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Convergence of a Block Coordinate Descent
Method for Nondifferentiable Minimization1
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2

Communicated by O. L. Mangasarian

Abstract. We study the convergence properties of a (block) coordinate
descent method applied to minimize a nondifferentiable (nonconvex)
function f (x1, . . . , xN ) with certain separability and regularity proper-
ties. Assuming that f is continuous on a compact level set, the sub-
sequence convergence of the iterates to a stationary point is shown when
either f is pseudoconvex in every pair of coordinate blocks from among
NA1 coordinate blocks or f has at most one minimum in each of NA2
coordinate blocks. If f is quasiconvex and hemivariate in every coordi-
nate block, then the assumptions of continuity of f and compactness of
the level set may be relaxed further. These results are applied to derive
new (and old) convergence results for the proximal minimization algo-
rithm, an algorithm of Arimoto and Blahut, and an algorithm of Han.
They are applied also to a problem of blind source separation.

Key Words. Block coordinate descent, nondifferentiable minimization,
stationary point, Gauss–Seidel method, convergence, quasiconvex func-
tions, pseudoconvex functions.

1. Introduction

A popular method for minimizing a real-valued continuously differen-
tiable function f of n real variables, subject to bound constraints, is the
(block) coordinate descent method. In this method, the coordinates are par-
titioned into N blocks and, at each iteration, f is minimized with respect to
one of the coordinate blocks while the other coordinates are held fixed. This
method, which is related closely to the Gauss–Seidel and SOR methods for
equation solving (Ref. 1), was studied early by Hildreth (Ref. 2) and Warga
(Ref. 3), and is described in various books on optimization (Refs. 1 and 4–
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10). Its applications include channel capacity computation (Refs. 11–12),
image reconstruction (Ref. 7), dynamic programming (Refs. 13–15), and
flow routing (Ref. 16). It may be applied also to the dual of a linearly
constrained, strictly convex program to obtain various decomposition
methods (see Refs. 6–7, 17–22, and references therein) and parallel SOR
methods (Ref. 23).

Convergence of the (block) coordinate descent method requires typi-
cally that f be strictly convex (or quasiconvex or hemivariate) differentiable
and, taking into account the bound constraints, has bounded level sets (e.g.,
Refs. 3–4 and 24–25). Zadeh (Ref. 26; also see Ref. 27) relaxed the strict
convexity assumption to pseudoconvexity, which allows f to have a non-
unique minimum along coordinate directions. For certain classes of convex
functions, the level sets need not be bounded (see Refs. 2, 6–7, 17, 19–22,
and references therein). If f is not (pseudo)convex, then an example of
Powell (Ref. 28) shows that the method may cycle without approaching any
stationary point of f. Nonetheless, convergence can be shown for special
cases of non(pseudo)convex f, as when f is quadratic (Ref. 29), or f is strictly
pseudoconvex in each of NA2 coordinate blocks (Ref. 27), or f has unique
minimum in each coordinate block (Ref. 8, p. 159). If f is not differentiable,
the coordinate descent method may get stuck at a nonstationary point even
when f is convex (e.g., Ref. 4, p. 94). For this reason, it is perceived generally
that the method is unsuitable when f is nondifferentiable. However, an
exception occurs when the nondifferentiable part of f is separable. Such a
structure for f was considered first by Auslender (Ref. 4, p. 94) in the case
where f is strongly convex. This structure is implicit in a decomposition
method and projection method of Han (Refs. 18, 30), for which f is the
convex dual functional associated with a certain linearly constrained convex
program (see Ref. 22 for detailed discussions). This structure arises also in
least-square problems where an l1-penalty is placed on a subset of the para-
meters in order to minimize the support (see Refs. 31–33 and references
therein).

Motivated by the preceding works, we consider in this paper the non-
differentiable (nonconvex) case where the nondifferentiable part of f is sep-
arable. Specifically, we assume that f has the following special form:

f (x1, . . . , xN )Gf0(x1, . . . , xN )C ∑
N

kG1

fk (xk), (1)

for some f0: ℜ n1C···CnN > ℜ ∪ {S} and some fk: ℜ nk > ℜ ∪ {S}, kG
1, . . . , N. Here, N, n1, . . . , nN are positive integers. We assume that f is pro-
per, i.e., f �≡S. We will refer to each xk , kG1, . . . , N, as a coordinate block
of xG(x1, . . . , xN ). We will show that each cluster point of the iterates
generated by the (block) coordinate descent method is a stationary point of
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f, provided that f0 has a certain smoothness property (see Lemma 3.1), f is
continuous on a compact level set, and either f is pseudoconvex in every
pair of coordinate blocks from among NA1 coordinate blocks, or f has at
most one minimum in each of NA2 coordinate blocks (see Theorem 4.1).
If f is quasiconvex and hemivariate in every coordinate block, then the
assumptions of continuity of f and compactness of the level set may be
relaxed further (see Proposition 5.1). These results unify and extend some
previous results in Refs. 4, 6, 8, 26–27. For example, previous results
assumed that f is pseudoconvex and that f1, . . . , fN are indicator functions
for closed convex sets, whereas we assume only that f is pseudoconvex in
every pair of coordinate blocks from among NA1 coordinate blocks, with
no additional assumption made on f1, . . . , fN . Previous results also did not
consider the case where f is not continuous on its effective domain. Lastly,
we apply our results to derive new (and old) convergence results for the
proximal minimization algorithm, an algorithm of Arimoto and Blahut
(Refs. 11–12), and an algorithm of Han (Ref. 30); see Examples 6.1–6.3.
We also apply them to a problem of blind source separation described in
Refs. 31, 33; see Example 6.4.

