
Approximation Accuracy, Gradient Methods, and Error Bound
for Structured Convex Optimization1

May 14, 2009 (revised July 7, 2009)

Paul Tseng2

Abstract

Convex optimization problems arising in applications, possibly as approximations of in-
tractable problems, are often structured and large scale. When the data are noisy, it is
of interest to bound the solution error relative to the (unknown) solution of the original
noiseless problem. Related to this is an error bound for the linear convergence analysis of
first-order gradient methods for solving these problems. Example applications include com-
pressed sensing, variable selection in regression, TV-regularized image denoising, and sensor
network localization.
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1 Introduction

Optimization problems arising in application areas such as signal/image denoising, compressed
sensing, regression, multi-task learning, classification, sensor network localization, are often
large scale, possibly nonconvex or NP-hard, and the data may be noisy. Such problems may be
approximated by convex relaxations that are highly structured.

Question 1: How accurate approximations are the convex relaxations?

Specifically, can we bound the error between a solution of the convex relaxation and an (un-
known) solution of the original noiseless problem in terms of knowable quantities such as the
noise level? This question is meaningful when a solution of the original problem changes
(semi)continuously with small perturbations in the data, so the problem has both discrete and
continuous nature. Examples include compressed sensing and sensor network localization; see
Section 2. A certain noise-aware property of the convex relaxation appears key.

Question 2: How fast can the convex relaxations be solved?

Due to the large problem size, first-order gradient methods seem better suited to exploit struc-
tures such as sparsity, (partial) separability, and simple nonsmoothness in the convex relaxations;
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see Section 3. The asymptotic convergence rate of these methods depend on an error bound on
the distance to the solution set of the convex relaxation in terms of a certain residual function.
We prove such an error bound for a class of 2-norm-regularized problems that includes the group
lasso for linear and logistic regression; see Section 4. Thus our aims are threefold: exposit on
existing results, present a new result, and suggest future research.

We begin with a problem that has received much attention recently: compressed sensing. In
the basic version of this problem, we wish to find a sparse representation of a given noiseless
signal b0 ∈ ℜm from a dictionary of n elementary signals. This may be formulated as

min
x|Ax=b0

♯(x), (1)

where A ∈ ℜm×n comprises the elementary signals for its columns and ♯(x) counts the number of
nonzero components in x ∈ ℜn. In typical applications, m and n are large (m,n ≥ 2000). This
problem is known to be difficult (NP-hard) and a popular solution approach is to approximate it
by a convex relaxation, with ♯(·) replaced by the 1-norm ‖·‖1.

3 This results in a linear program:

min
x|Ax=b0

‖x‖1 (2)

that can be efficiently solved by simplex or interior point methods [28, 103, 105, 150, 154]. More-
over, when the optimal value of (1) is sufficiently small and the columns of A are “approximately
orthogonal,” which occur with high probability when A is, say, a Gaussian random matrix, the
solution of (2) also solves (1), i.e., the relaxation is exact [26, 27, 28, 35, 40, 42, 56, 57, 59, 62, 83,
111, 133, 134]. For a noisy signal b, Ax = b may be inconsistent and we seek a sparse solution
x whose residual Ax − b is small in the least square sense, either in the primal form of “lasso”
[131]

min
x| ‖Ax−b‖2≤ρ

‖x‖1 (3)

(ρ > 0) or in the dual form of “basis pursuit” [30, 43, 44, 121]

min
x

‖Ax− b‖2
2 + τ‖x‖1 (4)

(τ > 0). Partial results on the accuracy of this relaxation are known [41, 133, 143]. Various
methods have been proposed to solve (3) and (4) for fixed ρ and τ , including interior point
method [30], coordinate minimization [121, 122], proximal gradient (with or without smoothing)
[13, 14, 34], proximal minimization [155]. Homotopy approaches have been proposed to follow
the solution as τ varies between 0 and ∞ [54, 63, 110]. The efficiency of these methods depend
on the structure of A. The polyhedral and separable structure of ‖ · ‖1 is key.

A problem related to (4) is image denoising using total variation (TV) regularization:

min
x∈B

n
2
2

‖Ax− b‖2
2, (5)

where n is even, B2 denotes the unit 2-norm (Euclidea) ball in ℜ2, A ∈ ℜm×n is the adjoint
of the discrete (via finite difference) gradient mapping, and b ∈ ℜm. Interior-point, proximal

3We are using the term “relaxation” loosely since ♯(·) majorizes ‖ · ‖1 only on the unit ∞-norm ball.
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minimization, coordinate minimization, and gradient projection methods have been proposed
for its solution [60, 108, 147, 152, 160, 161].

A second problem related to (1) and of growing interest is matrix rank minimization. The
basic problem is

min
x|Ax=b0

rank(x), (6)

where rank(x) is the rank of a matrix x ∈ ℜp×n, and A is a linear mapping from ℜp×n to ℜm,
and b0 ∈ ℜm. In the case of matrix completion, we have Ax = (xij)(i,j)∈A, where A indexes the
known entries of x. This problem is also NP-hard, and a convex relaxation has been proposed
whereby rank(x) is replaced by the nuclear/trace norm ‖x‖nuc (the 1-norm of the singular values
of x) [24, 25, 50, 73, 82, 115, 156]. The resulting problem

min
x|Ax=b0

‖x‖nuc (7)

has a more complex structure than (2), and only recently have solution methods, including
interior point method and dual gradient method, been developed [24, 73, 82] and exactness
results been obtained [25, 115]. For noisy b, we may consider, analogous to (4), the relaxation

min
x

‖Ax− b‖2
F + τ‖x‖nuc , (8)

where τ > 0 and ‖·‖F denotes the Frobenious-norm. This problem has applications to dimension
reduction in multivariate linear regression [75] and multi-task learning [1, 3, 106]. Recently,
proximal/gradient methods have been applied to its solution [75, 82, 132]. How well does (8)
approximate (6)?

A third problem related to (1) and of recent interest is that of sparse inverse covariance esti-
mation, where we seek a positive definite x ∈ Sn that is sparse and whose inverse approximates
a given sample covariance matrix s ∈ Sn. This may be formulated as the nonconvex problem

min
λI�x�λ̄I

− log det(x) + 〈s, x〉 + τ♯(x) (9)

with 0 ≤ λ < λ̄ ≤ ∞ and τ > 0, where 〈s, x〉 = trace[sx], ♯(x) counts the number of nonzeros in
x, I denotes the n×n identity matrix, and � denotes the partial ordering with respect to the cone
Sn

+ of positive semidefinite matrices [5, 9, 53, 74, 158]. Replacing ♯(x) by ‖x‖1 :=
∑n

i,j=1 |xij|
yields the convex relaxation

min
λI�x�λ̄I

− log det(x) + 〈s, x〉 + τ‖x‖1. (10)

Interior-point method appears unsuited for solving (10) owing to the large size of the Newton
equation to be solved. Block-coordinate minimization methods (with each block corresponding
to a row/column of x) and Nesterov’s accelerated gradient methods have been applied to its
solution [5, 9, 53, 74]. How well does (10) approximate (9)?

A fourth problem of much recent interest is that of ad hoc wireless sensor network localization
[4, 17, 18, 20, 21, 29, 36, 37, 47, 70, 72, 127]. In the basic version of this problem, we have n
points z0

1 , . . . , z
0
n in ℜd (d ≥ 1). We know the last n −m points (“anchors”) and an estimate

dij ≥ 0 of the Euclidean distance d0
ij = ‖z0

i − z0
j ‖2 between “neighboring” points i and j for all
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(i, j) ∈ A, where A ⊆ ({1, . . . ,m}×{1, . . . , n}) ∪ ({1, . . . , n}×{1, . . . ,m}). We wish to estimate
the first m points (“sensors”). This problem may be formulated as

min
z1,...,zm

∑

(i,j)∈As

|‖zi − zj‖2
2 − d2

ij | +
∑

(i,j)∈Aa

|‖zi − z0
j ‖2

2 − d2
ij |, (11)

where As := {(i, j) ∈ A | i < j ≤ m} and Aa := {(i, j) ∈ A | i ≤ m < j} are the sets of,
respectively, sensor-to-sensor and sensor-to-anchor neighboring pairs. Typically, d = 2 and two
points are neighbors if the distance between them is below some threshold, e.g., the radio range.
In variants of this problem, constraints such as bounds on distances and angles-of-arrival are
also present [16, 29, 37, 70]. This problem is NP-hard for any d ≥ 1. It is closely related to
distance geometry problems arising in molecular conformation [19, 90], graph rigidity/realization
[2, 36, 47, 127], and max-min/avg dispersion [33, 114, 149]. Letting z := ( z1 · · · zm ) and I
denote the d×d identity matrix, Biswas and Ye [20, 21] proposed the following convex relaxation
of (11):

min
x

∑

(i,j)∈A

∣

∣

∣ℓij(x) − d2
ij

∣

∣

∣

subject to x =

(

y zT

z I

)

