" —z7).

Summing the above two relations and rearranging terms give

f@') = f(=") <(VF(Q) - Vi(z), 2" —2") + = (

.7 J“‘mﬂ

Ty—
< (nw(o Vi@ + 2o n) o’ —a*
1
< (anTnnEwc ol L - x'n) e’ — o
1
< (puETnuEnux* ol 4 Lo - x'u) -

where the third inequality follows from the Lipschitz continuity property of Vf (cf.
(2.2)). Using (5.5) and the fact ||z —a'|| < 7i|lx—z2| (cf. (4.9)) to bound the right-hand
side of the above relation completes our proof. 0

Upon using Lemmas 5.1 and 5.2, we can now establish the linear rate of conver-
gence for RGP algorithms employing the Armuo—hke stepsize rule.

THEOREM 5.3 (linear convergence). Let {z°,z!,...} be a sequence in X gen-
erated by a RGP algorithm (cf. (4.8)—(4.10)) using the Arngo like stepsize rule (cf.
(5.1)—(5.2)). Then, {z"} converges at least linearly to an element of X* and {f(z")}
converges at least linearly to v*.

Proof. For each index r > 0, let a” and p” denote, respectively, the stepsize and
the multiplier vector associated with the generation of z"*! by the RGP algorithm
using the Armijo-like stepsize rule. In other words, the conditions (4.8)—(4.9) and
(5.1)—(5.2), as well as 2’ € X, are satisfied by z = 2", 2’ = 2"t} a = o", and p = p"
for every r. By (5.2), we have

(5.6) f@@) = f(@™*) > ma'|la” - [2" - Vf(z") + BT |4 |?, v,
and, by Lemma 5.1, we have

(5.7) o > Bmin{l/74,72/||Vf(z")|}, Vr.
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Relation (5.6) implies f(z") < f(z°) for all r. Since in addition z" € X for
all 7, we obtain from (1.6) that " € FY for all r where we let v = f(z°). Then,
Lemma 2.3 implies that the sequence {Ez"} is bounded. Since Vg is continuous, this
in turn implies that {Vg(Ez")} is bounded, so that (cf. (2.1)) {Vf(z")} is bounded.
Combining this with (5.7), we see that {a"} is bounded below by some positive scalar
constant.

Since {a"} is bounded away from zero and f is bounded below on X, the relation
(5.6) implies z" — [z" — Vf(z") + BTp"]y — 0. Then, by Lemma 5.2, there exist a
scalar constant 75 > 0 and an index 7 such that

2" = 2" = V£(2") + B4 |* > ——s (f@"™) = v*), Vr>7,

(1 + ar)
which, when combined with (5.6), yields

£ - 1@ 2 T (@ o), vz

Upon rearranging terms in the above relation, we obtain

r * 7-5(1 +ar)
&) = < ST ey T e

Since {a"} is bounded away from zero, this shows that f(z") — v* at least linearly,
which, together with (5.6), shows that ||z" — [z" — Vf(z") + BTp"]4|| — 0 at least
linearly. Since ||z"! — 27| < 7||z" — [z" — Vf(z") + BTp |4 || (cf. (4.9)), it follows
that ||z"*! —z"|| — 0 at least linearly, so {z"} converges. Since f(z") — v*, the limit
point of {z"} is in A™. 0

We have just shown that any RGP algorithm using the Armijo-like stepsize rule
attains a linear rate of convergence. Upon applying Theorem 5.3 to the algorithm
of Bertsekas and to the active-set-type algorithm of §4, we immediately obtain the
following new convergence results.

COROLLARY 5.4. Suppose that C = [0,00)", B=[11 --- 1], and ¢ = 1. Then,
any sequence of iterates generated by the Bertsekas algorithm (cf. (4.3)—(4.5)), with
stepsizes determined by the Armijo-like rule (cf. (5.1)—(5.2)), converges at least linearly
to an element of X*.

COROLLARY 5.5. Suppose that C = [0,00)™. Then, any sequence of iterates gen-
erated by the active-set-type algorithm (cf. (4.11)), with stepsizes determined by the
Armijo-like rule (cf. (5.1)-(5.2)), converges at least linearly to an element
of X*.

6. Concluding remarks. In this paper, we studied a (new) local error bound
for certain convex minimization problems over a polyhedral set. We then used this
error bound to prove linear convergence for a class of reduced-gradient projection
algorithms.

There are several directions in which our results may be generalized. We briefly
describe two main ones below.

1. Problems with extended-real-valued cost function. In many situations,
g is defined only on some open subset G of ™ and Vg is Lipschitz continuous and
strongly monotone on any compact subset of G. All of our results can be extended to
this situation provided that, for some ¥ > v*, the level set F = {z € X | f(z) < 0}
satisfies

(f(™)—v*), Vr>T7.

EF CG.
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(Notice that the above condition holds automatically if dom g is open and g tends to
oo at the boundary of dom g.) In particular, Theorem 3.2 still holds provided that v
therein does not exceed ©. The proof of this is based on an interesting fact that, for
6 > 0 sufficiently small, EF} is a compact subset of G, where F} is defined as in §2.
(The proof of this is similar to that of Lemma 9.1 in [Tse91].) By using this fact in
place of Lemma 2.3, we can verify that all the steps in the proof of Theorem 3.2 go
through, provided that we take v < ©. Linear convergence of the algorithms described
in §4 also holds, provided that the stepsize « is taken sufficiently small so as to ensure
that each new iterate remains within F. (The proof of the latter uses the boundedness
of Vf on F and the strict inclusion of EF by G.)

2. Variational inequality problems. The error bound in §3 readily extends
to the following variational inequality problem, first studied by Bertsekas and Gafni
[BeG82], of finding an z* satisfying

2* = [o* - Fa")l},

where F(z) = ETG(Ez) + q and G : R™ — R™ is a Lipschitz continuous strongly
monotone function. However, it is unclear whether the bound would help in the
development of algorithms for solving such a problem. The error bound also readily
extends to affine variational inequality problems (where F in the above problem is any
affine mapping). This follows from a result of Robinson [Rob81] on certain Lipschitz
continuity properties of polyhedral multifunctions.

There remain many open questions which we plan to investigate. Specifically,
can the local error bound described in §3 be extended to problems with general con-
vex constraints? Can the linear convergence result of Corollary 5.4 be extended to
an asynchronous version of the Bertsekas algorithm proposed by Tsitsiklis and Bert-
sekas [TsB86]? Some progress along this latter direction has already been made (see
[LuT91]). Are there other reduced-gradient projection algorithms, different from those
described here, to which our convergence analysis can be fruitfully applied?

It was pointed out to us by one of the referees that, although RGP algorithms
typically require less work per iteration than the gradient projection algorithm, their
rate of convergence may be slower, thus offsetting any saving in the per iteration
workload. In particular, a careful examination of the convergence analysis in §5 shows
that, in the worst case, the rate of convergence of an RGP algorithm may depend on
n, whereas the gradient projection algorithm does not. Does this dependence exist
in practice and, if yes, what are its effects on the performance of an RGP algorithm?
This is yet another question that we hope to address in the future.

Acknowledgment. We thank Professor D. P. Bertsekas and an anonymous ref-
eree for their many helpful comments, which led to a number of improvements in the
presentation.
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