In our notation, ℜ m denotes the space of m-dimensional real column
vector. For any x, y ∈ℜ m, we denote by 〈x, y〉 the Euclidean inner product
of x, y and by ��x�� the Euclidean norm of x, i.e.,

��x��G1〈x, x〉.

For any set S ⊆ ℜ m, we denote by int(S ) the interior of S and denote

bdry(S )GS \ int(S ).

For any h: ℜ m > ℜ ∪ {S}, we denote by dom h the effective domain of h,
i.e.,

dom hG{x ∈ℜ m �h(x)FS}.

For any x ∈ dom h and any d ∈ℜ m, we denote the (lower) directional deriva-
tive of h at x in the direction d by

h′(x; d )Glim inf
λ ↓0

[h(xCλd )Ah(x)]�λ .

We say that h is quasiconvex if

h(xCλd )⁄max{h(x), h(xCd )}, for all x, d and λ ∈ [0, 1];

h is pseudoconvex if

h(xCd )¤h(x), whenever x ∈ dom h and h′(x; d )¤0;

see Ref. 34, p. 146; and h is hemivariate if h is not constant on any line
segment belonging to dom h (Ref. 1). For any nonempty I ⊆ {1, . . . , m}, we
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say that h(x1, . . . , xm ) is pseudoconvex [respectively, has at most one mini-
mum point].

2. Block Coordinate Descent Method

We describe formally the block coordinate descent (BCD) method
below.

BCD Method.

Initialization. Choose any x0G(x0
1 , . . . , x

0
N) ∈ dom f.

Iteration rC1, r¤0. Given xrG(xr
1 , . . . , x

r
N) ∈ dom f, choose an index

s ∈ {1, . . . , N} and compute a new iterate

xrC1G(xrC1
1 , . . . , xrC1

N ) ∈ dom f

satisfying

xrC1
s ∈ arg min

xs

f (xr
1 , . . . , x

r
sA1 , xs , x

r
sC1 , . . . , x

r
N), (2)

xrC1
j Gxr

j , ∀ j≠s. (3)

We note that the minimization in (2) is attained if

X 0G{x: f (x)⁄ f (x0)}

is bounded and f is lower semicontinuous (lsc) on X0, so X0 is compact
(Ref. 35). Alternatively, this minimization is attained if f is convex, has a
minimum point, and is hemivariate in each coordinate block (but the level
sets of f need not be bounded). To ensure convergence, we need further that
each coordinate block is chosen sufficiently often in the method. In particu-
lar, we will choose the coordinate blocks according to the following rule
(see, e.g., Refs. 7–8, 21, 25).

Essentially Cyclic Rule. There exists a constant T¤N such that every
index s ∈ {1, . . . , N} is chosen at least once between the rth iteration and the
(rCTA1)th iteration, for all r.

A well-known special case of this rule, for which TGN, is given below.

Cyclic Rule. Choose sGk at iterations k, kCN, kC2N, . . . , for kG
1, . . . , N.
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3. Stationary Points of f

We say that z is a stationary point of f if z ∈ dom f and

f ′(z; d )¤0, ∀ d.

We say that z is a coordinatewise minimum point of f if z ∈ dom f and

f (zC(0, . . . , dk , . . . , 0))¤ f (z), ∀ dk ∈ℜ nk, (4)

for all kG1, . . . , N. Here and throughout, we denote by (0, . . . , dk , . . . , 0)
the vector in ℜ n1C···CnN whose kth coordinate block is dk and whose other
coordinates are zero. We say that f is regular at z ∈ dom f if

f ′(z; d )¤0, ∀ dG(d1, . . . , dN ),

such that f ′(z; (0, . . . , dk , . . . , 0))¤0, kG1, . . . , N. (5)

This notion of regularity is weaker than that used by Auslender (Ref. 4,
p. 93), which entails

f ′(z; d )G ∑
N

kG1

f ′(z; (0, . . . , dk , . . . , 0)), for all dG(d1, . . . , dN ).

For example, the function

f (x1, x2)Gφ(x1, x2)Cφ(−x1, x2)Cφ(x1, −x2)Cφ(−x1, −x2),

where

φ(a, b)Gmax{0, aCbA1a2Cb2},

is regular at zG(0, 0) in the sense of (5), but is not regular in the sense of
Ref. 4, p. 93.