� 0,

(12)

where y = ( yij )1≤i,j≤m, and

ℓij(x) :=

{

yii − 2yij + yjj if (i, j) ∈ As,
yii − 2zT

i z
0
j + ‖z0

j ‖2 if (i, j) ∈ Aa.
(13)

The relaxation (12) is a semidefinite program (SDP) and is exact if it has a solution of rank d.
On the other hand, (12) is still difficult to solve by existing methods for SDP when m > 500,
and decomposition methods have been proposed [21, 29]. Recently, Wang, Zheng, Boyd, and
Ye [148] proposed a further relaxation of (12), called edge-based SDP (ESDP) relaxation, which
is solved much faster by an interior point method than (12), and yields solution comparable in
approximation accuracy as (12). The ESDP relaxation is obtained by relaxing the constraint
x � 0 in (12) to require only those principal submatrices of x associated with A to be positive
semidefinite. Specifically, the ESDP relaxation is

min
x

∑

(i,j)∈A

∣

∣

∣ℓij(x) − d2
ij

∣

∣

∣

subject to x =

(

y zT

z I

)

,




yii yij zT
i

yij yjj zT
j

zi zj I



 � 0 ∀(i, j) ∈ As,

(

yii zT
i

zi Id

)

� 0 ∀i ≤ m.

(14)

Notice that the objective function and the positive semidefinite constraints in (14) do not depend
on yij, (i, j) 6∈ A. How well does (12) approximate (11)? Only partial results are known in the
noiseless case, i.e., (11) has zero optimal value [127, 141]. How well does (14) approximate (11)?

The above convex problems share a common structure, namely, they entail minimizing the
sum of a smooth (i.e., continuously differentiable) convex function and a “simple” nonsmooth
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convex function. More specifically, they have the form

min
x∈E

F (x) := f(x) + τP (x), (15)

where E is a finite-dimensional real linear space endowed with a norm ‖ · ‖, τ > 0, P : E →
(−∞,∞] is lower semicontinuous (lsc), convex, with domP = {x | P (x) < ∞} closed, and
f : E → (−∞,∞] is convex and smooth on domf , assumed open, and f(x) → ∞ whenever
x approaches a boundary point of domf [116]. A well-known special case of (15) is smooth
constrained convex optimization, for which P is the indicator function for a nonempty closed
convex set X ⊆ E , i.e.,

P (x) =

{

0 if x ∈ X ,
∞ else.

(16)

The class of problems (15) was studied in [6, 89] and by others; see [144] and references therein.
For example, (4) corresponds to

E = ℜn, ‖ · ‖ = ‖ · ‖2, f(x) = ‖Ax− b‖2
2, P (x) = ‖x‖1, (17)

(5) corresponds to

E = ℜn, ‖ · ‖ = ‖ · ‖2, f(x) = ‖Ax− b‖2
2, P (x) =

{

0 if x ∈ B
n
2

2 ,
∞ else,

(18)

(8) corresponds to

E = ℜp×n, ‖ · ‖ = ‖ · ‖F , f(x) = ‖Ax− b‖2
F , P (x) = ‖x‖nuc , (19)

and (10) corresponds to

E = Sn, ‖ · ‖ = ‖ · ‖F , f(x) = − log det(x) + 〈s, x〉, P (x) = ‖x‖1. (20)

In the case of 0 < λ < λ̄ < ∞, Lu [74] proposed a reformulation of (10) via Fenchel duality
[116, 117], corresponding to

f(x) = sup
λI�y�λ̄I

〈x, y〉 − log det(y), P (x) =

{

0 if ‖x− s‖∞ ≤ τ ,
∞ else,

(21)

where ‖x‖∞ = maxi,j |xij |. (Note that P in (21) depends on τ .) Importantly, for (17), (18),
(20), (21), P is block-separable, i.e.,

P (x) =
∑

J∈J

PJ(xJ), (22)

where J is some partition of the coordinate indices of x. Then (15) is amenable to solution by
(block) coordinatewise methods. Another special case of interest is variable selection in logistic
regression [88, 126, 157, 159], corresponding to

E = ℜn, ‖ · ‖ = ‖ · ‖2, f(x) =
m
∑

i=1

log
(

1 + eAix
)

− biAix, P (x) = ‖x‖1, (23)
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with Ai the ith row of A ∈ ℜm×n and bi ∈ {0, 1}; also see [55, 123, 124, 125] for variants. A
closely related problem is group variable selection (“group lasso”), which uses instead

P (x) =
∑

J∈J

ωJ‖xJ‖2, (24)

with ωJ ≥ 0, in (17) and (23) [88, 157]. The TV image reconstruction model in [147, Eq.
(1.3)] and the TV-L1 image deblurring model in [152, Eq. (1.5)] are special cases of (15) with f
quadratic and P of the form (24).

How accurate approximations are the convex relaxations (7), (8), (10), (12), (14), and other
related convex relaxations such as that for max-min dispersion, allowing for noisy data? What
are the iteration complexities and asymptotic convergence rates of first-order gradient methods
for solving these and related problems? First-order methods are attractive since they can exploit
sparse or partial separable structure of f and block-separable structure of P .

Throughout, ℜn denotes the space of n-dimensional real column vectors, Sn = {x ∈ ℜn×n |
x = xT }, and T denotes transpose. For any x ∈ ℜn and nonempty J ⊆ {1, ..., n}, xj denotes jth

coordinate of x, xJ denotes subvector of x comprising xj , j ∈ J , and ‖x‖ρ =
(

∑n
j=1 |xj |ρ

)1/ρ

for 0 < ρ <∞, and ‖x‖∞ = maxj |xj |. For any x ∈ ℜp×n, xij denotes the (i, j)th entry of x.

2 Approximation Accuracy of the Convex Relaxations

Let aj denote column j of A in (1), normalized so that ‖aj‖2 = 1, for all j. It is easily seen that
the relaxation (2) is exact (i.e., its solution also solves (1)) if a1, . . . , an are pairwise orthogonal.
This hints that (2) may remain exact if these columns are approximately orthogonal. Mallat
and Zhang [83] introduced the following measure of approximate orthogonality, called “mutual
coherence”, in their study of matching pursuit:

µ := max
1≤i6=j≤n

∣

∣

∣aT
i aj

∣

∣

∣ . (25)

There exist overcomplete sets with n ≈ m2 and µ ≈ 1/
√
m; see [129, pages 265-266] and

references therein. This µ is central to the analysis in [40, 41, 42, 56, 57, 59, 62, 83, 133, 134, 143].

In particular, (2) is exact whenever N0 < 1
2 (µ−1 + 1) = O(n

1
4 ), where N0 denotes the optimal

value of (1) [40, Theorem 7], [62, Theorem 1], [56], [133, Theorems A and B]. When b is noisy,
it can be shown that the solution xρ of the noise-aware model (3) is close to the solution x0 of
the original noiseless problem (1):

‖xρ − x0‖2
2 ≤ (δ + ρ)2

1 − µ(4N0 − 1)
(26)

whenever ρ ≥ δ := ‖b− b0‖2 and N0 < (1
2 −O(µ))µ−1 + 1; see [41, Theorem 3.1], [143, Theorem

1]. The bound (26) also extends to ρ < δ with some limitations [143, Theorem 1]. In addition to
convex relaxation, greedy methods can also be shown to recover or approximate x0 and identify
the support of x0 under similar conditions on N0, δ, and ρ; see [41, Theorem 5.1(a)], [133,
Theorems A and B], [143, Theorems 3 and 4].
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A different measure of approximate orthogonality, introduced by Candès and Tao [28], is the
“restricted isometry” constant µN , defined as the smallest scalar satisfying

(1 − µN )‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + µN )‖x‖2
2 ∀x with ♯(x) ≤ N. (27)

In fact, µ2 = µ.4 It is known that ‖xρ −x0‖2 = O(ρ) whenever ρ ≥ δ and µ3N0 + 3µ4N0 < 2 [27,
Theorem 1]; also see [27, Theorem 2] for a relaxation of the latter condition. For A randomly
generated from certain classes of distributions (e.g., Gaussian), this condition holds with high
probability (for N0 in the order of n to within log factors); see [26, 28, 39, 45, 111, 135] and
references therein for the noiseless case and [27, 38] for the noisy case. The approximation
bounds in [27, 38] for (3) require ρ ≥ δ, as well as n = O(m) in [38]. Is extension to ρ < δ
possible, as in [143, Theorem 1]?

Can the aforementioned exactness results and error bounds be extended to matrix rank
minimization (6) and its convex relaxations (7) and (8)? Recent progress has been made in the
noiseless case [25, 115]. The nuclear norm has a more complex structure than the 1-norm.

For the sensor network localization problem (11), its SDP relaxation (12) is exact if the
distances dij, (i, j) ∈ A, are exact (i.e., dij = d0

ij for all (i, j) ∈ A) and any relative-interior
solution (i.e., a point in the relative interior of the solution set) of (12) has rank d [127, Theorem
2]. However, this assumption is quite strong. What can we say in general? Remarkably, a kind
of partial exactness still holds. Biswas and Ye [20, Section 4] introduced the notion of individual
traces for a feasible solution x of (12), defined as

tri(x) := yii − ‖zi‖2, i = 1, . . . ,m,

or, equivalently, the diagonals of the Schur complement y − zT z. It can be shown that, for any
relative-interior solution x of (12), tri(x) = 0 implies zi is invariant over the solution set of (12)
and hence equals z0

i , the true position of sensor i, when distances are exact [141, Proposition
4.1]. An analogous result holds for the ESDP relaxation (14) [148, Theorem 2]. Thus, upon
finding a relative-interior solution x of (12) or (14), we know that every sensor i with tri(x) = 0
(within numerical accuracy) has zi as its true position. Is this result sharp? Yes, at least when
the distances are exact. In this case, the converse holds for the ESDP relaxation; see [113,
Theorem 1]. It is not known if the converse holds for the SDP relaxation. On the other hand,
an example in [113, Example 2] shows that, in the noisy case where the distances are inexact,
tri(x) = 0 is not a reliable indicator of sensor i position accuracy even when x is the unique
solution of the SDP/ESDP relaxation. The reason is that the solution set of the SDP/ESDP
relaxation can change abruptly under arbitrarily small data perturbation. This contrasts with a
second-order cone (SOCP) relaxation of the same problem, whose solution set changes gradually
with data perturbation [141, Section 7]. To overcome this difficulty, a noise-aware version of
the ESDP relaxation, analogous to (3) for compressed sensing, was proposed in [113, Section 5].
Specifically, for any ρ = (ρij)(i,j)∈A ≥ 0, let

Sρ

resdp
:=
{

x | x is feasible for (14) and |ℓij(x) − d2
ij | ≤ ρij ∀(i, j) ∈ A

}

. (28)

4Why? Since ‖aj‖2 = 1 for all j, (27) with N = 2 reduces to 1 − µ2 ≤ 1 + 2aT
i ajxixj ≤ 1 + µ2 for all i 6= j

and all xi, xj ∈ ℜ with x2
i + x2

j = 1. Since (xi, xj) 7→ 2xixj has minimum value of −1 and maximum value of 1
on the unit sphere, the smallest µ2 for which this holds is precisely µ given by (25).
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Then Sρ

resdp
contains the noiseless ESDP solutions whenever ρ ≥ δ := (|d2

ij − (d0
ij)

2|)(i,j)∈A.
Moreover, defining its “analytic center” as

x
ρ

:= arg min
x∈S

ρ

resdp

−
∑

(i,j)∈As

log det









yii yij zT
i

yij yjj zT
j

zi zj I







−
m
∑

i=1

log tri(x), (29)

it can be shown that, for ρ > δ sufficiently small, tri(x
ρ
) = 0 is a reliable indicator of sensor

i position accuracy; see [113, Theorem 4]. Moreover, for any ρ > δ, we have the following
computable bound on the individual sensor position accuracy:

‖zρ

i − z0
i ‖ ≤

√

2|As| +m · tri(x
ρ

)
1
2 ∀i.

Can these results be extended to the SDP relaxation (12) or SOS relaxations [66, 104] or to
handle additional constraints such as bounds on distances and angles-of-arrival?

Closely related to sensor network localization is the continuous max-min dispersion problem,
whereby, given existing points z0

m+1, . . . , z
0
n in ℜd (d ≥ 1), we wish to locate new points z1, . . . , zm

inside, say, a box [0, 1]d that are furthest from each other and existing points [33, 149]:

max
z1,...,zm∈[0,1]d

min

{

min
i<j≤m

ωij‖zi − zj‖2, min
i≤m<j

ωij‖zi − z0
j ‖2

}

, (30)

with ωij > 0. Replacing “max” by “sum” yields the max-avg dispersion problem [114, Section
4]. It can be shown (by reduction from 0/1-integer program feasibility) that (30) is NP-hard
if d is a part of the input, even when m = 1. How accurate approximations are their convex
(e.g., SDP, SOCP) relaxations? Another related problem arises in protein structure prediction,
whereby the distances between neighboring atoms and their bond angles are known, and we
wish to find positions of the atoms that minimize a certain energy function [119]. Although the
energy function is complicated and highly nonlinear, one can focus on the most nonlinear terms,
such as the Lennard-Jones interactions, in seeking approximate solutions.

3 Gradient Methods for Solving the Convex Relaxations

How to solve (15)? We will assume that ∇f is Lipschitz continuous on a closed convex set
X ⊇ domP , i.e.,

‖∇f(x) −∇f(y)‖∗ ≤ L‖x− y‖ ∀x, y ∈ X , (31)

for some L > 0, where E∗ is the vector space of continuous linear functionals on E , endowed
with the dual norm ‖x∗‖∗ = sup‖x‖≤1〈x∗, x〉 and 〈x∗, x〉 is the value of x∗ ∈ E∗ at x ∈ E . This
assumption, which is satisfied by (17), (18), (19), (21), (23), can be relaxed to hold for (20) as
well. Owing to its size and structure, (15) is suited for solution by first-order gradient methods,
whereby at each iteration f is approximated by a linear function plus a “simple” proximal term.
We describe such methods below. To simplify notation, we denote the linearization of f in F at
y ∈ X by

ℓF (x; y) := f(y) + 〈∇f(y), x− y〉 + τP (x) ∀x. (32)
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3.1 Proximal Gradient Methods

Choose a strictly convex function η : E → (−∞,∞] that is differentiable on an open set con-
taining X ,5 Then the function

D(x, y) := η(x) − η(y) − 〈∇η(y), x − y〉 ∀y ∈ X , ∀x ∈ E ,

is nonnegative and zero if and only if x = y, so D acts as a proximity measure. This function
was studied by Bregman [23] and many others; see [8, 10, 32, 46, 67, 130] and references therein.
By scaling η if necessary, we assume that

D(x, y) ≥ 1

2
‖x− y‖2 ∀ x, y ∈ X . (33)

The classical gradient projection method of Goldstein and Levitin, Polyak (see [15, 112])
naturally generalizes to solve (15) using the Bregman function D, with constant stepsize 1/L:

xk+1 = arg min
x

{

ℓF (x;xk) +
L

2
D(x, xk)

}

, k = 0, 1, . . . , (34)

where x0 ∈ domP . This method, which we call the proximal gradient (PG) method, is closely
related to the mirror descent method of Nemirovski and Yudin [93], as is discussed in [8, 11];
also see [89] for the case of η(·) = 1

2‖ · ‖2
2. When P is the 1-norm or has the block-separable form

(22), the new point xk+1 can be found in closed form, which is a key advantage of this method
for large-scale optimization; see [144, 151] and references therein. When P is given by (16) and
X is the unit simplex, xk+1 can be found in closed form in O(n) floating point operations (flops)
by taking η(x) to be the x log x-entropy function [11, Section 5], [98, Lemma 4]. Moreover, the
corresponding D satisfies (33) with ‖ · ‖ being the 1-norm [11, Proposition 5.1], [98, Lemma 3].
If η(·) = 1

2‖ · ‖2
2 is used instead, then xk+1 can still be found in O(n) flops, but this requires

using a more complicated algorithm; see [69] and references therein. It can be shown that

F (xk) − inf F ≤ O

(

L

k

)

∀k,

and hence O(L
ǫ ) iterations suffice to come within ǫ > 0 of inf F ; see, e.g., [13, Theorem 3.1], [97,

Theorem 2.1.14], [112, page 166], [146, Theorem 5.1].