Since (4) implies

f ′(z; (0, . . . , dk , . . . , 0))¤0, for all dk ,

it follows that a coordinatewise minimum point z of f is a stationary point
of f whenever f is regular at z. To ensure regularity of f at z, we consider
one of the following smoothness assumptions on f0:

(A1) dom f0 is open and f0 is Gâteaux-differentiable on dom f0.
(A2) f0 is Gâteaux-differentiable on int(dom f0) and, for every z ∈

dom f ∩bdry(dom f0), there exist k ∈ {1, . . . , N} and dk ∈ℜ nk

such that f (zC(0, . . . , dk , . . . , 0))F f (z).
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Assumption A1 was considered essentially by Auslender (Ref. 4,
Example 2 on p. 94). In contrast to Assumption A1, Assumption A2 allows
dom f0 to include boundary points. We will see an application (Example
6.2) where A2 holds but not A1.

Lemma 3.1. Under A1, f is regular at each z ∈ dom f. Under A2, f
is regular at each coordinatewise minimum point z of f.

Proof. Under A1, if zG(z1, . . . , zN ) ∈ dom f, then z ∈ dom f0. Under
A2, if zG(z1, . . . , zN ) is a coordinatewise minimum point of f, then
z ∉ bdry(dom f0), so z ∈ int(dom f0). Thus, under either A1 or A2, f0 is
Gâteaux-differentiable at z. Fix any dG(d1, . . . , dN ) such that

f ′(z; (0, . . . , dk , . . . , 0))¤0, kG1, . . . , N.

Then,

f ′(z; d )G〈 ∇ f0(z), d 〉Clim inf
λ ↓0

∑
N

kG1

[ fk (xkCλdk)Afk (xk)]�λ

¤ 〈 ∇ f0(z), d 〉C ∑
N

kG1

lim inf
λ ↓0

[ fk (xkCλdk)Afk (xk)]�λ

G〈 ∇ f0(z), d 〉C ∑
N

kG1

f ′k(zk; dk )

G ∑
N

kG1

f ′(z; (0, . . . , dk , . . . , 0))

¤0. �

4. Convergence Analysis: I

Our first convergence result unifies and extends a result of Auslender
(Ref. 4, p. 95) for the nondifferentiable convex case and some results of
Grippo and Sciandrone (Ref. 27), Luenberger (Ref. 8, p. 159), and Zadeh
(Ref. 26) for the differentiable case. In what follows, r ≡ (NA1) mod N
means rGNA1, 2NA1, 3NA1, . . . .

Theorem 4.1. Assume that the level set X 0G{x: f (x)⁄ f (x0)} is
compact and that f is continuous on X 0. Then, the sequence
{xrG(xr

1 , . . . , x
r
N )}rG0, 1,... generated by the BCD method using the essen-

tially cyclic rule is defined and bounded. Moreover, the following statements
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hold:

(a) If f (x1, . . . , xN ) is pseudoconvex in (xk , xi ) for every i, k ∈
{1, . . . , N}, and if f is regular at every x ∈ X 0, then every cluster
point of {xr} is a stationary point of f.

(b) If f (x1, . . . , xN ) is pseudoconvex in (xk , xi ) for every i, k ∈
{1, . . . , NA1}, if f is regular at every x ∈ X 0, and if the cyclic rule
is used, then every cluster point of {xr}r ≡ (NA1) mod N is a stationary
point of f.

(c) If f (x1, . . . , xN ) has at most one minimum in xk for kG
2, . . . , NA1, and if the cyclic rule is used, then every cluster point
z of {xr}r ≡ (NA1) mod N is a coordinatewise minimum point of f. In
addition, if f is regular at z, then z is a stationary point of f.

Proof. Since X 0 is compact, an induction argument on r shows that
xrC1 is defined, f (xrC1)⁄ f (xr ), and xrC1 ∈ X 0 for all rG0, 1, . . . . Thus, {xr}
is bounded. Consider any subsequence {xr}r ∈ R , with R ⊆ {0, 1, . . .}, con-
verging to some z. For each j ∈ {1, . . . , T}, {xrATC1Cj}r ∈ R is bounded, so by
passing to a subsequence, if necessary, we can assume that

{xrATC1Cj}r ∈ R converges to some z jG(z j
1 , . . . , z

j
N ), jG1, . . . , T.

Thus,

zTA1Gz.

Since { f (xr )} converges monotonically and f is continuous on X 0, we
obtain that

f (x0)¤ lim
r→S

f (xr )Gf (z1)G· · ·Gf (zT ). (6)

By further passing to a subsequence, if necessary, we can assume that the
index s chosen at iteration rATC1Cj, j ∈ {1, . . . , T}, is the same for all r ∈
R, which we denote by s j .

For each j ∈ {1, . . . , T}, since s j is chosen at iteration rATC1Cj for
r ∈ R, then (2) and (3) yield

f (xrATC1Cj )⁄ f (xrATC1CjC(0, . . . , ds j , . . . , 0)), ∀ ds j , jG1, . . . , T,

xrATC1Cj
k GxrATCj

k , ∀ k≠s j, jG2, . . . , T.