In a series of work [94, 95, 98] (also see [112, page 171]), Nesterov proposed three methods
for solving the smooth constrained case (16) that, at each iteration, use either one or two pro-
jection steps together with extrapolation to accelerate convergence. These accelerated gradient
projection methods generate points {xk} that achieve

F (xk) − inf F ≤ O

(

L

k2

)

∀k,

so that O(
√

L
ǫ ) iterations suffice to come within ǫ > 0 of inf F . In [98], it is shown that various

large convex-concave optimization problems can be efficiently solved by applying these methods
to a smooth approximation with Lipschitz constant L = O(1/ǫ). These methods have inspired

5This assumption can be relaxed to η being differentiable on the interior of X only.
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various extensions and variants [8, Section 5], [13, 61, 71], [97, Section 2.2], [98, 101, 142], as
well as applications to compressed sensing, sparse covariance selection, matrix completion, etc.
[14, 5, 64, 74, 75, 82, 96, 132]. In particular, all three methods can be extended to solve (15) in a

unified way and achieve O(
√

L
ǫ ) iteration complexity; see [142] and discussion below. The work

per iteration is between O(n) and O(n3) flops for the applications of Section 1. In contrast,

the number of iterations for interior point methods is at best O(
√
n log

(

1
ǫ

)

) and the work per

iteration is typically between O(n3) and O(n4) ops. Thus, for moderate ǫ (say, ǫ = .001),
moderate L (which may depend on n), and large n (n ≥ 10000), a proximal gradient method
can outperform interior point methods.

The first accelerated proximal gradient (APG) method for solving (15) is the simplest, but
requires E to be a Hilbert space (i.e., E∗ = E , ‖ · ‖ =

√

〈·, ·〉) and η(·) = 1
2‖ · ‖2, so that

D(x, y) = 1
2‖x−y‖2. For any x0 = x−1 ∈ domP and θ0 = θ−1 = 1, it generates (for k = 0, 1, . . .)

yk = xk + θk(θ
−1
k−1 − 1)(xk − xk−1), (35)

xk+1 = arg min
x

{

ℓF (x; yk) +
L

2
‖x− yk‖2

}

, (36)

θk+1 =

√

θ4
k + 4θ2

k − θ2
k

2
. (37)

An inductive argument shows that θk ≤ 2
k+2 for all k. As k → ∞, we have θk

θk−1
=

√
1 − θk → 1,

so that, by (35), yk is asymptotically an isometric extrapolation from xk−1 to xk. In particular,
yk may lie outside of domP . However, since xk, xk−1 ∈ domP , it is readily seen that yk ∈
{2x − w | x,w ∈ domP} (since x + α(x − x−1) = 2x − w with w = (1 − α)x + αx−1). This
method was recently proposed by Beck and Teboulle [13] as an extension of Nesterov’s first
method [94]; also see [61] for refinements in the unconstrained case of P ≡ 0.

The second APG method imposes no requirement on E or D, and maintains yk ∈ domP , so
it is less restrictive than the first method. For any x0, z0 ∈ domP and θ0 = 1, it generates (for
k = 0, 1, . . .)

yk = (1 − θk)x
k + θkz

k, (38)

zk+1 = arg min
x

{

ℓF (x; yk) + θkLD(x, zk)
}

, (39)

xk+1 = (1 − θk)x
k + θkz

k+1, (40)

with θk+1 given by (37). Since 0 < θk ≤ 1, we have from xk, zk ∈ domP that yk ∈ domP . In the
smooth constrained case (16), this method corresponds to Auslender and Teboulle’s extension
[8, Section 5] of Nesterov’s second method [95]; also see [97, page 90]. A variant proposed by
Lan, Lu, and Monteiro [71, Section 3] replaces (40) by a PG step from yk.

The third APG method differs from the second method mainly in the computation of zk+1.
For any x0 ∈ domP and z0 = arg min

x∈domP
η(x), θ0 = 1, it generates (for k = 0, 1, . . .) yk by (38),

zk+1 = arg min
x

{

k
∑

i=0

ℓF (x; yi)

θi
+ Lη(x)

}

, (41)
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and xk+1, θk+1 by (40), (37). Thus, (41) replaces ℓF (x; yk)/θk in (39) by its cumulative sum and
replaces D(·, zk) by η(·). In the case of (16), this method is similar to Nesterov’s third method
[98] but with only one projection instead of two. In the case of E being a Hilbert space and
η(·) = 1

2‖ · ‖2, this method bears some resemblance to an accelerated dual gradient method in
[101, Section 4].

The preceding accelerated methods may look unintuitive, but they arise “naturally” from
refining the analysis of the PG method, as is discussed in Appendix A. Moreover, these methods
are equivalent (i.e., generate the same sequences) when P ≡ 0, E is a Hilbert space, and the
Bregman function D is quadratic (i.e., η(·) = 1

2‖ · ‖2). Some extensions of these methods,
including cutting planes, estimating L, are discussed in [142]. In particular, L can be estimated
using backtracking: increase L and repeat the iteration whenever a suitable sufficient descent
condition (e.g., (53) or (57)) is violated; see [13, 94, 142]. Below we summarize the iteration
complexity of the PG and APG methods.

Theorem 1 (a) Let {xk} be generated by the PG method (34). For any x ∈ domP , we have

F (xk) ≤ F (x) +
1

k
LD(x, x0) ∀k ≥ 1.

(b) Assume E is a Hilbert space, η(·) = 1
2‖ · ‖2, and X ⊇ {2x−w | x,w ∈ domP}. Let {xk} be

generated by the first APG method (35)–(37). For any x ∈ domP , we have

F (xk) ≤ F (x) + θ2
k−1LD(x, x0) ∀k ≥ 1.

(c) Let {xk} be generated by the second APG method (37)–(40). For any x ∈ domP , we have

F (xk) ≤ F (x) + θ2
k−1LD(x, z0) ∀k ≥ 1.

(d) Let {xk} be generated by the third APG method (37), (38), (40), (41). For any x ∈ domP ,
we have

F (xk) ≤ F (x) + θ2
k−1L(η(x) − η(z0)) ∀k ≥ 1.

A proof of Theorem 1(a)-(c) is given in Appendix A. A proof of part (d) can be found in [142,
Corollary 3(a)]. Taking any x satisfying F (x) ≤ inf F + ǫ

2 in Theorem 1 yields F (xk) ≤ inf F + ǫ

after k = O(L
ǫ ) iterations for the PG method and after k = O(

√

L
ǫ ) iterations for the APG

methods.

How can we terminate the PG and APG methods in practice with a guaranteed optimality
gap? The bounds in Theorem 1 requires estimating the distance to an ǫ

2 -minimizer of F and
are rather conservative. In the case where f has the form

f(x) = max
v∈V

φ(x, v),

for some saddle function φ and convex set V in a suitable space, duality gap can be used to
terminate the methods [92, 98, 99]. The dual problem is maxv Q(v), with dual function

Q(v) := min
x

{φ(x, v) + τP (x)}.

11



Then we compute (say, every 5 or 10 iterations) a candidate dual solution

vk = arg max
v

φ(xk, v),

and check that F (xk)−Q(vk) ≤ ǫ. In fact, assuming furthermore that domP is bounded, it can
be shown using an idea of Nesterov [98, Theorem 3] that

0 ≤ F (xk+1) −Q(v̄k) ≤ θ2
kL max

x∈domP
(η(x) − η(z0)) ∀k ≥ 0,

where xk+1, yk, θk are generated by the third APG method, and we let

vk = arg max
v

φ(yk, v), v̄k = (1 − θk)v̄
k−1 + θkv

k.

with v̄−1 = 0 [142, Corollary 3(c)]; also see [74, Theorem 2.2] and [99] for related results in
the constrained case (16). Analogous bounds hold for the first two APG methods; see [142,
Corollaries 1(b) and 2].

When applied to (4), the first APG method yields an accelerated version of the iterative
thresholding method of Daubechie et al. [13, 34]. What about the other two methods? How
efficiently can these methods be applied to solve (5), (7), (8), (10), (23), and related problems
such as those in [48, 123, 124, 125, 153]? When applied to (7) and (8), singular value decom-
position is needed at each iteration, and efficiency depends on the cost for this decomposition.
However, only the largest singular values and their associated singular vectors are needed [24].
Can these be efficiently computed or updated? Some progress on this have recently been made
[82, 132].

Can the iteration complexity be further improved? The proofs suggest that the convergence
rate can be improved to O( 1

kp ) (p > 2) if we can replace ‖ · ‖2 in the proofs by ‖ · ‖p; see
Appendix A. However, this may require using a higher-order approximation of f in ℓF (·; y), so
the improvement would not come “for free”.

3.2 Block-Coordinate Gradient Methods

When E is a Hilbert space and P is block-separable (22), we can apply (34) block-coordinatewise,
possibly with L and D dynamically adjusted, resulting in a block-coordinate gradient (BCG)
method. More precisely, given xk ∈ domP , we choose Jk as the union of some subcollection
of indices in J and choose a self-adjoint positive definite linear mapping Hk : E → E (ideally
Hk ≈ ∇2f(xk)), compute

dk = arg min
d

{

ℓF (xk + d;xk) +
1

2
〈Hkd, d〉 | dj = 0 ∀j 6∈ Jk

}

, (42)

and update
xk+1 = xk + αkd

k, (43)

with stepsize αk > 0 [144, 146]. This method may be viewed as a coordinate/SOR version of
a sequential quadratic programming (SQP) method, and it is related to the variable/gradient
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distribution methods for unconstrained smooth optimization [51, 58, 86, 120] and (block) coor-
dinate minimization methods [15, 84, 87, 105, 121, 136, 140]. In the case of Hkd = Ld and Jk

comprising all coordinate indices of x, (42)–(43) with αk = 1 reduces to the PG method (34)
with η(·) = 1

2‖ · ‖2.

How to choose αk and Jk? Various stepsize rules for smooth optimization [15, 52, 105] can be
adapted to this nonsmooth setting. One that works well in theory and practice is an Armijo-type
rule adapted from SQP methods:

αk = max
{

α ∈ {1, β, β2, . . .} | F (xk + αdk) ≤ F (xk) + ασ∆k

}

, (44)

where 0 < β, σ < 1 and ∆k is the difference between the optimal value of (42) and F (xk). This
rule requires only function evaluations, and ∆k predicts the descent from xk along dk. For global
convergence, the index subset Jk is chosen either in a Gauss-Seidel manner, i.e., Jk ∪ · · · ∪ Jk+K

covers all subsets of J for some constant K ≥ 0 [31, 88, 107, 140, 144] or Jk is chosen in a
Gauss-Southwell manner to satisfy

∆k ≤ ω∆
all

k ,

where 0 < ω < 1 and ∆
all

k denotes the analog of ∆k when Jk is replaced by the entire coordinate
index set [144, 145, 146]. Moreover, assuming (31) with X = domP , the BCG method using the
Gauss-Southwell choice of Jk finds an ǫ-minimizer of F in O(L

ǫ ) iterations [146, Theorem 5.1].

The above BCG method, which has been successful for compressed sensing and variable
selection in regression [88, 126, 159] and can be extended to handle linear constraints as in
support vector machine (SVM) training [145], may also be suited for solving (5), (10), (14),
(21), and related problems. When applied to (10) with Jk indexing a row/column of x, dk and
αk are computable in O(n2) flops using Schur complement and properties of determinant. This
method may be similarly applied to Lu’s reformulation (21). This contrasts with the block-
coordinate minimization method in [9] which uses O(n3) flops per iteration. This method can
also be applied to solve (29) by using a smooth convex penalty 1

2θ max{0, | · | − ρij}2 (θ > 0) for
each constraint in (28) of the form | · | ≤ ρij. By choosing each coordinate block to comprise
zi, yii, and (yij)j|(i,j)∈A, the computation distributes, with sensor i needing to communicate
only with its neighbors when updating its position – an important consideration for practical
implementation. The resulting method can accurately position up to 9000 sensors in little over a
minute; see [113, Section 7.3]. Can Nesterov’s extrapolation techniques of Section 3.1 be adapted
to the BCG method?

3.3 Incremental Gradient Methods

A problem that frequently arises in machine learning and neural network training has the form
(15) with

f(x) =
m
∑

i=1

fi(x), (45)

where each fi : E → (−∞,∞] is smooth, convex on an open subset of E containing domP . (The
convexity assumption can be relaxed depending on the context.) For example, fi(x) may be the
output error for an input-out system (e.g., a classifier), parameterized by x, on the ith training
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example. P given by (16) would confer constraints on x and P (·) = ‖ · ‖1 would induce a sparse
representation. m may be large. A popular approach to minimizing f of the form (45) is by an
incremental gradient method (“on-line back-propagation”):

xk+1 = xk − αk∇fik(xk), (46)

with ik chosen cyclically from {1, . . . ,m} and stepsize αk > 0 either constant or adjusted dy-
namically; see [15, 68, 77, 85, 91, 128, 137] and references therein. When some the ∇fi’s are
“similar”, this incremental method is more efficient than (pure) gradient method since it does
not wait for all component gradients ∇f1, ...,∇fm to be evaluated before updating x. However,
global convergence (i.e., ∇f(xk) → 0) generally requires αk → 0, which slows convergence. Re-
cently, Blatt, Hero and Gauchman [22] proposed an aggregate version of (46) that approximates
∇f(xk) by

gk =
k
∑

ℓ=k−m+1

∇fiℓ(x
ℓ).

This method achieves global convergence for any sufficiently small constant stepsize αk, but
requires O(mn) storage. We can reduce the storage to O(n) by updating a cumulative average
of the component gradients:

gk
sum

= gk−1
sum

+ ∇fik(x
k), gk =

m

k
gk

sum
,

with g−1
sum

= 0. We then use gk in the PG, APG, or BCG method. The resulting incremental
methods share features with recently proposed averaging gradient methods [65, 102]. What are
their convergence properties, iteration complexities, and practical performances?

4 Error Bound and Linear Convergence of Gradient Methods

Analogous to superlinear convergence for second-order methods, linear convergence is a good in-
dicator of efficiency for first-order methods. Key to a linear convergence analysis is the following
Lipschizian error bound on dist(x, X̄ ) := min

s∈X̄
‖x− s‖ in terms of the norm of the residual

R(x) := arg min
d

{

ℓF (x+ d;x) +
1

2
‖d‖2

}

, (47)

where X̄ denotes the set of minimizers of F , which we assume to be nonempty.

EB condition: For any ζ ≥ minF , there exist scalars κ > 0 and ǫ > 0 such that

dist(x, X̄ ) ≤ κ‖R(x)‖ whenever F (x) ≤ ζ, ‖R(x)‖ ≤ ǫ. (48)

Under the EB condition, asymptotic linear and even superlinear convergence can be estab-
lished for various methods, including interior point, gradient projection, proximal minimiza-
tion, coordinate minimization, and coordinate gradient methods – even if X̄ is unbounded; see
[12, 49, 80, 81, 139, 144, 145, 146] and references therein. Moreover, the EB condition holds
under any of the following conditions; see [144, Theorem 4] as well as [109, Theorem 3.1], [79,
Theorem 2.1] for the constrained case (16).
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C1. E = ℜn, f(x) = h(Ax) + 〈c, x〉 for all x ∈ ℜn, where A ∈ ℜm×n, c ∈ ℜn, and h is a
strongly convex differentiable function on ℜm with ∇h Lipschitz continuous on ℜm. P is
polyhedral.

C2. E = ℜn, f(x) = maxy∈Y {〈y,Ax〉 − h(y)} + 〈c, x〉 for all x ∈ ℜn, where Y is a polyhedral
set in ℜm, A ∈ ℜm×n, c ∈ ℜn, and h is a strongly convex differentiable function on ℜm

with ∇h Lipschitz continuous on ℜm. P is polyhedral.

C3. f is strongly convex and satisfies (31) for some L > 0.