Then, the continuity of f on X 0 yields in the limit that

f (z j )⁄ f (z jC (0, . . . , ds j , . . . , 0)), ∀ ds j , jG1, . . . , T,

z j
kGz jA1

k , ∀ k≠s j, jG2, . . . , T.
(7)
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Then, (6) and (7) yield

f (z jA1)⁄ f (z jA1C(0, . . . , ds j , . . . , 0)), ∀ ds j , jG2, . . . , T. (8)

(a), (b) Suppose that f is regular at every x ∈ X 0 and that f (x1, . . . , xN )
is pseudoconvex in (xk , xi ) for every i, k ∈ {s1} ∪ · · · ∪ {sTA1}. This holds
under the assumption (a) or under the assumption (b), with {xr}r ∈ R being
any convergent subsequence of {xr}r ≡ (NA1) mod N . We claim that, for jG
1, . . . , TA1,

f (z j )⁄ f (z jC(0, . . . , dk , . . . , 0)), ∀ dk , ∀ kGs1, . . . , s j. (9)

By (7), (9) holds for jG1. Suppose that (9) holds for jG1, . . . , lA1 for some
l ∈ {2, . . . , TA1}. We show that (9) holds for jGl. From (8), we have that

f (z lA1)⁄ f (z lA1C(0, . . . , dsl , . . . , 0)), ∀ dsl ,

implying

f ′(z lA1; (0, . . . , z l
slAz lA1

sl , . . . , 0))¤0.

Also, since (9) holds for jGlA1, we have that, for each kGs1, . . . , slA1,

f ′(z lA1; (0, . . . , dk , . . . , 0))¤0, ∀ dk .

Since by (6) z lA1 ∈ X 0, so f is regular at z lA1, the above two relations imply

f ′(z lA1; (0, . . . , dk , . . . , 0)C(0, . . . , z l
slAz lA1

sl , . . . , 0))¤0, ∀ dk .

Since f is pseudoconvex in (xk , xsl ), this yields [also using z lGz lA1C

(0, . . . , z l
slAz lA1

sl , . . . , 0)] for kGs1, . . . , slA1 that

f (z lC(0, . . . , dk , . . . , 0))¤ f (z lA1)Gf (z l ), ∀ dk .

Since we have also that (7) holds with jGl, we see that (9) holds for jGl.
By induction, (9) holds for all jG1, . . . , TA1.

Since zTA1Gz and (9) holds for jGTA1, then (4) holds for kG
s1, . . . , sTA1. Since zTA1Gz and (8) holds (in particular, for jGT ), then (4)
holds for kGsT also. Since

{1, . . . , N}G{s1} ∪ · · · ∪ {sT},

this implies that z is a coordinatewise minimum point of f. Since f is regular
at z, then z is in fact a stationary point of f.

(c) Suppose that f (x1, . . . , xN ) has at most one minimum in xk for kG
s2, . . . , sTA1. This holds under the assumption (c), with {xr}r ∈ R being any
convergent subsequence of {xr}r ≡ (NA1) mod N . For each jG2, . . . , TA1, since
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(7) and (8) hold, then the function

ds j > f (z jC(0, . . . , dsj , . . . , 0))

attains its minimum at both ds jG0 and ds jGz jA1
s j Az j

s j . By assumption, the
minimum point is unique, implying 0Gz jA1

s j Az j
s j , or equivalently, z jA1G

z j. Thus, z1Gz2G· · ·GzTA1Gz and (7) yields that (4) holds for kG
s1, . . . , sTA1. Since zTA1Gz and (8) holds (in particular, for jGT ), then (4)
holds for kGsT also. Since

{1, . . . , N}G{s1} ∪ · · · ∪ {sT},

this implies that z is a coordinatewise minimum point of f. If f is regular at
z, then z is also a stationary point of f. �

Notice that, if f is pseudoconvex, then f is pseudoconvex in (xk , xi ) for
every i, k ∈ {1, . . . , N}; if f is quasiconvex and hemivariate in xk , then f has
at most one minimum in xk . The converses do not hold. For example, the
2-variable Rosenbrock function has a unique minimum point but is not
quasiconvex. The following 3-variable quadratic function

f (x1, x2, x3)G(1�2)x2
1C(1�2)x2

2C(1�2)x2
3Cx1x3Cx2x3Ax1x2

is convex in every pair of variables, but is not pseudoconvex. In particular,
for xG(0, 0, 1�2) and dG(1, 1, −1), we have f ′(x; d )G1�2¤0, while
f (xCd )G−7�8Ff (x)G1�8. This example generalizes to any quadratic
function

f (x)G〈x, Qx〉.

where Q ∈ R
NBN is symmetric, not positive semidefinite, but whose 2B2

principal submatrices are positie semidefinite. Then, for any d satisfying
〈d, Qd 〉F0 and any x satisfying

0⁄ 〈x, Qd 〉F−(1�2)〈d, Qd 〉,

we have that

f ′(x; d )¤0, while f (xCd )Ff (x).

Thus, parts (a) and (c) of Theorem 4.1 may be viewed as extensions of two
results of Grippo and Sciandrone (Ref. 27, Propositions 5.2, 5.3) for the
case of f0 being continuously differentiable and each fk being the indicator
function of some closed convex set. In turn, the first of these results
extended a result of Zadeh (Ref. 26) for which fk ≡ 0 for all k. Part (b) makes
a less restrictive assumption on f than part (a), though its assumption on
the BCD method is more restrictive. Part (b) is sharp in the sense that it is
false if instead we assume that f is convex in every coordinate block. This
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is because the Powell 3-variable example (Ref. 28) is convex in each variable;
see Ref. 27, Section 6 for further discussions of the example. We will see an
application (Example 6.4) in which part (b) applies but not part (a) nor (c).

5. Convergence Analysis: II

The convergence analysis of the previous section assumes f to be con-
tinuous on a bounded level set and makes no use of the special structure (1)
of f. In this section, we show that this assumption can be relaxed by
exploiting the special structure (1), provided that f is quasiconvex and hemi-
variate in each coordinate block. More precisely, we will make the following
assumptions on f, f0, f1, . . . , fN:

(B1) f0 is continuous on dom f0.
(B2) For each k ∈ {1, . . . , N} and (xj ) j≠k , the function xk>

f (x1, . . . , xN ) is quasiconvex and hemivariate.
(B3) f0, f1, . . . , fN are lsc.

We will see some applications (Ref. 6, Section 3.4.3 and Examples 6.1–
6.3) for which f satisfies this weaker assumption although it is not strictly
convex. In addition, we will make one of the following technical assump-
tions on f0:

(C1) dom f0 is open and f0 tends to S at every boundary point of
dom f0.

(C2) dom f0GY1B· · ·BYN , for some Yk ⊆ R
nk, kG1, . . . , N.

In contrast to Assumption C1, Assumption C2 allows f0 to have a finite
value on bdry(dom f ). We will see in Example 6.2 a nonseparable function
f0 that satisfies Assumptions B1–B3 and C2, but not C1. We show below
that Assumptions B1–B3, together with either Assumption C1 or C2, ensure
that every cluster point of the iterates generated by the BCD method is a
coordinate minimum point of f. The proof of this result is patterned after
an argument given by Bertsekas and Tsitsiklis (Ref. 6, pp. 220–221; also see
Ref. 27), but is complicated by the fact that f is not necessarily differentiable
(or even continuous) on its effective domain.

Proposition 5.1. Suppose that f, f0, f1, . . . , fN satisfy Assumptions B1–
B3 and that f0 satisfies either Assumption C1 or C2. Also, assume that the
sequence {xrG(xr

1 , . . . , x
r
N )}rG0, 1,... generated by the BCD method using

the essentially cyclic rule is defined. Then, either { f (xr )}↓ −S, or else every
cluster point zG(z1, . . . , zN ) is a coordinatewise minimum point of f.
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Proof. Since f (x0)FS and f (xrC1)⁄ f (xr ) for all r, then either
{ f (xr )} ↓ −S, or else { f (xr )} converges to some limit and { f (xrC1)A
f (xr )}→0. Consider the latter case and let z be any cluster point of {xr}.
Since f is lsc by Assumption B3, we have

f (z)⁄ lim
r→S

f (xr )FS,

so z ∈ dom f. We show below that z satisfies (4) for kG1, . . . , N.
First, we claim that, for any infinite subsequence

{xr}r ∈ R →z, (10)

with R ⊆ {0, 1, . . .}, there holds that

(xrC1}r ∈ R →z. (11)

We prove this by contradiction. Suppose that this were not true. Then, there
exists an infinite subsequence R ′ of R and a scalar (H0 such that

��xrC1Axr��¤(, for all r ∈ R ′.

By further passing to a subsequence, if necessary, we can assume that there
is some nonzero vector d for which

{(xrC1Axr )���xrC1Axr��}r ∈ R ′ →d, (12)

and that the same coordinate block, say xs , is chosen t the (rC1)st iteration
for all r ∈ R ′. Moreover, (10) implies that { f0(x

r )}r ∈ R and { fk (x
r
k)}r ∈ R , kG

1, . . . , N, are bounded from below, which together with the convergence of
{ f (xr)}G{ f0(x

r )C∑N

kG1 fk(x
r
k)} implies that { f0(x

r)}r ∈ R and { fk(x
r
k)}r ∈ R ,

kG1, . . . , N, are bounded. Hence, by further passing to a subsequence, if
necessary, we can assume that there is some scalar θ for which

{ f0(x
r )Cfs (x

r
s)}r ∈ R ′ →θ. (13)

Fix any λ ∈ [0, (]. Let

ẑGzCλd, (14)

and for each r ∈ R ′, let

x̂ rGxrCλ (xrC1Axr)���xrC1Axr��. (15)

Then, by (10), (12), and (14),

{x̂ r}r ∈ R ′ → ẑ. (16)

For each r ∈ R ′, we see from (2) that xrC1 is obtained from xr by minimizing
f with respect to xs , while the other coordinates are held fixed. Since

λ ���xrC1Axr��⁄λ �(⁄1,
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so x̂ r lies on the line segment joining xr with xrC1, this together with
f (xrC1)⁄ f (xr ) and the quasiconvexity of xs > f (xr

1 , . . . , x
r
sA1, xs ,

xr
sC1 , . . . , x

r
N) implies

f (x̂ r )⁄ f (xr ), ∀ r ∈ R ′.