What if f is not strongly convex and P is non-polyhedral? In particular, we are interested in
the group lasso for linear and logistic regression (see (17), (23), (24)), for which f is not strongly
convex (unless A has full column rank) and P is non-polyhedral (unless J is a singleton for all
J ∈ J ). The following new result shows that the error bound (48) holds for the group lasso.
The proof, given in Appendix B, exploits the structure of the weighted sum of 2-norms (24). To
our knowledge, this is the first Lipschitzian error bound result for f not strongly convex and P
non-polyhedral.

Theorem 2 Suppose that E = ℜn, P has the form (24) with ωJ > 0 for all J ∈ J , and f has
the form

f(x) = h(Ax), (49)

where A ∈ ℜm×n, and h : ℜm → (−∞,∞] is differentiable on domh, which is assumed to be
convex and open. Also suppose that (a) h is strongly convex and ∇h is Lipschitz continuous on
any compact convex subset of domh, and (b) h(y) → ∞ whenever y approaches a boundary point
of domh. If X̄ 6= ∅, then

{x | F (x) ≤ ζ} is bounded ∀ζ ∈ ℜ, (50)

and the EB condition (48) holds.

The assumptions on h in Theorem 2 are satisfied by

h(y) =
1

2
‖y − b‖2,

corresponding to linear regression, and

h(y) =
m
∑

i=1

log(1 + eyi) − 〈b, y〉 with b ∈ {0, 1}m,

corresponding to logistic regression (23). The assumptions are also satisfied by

h(y) = −
m
∑

i=1

log(yi) + 〈b, y〉 with b ≥ 0,

which arises in likelihood estimation under Poisson noise [123]. In the first two examples, h is
bounded from below by zero. In the third example, h is unbounded from below but tends to
−∞ sublinearly. Since P given by (24) is homogeneous of degree 1, it is readily seen that X̄ 6= ∅
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for all three examples. (An example of X̄ = ∅ is minx e
x + 2x+ |x|.) However, X̄ need not be a

singleton. An example is

min
x

1

2
|x1 + x2 − 2|2 + |x1| + |x2|,

for which X̄ = {(1 − t, t) | t ∈ [0, 1]}. Can Theorem 2 be extended to f satisfying C2 and P
given by (24) or to (18) or (19)? Can the constant κ in (48), which determines the convergence
ratio, be estimated for compressed sensing (17) in terms of the restricted isometry constant µN?

Corollary 1 Under the assumptions of Theorem 2, let {(xk,Hk, Jk, αk)} be generated by the
BCG method (42)–(43) with (i) λI � Hk � λ̄I for all k (0 < λ ≤ λ̄), (ii) {Jk} cycling through
J ∈ J , and (iii) {αk} chosen by the Armijo rule (44). If X̄ 6= ∅, then {F (xk)}k∈T converges at
least Q-linearly and {xk}k∈T converges at least R-linearly, where T = {0,K, 2K, . . .} and K is
the cardinality of J .

Proof. Theorem 2 shows that [144, Assumption 2(a)] is satisfied. By [144, Theorem 1(a)],
{F (xk)} ↓, so, by (50), {xk} is bounded. Since F is convex, [144, Assumption 2(b)] is auto-
matically satisfied. Also, {xk} is lies in a compact convex subset of domf , over which ∇f is
Lipschitz continuous (since ∇h is Lipschitz continuous over the the image of this subset un-
der A). Conditions (i)–(iii) imply that the remaining assumptions in [144, Theorem 2(b)] are
satisfied. In particular, the restricted Gauss-Seidel rule in [144] holds with the given T . Since
{xk} is bounded, [144, Theorem 2(b)] implies that {F (xk)}k∈T converges at least Q-linearly and
{xk}k∈T converges at least R-linearly [107].

By Corollary 1, the method in [157], [88, Section 2.2.1] for linear group lasso (corresponding
to Hk = ATA) and the method in [88, Section 2.2.2] for logistic group lasso (corresponding to
Hk = νkI with νk > 0) attain linear convergence. Linear convergence of the block-coordinate
minimization methods used in [147] for TV-regularized image reconstruction, with f(w, u) =
1
2‖w−Bu‖2

2+
γ
2‖Au−b‖2

2, P (w, u) =
∑

J ‖wJ‖2, and in [152] for TV-regularized image deblurring,
with f(w, u, z) = 1

2‖w − Bu‖2
2 + γ

2 ‖Au − b − z‖2
2, P (w, u, z) =

∑

J ωJ‖wJ‖2 + ‖z‖1, can be
analyzed similarly using a generalization of Theorem 2 to allow ωJ = 0 for some J . Can the
linear convergence analysis be extended to the APG methods or their variants?

5 Appendix A: Analyzing the PG and APG Methods

Since f is convex and (31) holds with X ⊇ domP , we have from (32) that

F (x) ≥ ℓF (x; y) ≥ F (x) − L

2
‖x− y‖2 ∀x ∈ domP, y ∈ X . (51)

The following “3-point” property is also key; see [32, Lemma 3.2], [71, Lemma 6], [142, Section
2].

3-Point Property: For any proper lsc convex function ψ : E → (−∞,∞] and any z ∈ X , if η
is differentiable at z+ = arg minx {ψ(x) +D(x, z)}, then

ψ(x) +D(x, z) ≥ ψ(z+) +D(z+, z) +D(x, z+) ∀x ∈ domP.
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The APG methods can be motivated by analyzing the PG method (34). Let {xk} be gener-
ated by the PG method. For any x ∈ domP and any k ∈ {0, 1, . . .}, we have

F (xk+1) ≤ ℓF (xk+1;xk) +
L

2
‖xk+1 − xk‖2

≤ ℓF (xk+1;xk) + LD(xk+1, xk)

≤ ℓF (x;xk) + LD(x, xk) − LD(x, xk+1)

≤ F (x) + LD(x, xk) − LD(x, xk+1) ∀x ∈ domP, (52)

where the first and fourth inequalities use (51), the second inequality uses (33), and the third
inequality uses (34) and the 3-Point Property with ψ(x) = ℓF (x;xk)/L. Letting ek = F (xk) −
F (x) and ∆k = LD(x, xk), this simplifies to the recursion

ek+1 ≤ ∆k − ∆k+1 ∀k ≥ 0.

It follows from ek+1 ≤ ek that (k + 1)ek+1 ≤ ∆0 − ∆k+1 ≤ ∆0, which proves Theorem 1(a).

The above proof suggests that, for faster convergence, we should find a similar recursion as
(52) but with L scaled by something tending to zero with k. To do this, we need to modify (34).
Suppose for simplicity E is a Hilbert space and η(·) = 1

2‖ · ‖2 (so that D(x, y) = 1
2‖x − y‖2).

One such modification is to replace xk in (34) by some yk ∈ X to be determined, yielding (36).
Then, as in the above proof for the PG method, we have

F (xk+1) ≤ ℓF (xk+1; yk) +
L

2
‖xk+1 − yk‖2 (53)

≤ ℓF (y;xk) +
L

2
‖y − yk‖2 − L

2
‖y − xk+1‖2

≤ F (y) +
L

2
‖y − yk‖2 − L

2
‖y − xk+1‖2 ∀y ∈ domP, (54)

where the first and third inequalities use (51), and the second inequality uses (36) and the 3-
Point Property. To get L to be scaled by something tending to zero, set y = (1− θk)x

k + θkx in
the above inequality, with x ∈ domP arbitrary and 0 < θk ≤ 1 to be determined. We can then
factor θk out of x to scale L, yielding

F (xk+1)

≤ F ((1 − θk)x
k + θkx) +

L

2
‖(1 − θk)x

k + θkx− yk‖2 − L

2
‖(1 − θk)x

k + θkx− xk+1‖2

= F ((1 − θk)x
k + θkx) +

L

2
θ2
k‖x+ (θ−1

k − 1)xk − θ−1
k yk‖2 − L

2
θ2
k‖x+ (θ−1

k − 1)xk − θ−1
k xk+1‖2,

where we have rearranged the terms to look like the recursion (52). We want the two terms
inside ‖ ‖2 to have the form “x− zk” and “x− zk+1”, which we get by setting

zk = −(θ−1
k − 1)xk + θ−1

k yk

and yk by (35). Using also the convexity of F , we then obtain that

F (xk+1) ≤ (1 − θk)F (xk) + θkF (x) + θ2
k

L

2
‖x− zk‖2 − θ2

k

L

2
‖x− zk+1‖2 ∀k. (55)
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Letting ek = F (xk) − F (x) and ∆k = L
2 ‖x− zk‖2, this simplifies to

ek+1 ≤ (1 − θk)ek + θ2
k∆k − θ2

k∆k+1.

Upon dividing both sides by θ2
k, we see that, by choosing θk+1 so that 1

θ2
k

=
1−θk+1

θ2
k+1

(which, upon

solving for θk+1, yields (37)), this rewrites as the recursion

1 − θk+1

θ2
k+1

ek+1 + ∆k+1 ≤ 1 − θk

θ2
k

ek + ∆k,

which propagates backwards to yield

1 − θk+1

θ2
k+1

ek+1 + ∆k+1 ≤ 1 − θ0
θ2
0

e0 + ∆0 ∀k.

Since
1−θk+1

θ2
k+1

= 1
θ2
k

, setting θ0 = 1 simplifies this to
1

θ2
k

ek+1 ≤ ∆0 − ∆k+1 ≤ ∆0. Also, we have

from (35) and taking θ−1 = 1 that z0 = y0 = x0. This proves Theorem 1(b).

The preceding proof depends crucially on rearranging terms inside ‖ ‖2, so it cannot be
directly extended to other Bregman functions D. However, (55) suggests we seek a recursion of
the form

F (xk+1) ≤ (1 − θk)F (xk) + θkF (x) + θ2
kLD(x, zk) − θ2

kLD(x, zk+1) ∀k, (56)

which, as our derivation of (52) and (55) suggests, can be achieved by setting zk+1 by (39) and
using the 3-Point Property, setting xk+1 by (40) (analogous to our setting of y in (54)), and
then choosing yk so that xk+1 − yk = θk(z

k+1 − zk) (which works out to be (38)). Specifically,
for any k ∈ {0, 1, . . .}, we have

F (xk+1) ≤ ℓF (xk+1; yk) +
L

2
‖xk+1 − yk‖2

= ℓF ((1 − θk)x
k + θkz

k+1; yk) +
Lθ2

k

2
‖zk+1 − zk‖2

≤ (1 − θk)ℓF (xk; yk) + θkℓF (zk+1; yk) + θ2
kLD(zk+1, zk) (57)

≤ (1 − θk)ℓF (xk; yk) + θk

(

ℓF (x; yk) + θkLD(x, zk) − θkLD(x, zk+1)
)

∀x ∈ domh,

where the first inequality uses (51), the second inequality uses the convexity of ℓF (·; yk) and
(33), the last inequality uses the 3-Point Property with ψ(x) = ℓF (x; yk)/(θkL). Using (51)
yields (56), from which Theorem 1(c) follows.

The third APG method (see (41)) can be derived and analyzed similarly using an analog of
the 3-Point Property for η; see [142, Property 2]. For brevity we omit the details.

6 Appendix B: A Proof of Theorem 2

Througout we assume that the assumptions of Theorem 2 are satisfied. By scaling f by 1/τ , we
will assume without loss of generality that τ = 1.
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Lemma 1 For any x ∈ ℜn, letting g = ∇f(x), we have for all J ∈ J that

R(x)J =

{−xJ if ‖gJ − xJ‖2 ≤ ωJ ,

−
(

1 − ωJ

‖gJ−xJ‖2

)

gJ −
(

ωJ

‖gJ−xJ‖2

)

xJ if ‖gJ − xJ‖2 ≥ ωJ .
(58)

Moreover, R is continuous on domf .

Proof. Let r = R(x). Then (24), (32), (47), and τ = 1 yield

r = arg min
d







〈g, d〉 +
1

2
‖d‖2 +

∑

J∈J

ωJ‖xJ‖2







,

whose necessary and sufficient optimality condition is

0 ∈ gJ + rJ + ωJ∂‖xJ + rJ‖2 ∀J ∈ J .

Fix any J ∈ J . Since ∂‖0‖2 is the unit 2-norm ball and ∂‖xJ‖2 = {xJ/‖xJ‖2} if xJ 6= 0, we
have that rJ = −xJ if ‖gJ − xJ‖2 ≤ ωJ and otherwise

gJ + rJ + ωJ
xJ + rJ

‖xJ + rJ‖2
= 0. (59)

Letting α = ‖xJ + rJ‖2, we solve for rJ to obtain

rJ = −αgJ + ωJxJ

α+ ωJ
.

Hence xJ + rJ = α
α+ωJ

(xJ − gJ) so that

α = ‖xJ + rJ‖2 =
α

α+ ωJ
‖xJ − gJ‖2.

Solving for α yields α = ‖xJ − gJ‖2 − ωJ , which when plugged into the above formula for rJ
yields (58).

The continuity of R follows from the continuity of ∇f and the continuity of the right-
hand side of (58) in g. In particular, the two formulas in (58) yield −xJ at the boundary
‖gJ − xJ‖2 = ωJ .

Since h is strictly convex, x 7→ Ax is invariant over X̄ , i.e., there exists ȳ ∈ domh such that

Ax = ȳ ∀x ∈ X̄ . (60)

Since P is given by (24), it follows from (49) and (60) that

X̄ =







x |
∑

J∈J

ωJ‖xJ‖2 = minF − h(ȳ), Ax = ȳ







,

so that X̄ is bounded (since ωJ > 0 for all J ∈ J ), as well as being closed convex. Since F is
convex and X̄ is bounded, it follows from [116, Theorem 8.7] that (50) holds. By using these
observations and Lemma 1, we prove below the EB condition (48).
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We argue by contradiction. Suppose there exists a ζ ≥ minF such that (48) fails to hold for
all κ > 0 and ǫ > 0. Then there exists a sequence x1, x2, . . . in ℜn \ X̄ satisfying

F (xk) ≤ ζ ∀k, {rk} → 0,

{

rk

δk

}

→ 0, (61)

where for simplicity we let rk := R(xk), δk := ‖xk − x̄k‖2, and x̄k := arg mins∈X̄ ‖xk − s‖2. Let

gk := ∇f(xk) = AT∇h(Axk), ḡ := AT∇h(ȳ). (62)

By (60) and (62), Ax̄k = ȳ and ∇f(x̄k) = ḡ for all k.

By (50) and (61), {xk} is bounded. By further passing to a subsequence if necessary, we can
assume that {xk} → some x̄. Since {R(xk)} = {rk} → 0 and R is continuous by Lemma 1, this
implies R(x̄) = 0, so x̄ ∈ X̄ . Hence δk ≤ ‖xk − x̄‖2 → 0 as k → ∞ so that {x̄k} → x̄. Also, by
(60) and (62), {gk} → ∇f(x̄) = ḡ. Since P (xk) ≥ 0, (49) implies h(Axk) = F (xk) − P (xk) ≤
F (xk) ≤ ζ for all k. Since {Axk} is bounded and h(y) → ∞ whenever y approaches a boundary
point of domh, this implies that {Axk} and ȳ lie in some compact convex subset Y of the open
convex set domh. By our assumption on h, h is strongly convex and ∇h is Lipschitz continuous
on Y , so, in particular,

σ‖y − ȳ‖2
2 ≤ 〈∇h(y) −∇h(ȳ), y − ȳ〉 and ‖∇h(y) −∇h(ȳ)‖2 ≤ L‖y − ȳ‖2 ∀y ∈ Y, (63)

for some 0 < σ ≤ L.

We claim that there exists κ > 0 such that

‖xk − x̄k‖2 ≤ κ‖Axk − ȳ‖2 ∀k, (64)

We argue this by contradiction. Suppose this is false. Then, by passing to a subsequence if
necessary, we can assume that

{

‖Axk − ȳ‖2

‖xk − x̄k‖2

}

→ 0.

Since ȳ = Ax̄k, this is equivalent to {Auk} → 0, where we let

uk :=
xk − x̄k

δk
∀k. (65)

Then ‖uk‖2 = 1 for all k. By further passing to a subsequence if necessary, we will assume that
{uk} → some ū. Then Aū = 0 and ‖ū‖2 = 1. Moreover,

Axk = A(x̄k + δku
k) = ȳ + δkAu

k = ȳ + o(δk).