Since f is lsc, this and (16) imply ẑ ∈ dom f. Also, this and (1) and the obser-
vation that xr and x̂ r differ only in their sth coordinate block imply

f0(x̂
r )Cfs (x̂

r
s)⁄ f0(x

r )Cfs (x
r
s), ∀ r ∈ R ′.

This combined with (13) yields

lim
r→S, r ∈ R ′

sup{ f0(x̂
r )Cfs(x̂

r
s )}⁄θ. (17)

Also, since

{ f (xrC1)Af (xr )}r ∈ R ′ →0,

we have equivalently that

{ f0(x
rC1)Cfs (x

rC1
s )Af0(x

r)Afs (x
r
s )}r ∈ R ′ →0,

so (13) implies

{ f0(x
rC1)Cfs (x

rC1
s )}r ∈ R ′ →θ. (18)

Let

δGf0(ẑ)Cfs (ẑs)Aθ.

Since f0 and fs are lsc, we have from (16), (17) that δ⁄0. We claim that in
fact δG0. Suppose that this were not true, so that δH0. By (16) and the
observation that, for all r ∈ R ′, x̂ r and xr differ in only their sth coordinate
block, we have

{(xr
1 , . . . , x

r
sA1 , ẑs , x

r
sC1 , . . . , x

r
N)}r ∈ R ′ → ẑ. (19)

Moreover, the vector on the left-hand side of (19) is in dom f0 for all r ∈ R ′
sufficiently large. Since ẑ ∈ dom f0, this is certainly true under Assumption
C1; under Assumption C2, this is also true because xr ∈ dom f0 for all r and
dom f0 has a product structure corresponding to the coordinate blocks.
Then, (18) together with (19) and the continuity of f0 on dom f0 implies
that, for all r ∈ R ′ sufficiently large, there holds that

f0(x
r
1 , . . . , x

r
sA1 , ẑ s , x

r
sC1 , . . . , x

r
N)Cfs(ẑs)

⁄ f0(x
rC1)Cfs (x

rC1
s )Cδ�2,
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or equivalently [via (1) and the observation that xr and xrC1 differ in only
their sth coordinate block],

f (xr
1 , . . . , x

r
sA1 , ẑs , x

r
sC1 , . . . , x

r
N)⁄ f (xrC1)Cδ�2,

a contradiction to the fact that xrC1 is obtained from xr by minimizing f
with respect to the sth coordinate block, while the other coordinates are
held fixed. Hence, δG0 and therefore

f0(ẑ)Cfs(ẑs )Gθ.

Since the choice of λ was arbitrary, we obtain [also using (14)]

f0(zCλd )Cfs (zsCλds)Gθ, ∀ λ ∈ [0, (],

where ds denotes the sth coordinate block of d. Since xr and xrC1 differ in
only their sth coordinate block for all r ∈ R ′, then all coordinate blocks of
d, except ds , are zero [see (12)], and the above relation, together with (1),
shows that f (zCλd ) is constant (and finite) for all λ ∈ [0, (], a contradiction
to Assumption B2, namely, that f is hemivariate in the sth coordinate block.
Hence, (11) holds.

Since (11) holds for any subsequence {xr}r ∈ R of {xr} converging to z,
we can apply (11) to the subsequence {xrC1}r ∈ R to conclude that
{xrC2}r ∈ R →z and so on, yielding

{xrCj}r ∈ R →z, ∀ jG0, 1, . . . , T, (20)

where T is the bound specified in the essentially cyclic rule.
We claim that (20), together with Assumption C1 or C2, implies

f0(z)Cfk (zk)⁄ f0(z1, . . . , zkA1 , xk , zkC1 , . . . , zN )Cfk (xk), (21)

for all xk and all k ∈ {1, . . . , N}. To see this, fix any k ∈ {1, . . . , N}. Since
the coordinate blocks are chosen according to the essentially cyclic rule,
there exists some j ∈ {1, . . . , T} and an infinite subsequence R ′ ⊆ R such
that the coordinate block xk is chosen at the (rCj )th iteration for all

r ∈ R ′. Then, for each r ∈ R ′, xrCj
k minimizes f0(x

rCj
1 , . . . , x

rCj
kA1 , xk ,

xrCj
kC1 , . . . , xrCj

N)Cfk (xk) over all xk [see (1), (2), (3)], so that

f0(x
rCj )Cfk (x

rCj
k)

⁄ f0(x
rCj

1, . . . , x
rCj

kA1 , xk , x
rCj

kC1 , . . . , x
rCj

N)Cfk (xk), ∀ xk . (22)

Fix any xk ∈ dom fk such that (z1, . . . , zkA1 , xk , zkC1 , . . . , zN ) ∈ dom f0.
Suppose that Assumption C1 holds, so dom f0 is open. Since z ∈ dom f0,
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then (20) implies that

(xrCj
1, . . . , x

rCj
kA1 , xk , x

rCj
kC1 , . . . , x

rCj
N ) ∈ dom f0,

for all r ∈ R ′ sufficiently large.

Passing to the limit as r→S, r ∈ R ′, and using the lsc property of fk
and the continuity of f0 on the open set dom f0, we obtain from (20)
and (22) that (21) holds. Suppose instead that Assumption C2 holds, so

dom f0GY1B· · ·BYN , for some Y1 ⊆ ℜ n1, . . . , YN ⊆ ℜ nN.

Then, the first quantity on the right-hand side of (22) is finite for all r ∈
ℜ′ . Passing to the limit as r→S, r ∈ℜ′ , and using the lsc property of fk
and the continuity of f0 on dom f0, we obtain from (20) and (22) that
(21) holds. If xk ∉ dom fk or (z1, . . . , zkA1 , xk , zkC1 , . . . , zN ) ∉ dom f0, then
the right-hand side of (21) has the extended value S, so (21) holds
trivially. Since the above choice of k was arbitrary, this shows that (21)
holds for all xk and all k ∈ {1, . . . , N}. Then, it follows from (1) that (4)
holds for all kG1, . . . , N. �

Proposition 5.1 extends a result of Grippo and Sciandrone (Ref. 27,
Proposition 5.1) for the special case where each fk is the indicator func-
tion for some closed convex set and f0 is continuously differentiable and
(block) coordinatewise strictly pseudoconvex. In turn, the latter result is
an extension of a result of Bertsekas and Tsitsiklis (Ref. 6, Proposition
3.9 in Section 3.3.5), which assumes further f0 to be convex. As a cor-
ollary of Proposition 5.1, we obtain the following convergence result for
the BCD method.

Theorem 5.1. Suppose that f, f0, f1, . . . , fN satisfy Assumptions B1–
B3 and that f0 satisfies either Assumption C1 or C2. Also, assume that
{x: f (x)⁄ f (x0)} is bounded. Then, the sequence {xr} generated by the BCD
method using the essentially cyclic rule is defined, bounded, and every
cluster point is a coordinatewise minimum point of f.

Theorem 5.1 extends a result of Auslender [see Theorem 1.2(a) in Ref.
4, p. 95] for the special case where fk is convex for all k, dom f0G

Y1B· · ·BYN for some closed convex sets Yk ⊆ ℜ nk, kG1, . . . , N, and f0 is
strongly convex and continuous on dom f0.
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6. Applications

We describe four interesting applications of the BCD method below.
In all applications, the objective function f is not necessarily strictly convex
nor differentiable everywhere on its effective domain.

Example 6.1. Proximal Minimization Algorithm. Let ψ : ℜ n > ℜ ∪
{S} be a proper (i.e., ψ �≡S ) lsc function. Fix any scalar cH0, and consider
the proper lsc function f defined by

f (x, y)Gc��xAy ��2Cψ (x).

Clearly, this function has the form (1) with

f0(x, y)Gc��xAy ��2, f1Gψ, f2 ≡ 0.

Applying the BCD method to f yields a method whereby f (x, y) is alter-
nately minimized with respect to x and y. This method has the form

xrC1Garg min
x

c��xAxr��2Cψ (x), rG0, 1, . . . ,

which is the proximal minimization algorithm with fixed parameter c for
minimizing ψ ; see Ref. 6, Section 3.4.3 and Refs. 36–37 and references
therein.

It is easily seen that f, f0, f1, f2 satisfy Assumptions B1–B3 and that f0

satisfies Assumptions A1 and C1. Moreover, f is regular everywhere on
dom f. Then, by Proposition 5.1, if ψ is bounded below (so, f is bounded
below), then every cluster point z of the iterates generated by the above
proximal minimization algorithm is a stationary point of ψ, i.e.,

ψ′(z; d )¤0, for all d.

Notice that Theorem 4.1 is not applicable here, since f need not be continu-
ous on its level sets.

Example 6.2. Arimoto–Blahut Algorithm. Let Pij , iG1, . . . , n, jG
1, . . . , m, be given nonnegative scalars satisfying

∑
j

PijG1, for all i.

The Pij may be viewed as probabilities. Consider the proper lsc function f
defined by

f (x, y)Gf0(x, y)Cf1(x)Cf2(y),
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where

f0(x, y)G� ∑
m

jG1
∑
n

iG1

Pijxiφ(yij�xi), if x¤0, yH0,

S, otherwise,

f1(x)G�0, if ∑
n

iG1

xiG1,

S, otherwise,

f2(y)G�0, if ∑
n

iG1

yijG1, ∀ jG1, . . . , m.

S, otherwise,

with φ(t)G−log(t). In our notation, x is a vector in ℜ n whose ith coordinate
is xi , and y is a vector in ℜ nm whose ((iA1)mCj )th coordinate is yij . Apply-
ing the BCD method to f yields a method whereby f (x, y) is alternately
minimized with respect to x and y. This in turn can be seen to be the
Arimoto–Blahut algorithm for computing the capacity of a discrete
memoryless communication channel (Refs. 11–12).

It can be verified that f, f0, f1, f2 are convex and satisfy Assumptions
B1–B3. Convexity of f0 follows from observing that (a, b) > aφ(b�a) is con-
vex. Moreover, f has compact level sets and is continuous on each level set,
and f0 satisfies Assumptions A2 and C2. Notice that f is not strictly convex
and f0 does not satisfy Assumption A1 or C1. Thus, by Lemma 3.1 and
Theorem 5.1 or Theorem 4.1(c), the sequence of iterates generated by the
Arimoto–Blahut algorithm is bounded and each cluster point is a stationary
point of f. By the convexity of f, this is in fact a minimum point of f. This
result matches those obtained in Refs. 11–12. Analogous convergence
results are obtained for variants of the Arimoto–Blahut algorithm, whereby
we use, for example,

φ(t)Gt log(t) or φ(t)G1�t.

Example 6.3. Han Algorithm. Let f be the proper lsc convex function
studied by Han [Ref. 30, (D′ )],

f (x1, . . . , xN )G(1�2)��x1C· · ·CxNAd ��2C ∑
N

kG1

fk (xk),

where d is a given vector in ℜ m and each fk: ℜ m > ℜ ∪ {S} is a proper lsc
convex function. Also see Ref. 18 for a special case where fk is the support
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function of a closed convex set. Clearly, f is of the form (1) with

f0(x1, . . . , xN )G(1�2)��x1C· · ·CxNAd ��2.

Han proposed in Ref. 30 an algorithm for minimizing f, which may be
viewed as an instance of the BCD method using the cyclic rule, as was
shown in Ref. 22.

It is seen easily that f, f0, f1, . . . , fN satisfy Assumptions B1–B3 and
that f0 satisfies Assumptions A1 and C1. Thus, by Lemma 3.1 and Prop-
osition 5.1 [also see the remark following (3)], if f has a minimum point,
then the iterates generated by the Han algorithm are defined and every
cluster point is a minimum point of f. This result matches Proposition 4.3
in Ref. 30. On the other hand, by using the convexity of the functions,
stronger convergence results can be obtained; see Refs. 22, 38.

Example 6.4. Blind Source Separation. In Ref. 33, Zibulevsky and
Pearlmutter studied an optimization formulation of the blind source separ-
ation, whereby an error term of the form

(1�2σ2)��ASAX ��2FC∑
j,t

f t
j (s

t
j),

is minimized with respect to

A ∈ℜ mBn and SG[st
j ] jG1,...,n,tG1,...,T ∈ℜ nBT.

Here, X ∈ℜ mBT are the given data; �� · ��F denotes the Frobenious norm;
σH0; and each f t

j : ℜ > [0,S] is a proper convex function that is continu-
ous on its effective domain and has bounded level sets. In Ref. 31, the
particular choice of f t

j ( · )G� · � is used. To ensure the existence of an optimal
solution, it was suggested in Ref. 33 that constraints such as

��Ai��⁄1, iG1, . . . , m, (23)

be imposed, where Ai denotes the ith row of A. The objective function of
this problem has the form (1) with NG1CnT,

f0(A, s1
1 , . . . , s

T
n )G(1�2σ2)��ASAX ��2F ,

f1(A)G�0, if ��Ai ��⁄1, iG1, . . . , m,

S, else,

and f t
j , jG1, . . . , n, tG1, . . . , T, as given. Notice that minimizing f with

respect to A entails minimizing a convex quadratic function over the
Cartesian product of m Euclidean balls, while minimizing f with respect to
each st

j entails minimizing the sum of a convex quadratic function of one
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variable with a convex function of one variable. Thus, the BCD method
applied to this f can be implemented fairly inexpensively. If we replace (23)
by the single ball constraint

��A��F⁄ρ,

for some fixed ρH0, then minimizing f with respect to A can be solved
efficiently using e.g. the Moré–Sorenson method.

It is not difficult to see that f is continuous on its effective domain and
has compact level sets. Moreover, f is convex in (s1

1 , . . . , s
T
n ), f1 is convex,

and f0 satisfies Assumption A1. Thus, by Lemma 3.1 and Theorem 4.1(b),
the iterates generated by the BCD method using the cyclic rule are defined
and every cluster point is a stationary point of f. Notice that f is not pseudo-
convex in every pair of coordinate blocks and that f need not have at most
one minimum in each st

j , so neither Theorem 5.1, nor part (a) of Theorem
4.1, nor part (c) of Theorem 4.1 is applicable here.

Instead of treating each st
j as a coordinate block, we can treat alterna-

tively SG[st
j ] j,t as a coordinate block. However, minimizing f with respect

to S is more difficult. In the case of f t
j ( · )G� · �, this would require solving a

large convex quadratic programming problem. A comparison of a primal–
dual interior-point method and the BCD method for solving such a problem
is given in Ref. 32.
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