Since Axk and ȳ are in Y , the Lipschitz continuity of ∇h on Y (see (63)) and (62) yield

gk = ḡ + o(δk). (66)

By further passing to a subsequence if necessary, we can assume that, for each J ∈ J , either (a)
‖gk

J − xk
J‖2 ≤ ωJ for all k or (b) ‖gk

J − xk
J‖2 > ωJ and x̄k

J 6= 0 for all k or (c) ‖gk
J − xk

J‖2 > ωJ

and x̄k
J = 0 for all k.
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Case (a). In this case, Lemma 1 implies that rk
J = −xk

J for all k. Since {rk} → 0 and {xk} → x̄,
this implies x̄J = 0. Also, by (65) and (61),

uk
J =

−rk
J − x̄k

J

δk
=
o(δk) − x̄k

J

δk
. (67)

Thus ūJ = − limk→∞ x̄k
J/δk. Suppose ūJ 6= 0. Then x̄k

J 6= 0 for all k sufficiently large, so
x̄k ∈ X̄ and the optimality condition for (15) with τ = 1, (24), and ∇f(x̄k) = ḡ imply

ḡJ + ωJ
x̄k

J

‖x̄k
J‖2

= 0, (68)

so ūJ is a positive multiple of ḡJ .

Case (b). Since x̄k ∈ X̄ and x̄k
J 6= 0, the optimality condition for (15) with τ = 1, (24), and

∇f(x̄k) = ḡ imply (68) holds for all k. Then Lemma 1 implies

−rk
J =

(

1 − ωJ

‖gk
J − xk

J‖2

)

gk
J +

ωJx
k
J

‖gk
J − xk

J‖2

=

(

1 − ωJ

‖gk
J − xk

J‖2

)

(ḡJ + o(δk)) +
ωJ(x̄k

J + δku
k
J)

‖gk
J − xk

J‖2

= ḡJ +
ωJ(x̄k

J − ḡJ)

‖gk
J − xk

J‖2
+ o(δk) +

ωJδku
k
J

‖gk
J − xk

J‖2

=

(

ωJ

‖ḡJ − x̄k
J‖2

− ωJ

‖gk
J − xk

J‖2

)

(ḡJ − x̄k
J) + o(δk) +

ωJδku
k
J

‖gk
J − xk

J‖2

=

(

ωJ

‖ḡJ − x̄k
J‖2

− ωJ

‖ḡJ − x̄k
J − δku

k
J + o(δk)‖2

)

(ḡJ − x̄k
J)

+ o(δk) +
ωJδku

k
J

‖ḡJ − x̄k
J − δku

k
J + o(δk)‖2

=
ωJ〈ḡJ − x̄k

J ,−δkuk
J〉

‖ḡJ − x̄k
J‖3

2

(ḡJ − x̄k
J) + o(δk) +

ωJδku
k
J

‖ḡJ − x̄k
J‖2

=
ωJδk

‖ḡJ − x̄k
J‖2

(

〈ḡJ ,−uk
J〉

ω2
J

ḡJ + uk
J

)

+ o(δk),

where the second and fifth equalities use (65) and (66); the fourth and last equalities use

(68) so that ḡJ = ωJ
ḡJ−x̄k

J

‖ḡJ−x̄k
J
‖2

; the sixth equality uses ∇x‖x‖−1
2 = − x

‖x‖3
2

. Multiplying both

sides by ‖ḡJ − x̄k
J‖2/(ωJδk) and using (61) and ‖ḡJ‖2 = ωJ (by (68)) yields in the limit

0 = −〈ḡJ , ūJ〉
‖ḡJ‖2

2

ḡJ + ūJ . (69)

Thus ūJ is a nonzero multiple of ḡJ .

Case (c). In this case, it follows from {x̄k} → x̄ that x̄J = 0. Since ‖gk
J − xk

J‖2 > ωJ for all k,
this implies ‖ḡJ‖2 ≥ ωJ . Since x̄ ∈ X̄ , the optimality condition 0 ∈ ḡJ + ωJ∂‖0‖2 implies
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‖ḡJ‖2 ≤ ωJ . Hence ‖ḡJ‖2 = ωJ . Then Lemma 1 implies

−rk
J =

(

ωJ

‖ḡJ‖2
− ωJ

‖gk
J − xk

J‖2

)

gk
J +

ωJx
k
J

‖gk
J − xk

J‖2

=
ωJ〈ḡJ , g

k
J − xk

J − ḡJ〉
‖ḡJ‖3

2

gk
J + o(‖gk

J − xk
J − ḡJ‖2) +

ωJx
k
J

‖gk
J − xk

J‖2

= −ωJ〈ḡJ , x
k
J〉

‖ḡJ‖3
2

gk
J + o(δk) +

ωJx
k
J

‖gk
J − xk

J‖2
,

where the second equality uses ∇x‖x‖−1
2 = − x

‖x‖3
2

, and the third equality uses (66) and

x̄k
J = 0. Since x̄k

J = 0 for all k, (65) implies {xk
J/δk} = {uk

J} → ūJ . Thus, dividing both
sides by δk and using (61), {xk

J} → 0, and ‖ḡJ‖2 = ωJ yield in the limit (69). Since
‖gk

J − xk
J‖2 > ωJ for all k, (59) implies

gk
J + rk

J + ωJ
xk

J + rk
J

‖xk
J + rk

J‖2
= 0 ∀k.

Suppose ūJ 6= 0. Then uk
J = xk

J/δk 6= 0 for all k sufficiently large, so that

〈gk
J , u

k
J〉 =

〈gk
J , x

k
J 〉

δk
= −〈rk

J , x
k
J 〉

δk
−ωJ

‖xk
J‖2

2 + 〈rk
J , x

k
J〉

δk‖xk
J + rk

J‖2
= −〈rk

J , x
k
J〉

δk
−ωJ

‖uk
J‖2 + 〈 rk

J

δk
,

xk
J

‖xk
J
‖2
〉

∥

∥

∥

∥

xk
J

‖xk
J
‖2

+
rk
J

‖xk
J
‖2

∥

∥

∥

∥

2

.

Then (61) and {‖xk
J‖2/δk} → ‖ūJ‖ > 0 yield in the limit that 〈ḡJ , ūJ〉 = −ωJ‖ūJ‖2 < 0.

This together with (69) implies ūJ is a negative multiple of ḡJ .

Since {(xk − x̄k)/δk} = {uk} → ū 6= 0, we have 〈xk − x̄k, ū〉 > 0 for all k sufficiently large.
Fix any such k and let

x̂ := x̄k + ǫū

with ǫ > 0. Since Aū = 0, we have ∇f(x̂) = ∇f(x̄k) = ḡ. We show below that, for ǫ > 0
sufficiently small, x̂ satisfies

0 ∈ ḡJ + ωJ∂‖x̂J‖2 (70)

for all J ∈ J , and hence x̂ ∈ X̄ . Then 〈xk − x̄k, ū〉 > 0 and ‖ū‖2 = 1 yield

‖xk − x̂‖2
2 = ‖xk − x̄k − ǫū‖2

2 = ‖xk − x̄k‖2
2 − 2ǫ〈xk − x̄k, ū〉 + ǫ2 < ‖xk − x̄k‖2

2

for all ǫ > 0 sufficiently small, which contradicts x̄k being the point in X̄ nearest to xk and
thus proves (64). For each J ∈ J , if ūJ = 0, then x̂J = x̄k

J and (70) holds automatically (since
x̄k ∈ X̄ ). Suppose that ūJ 6= 0. We prove (70) below by considering the three aforementioned
cases (a), (b), and (c).

Case (a). Since ūJ 6= 0, we have that ūJ is a positive multiple of ḡJ . Also, by (68), x̄k
J is a

negative multiple of ḡJ . Hence x̂J is a negative multiple of ḡJ for all ǫ > 0 sufficiently
small, so, by (68), it satisfies

ḡJ + ωJ
x̂J

‖x̂J‖2
= 0. (71)
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Case (b). Since (68) holds, x̄k
J is a negative multiple of ḡJ . Also, ūJ is a nonzero multiple of

ḡJ . A similar argument as in case (a) shows that x̂J satisfies (71) for all ǫ > 0 sufficiently
small.

Case (c). We have x̄k
J = 0 and ūJ is a negative multiple of ḡJ . Hence x̂J is a negative multiple

of ḡJ for all ǫ > 0, so it satisfies (71).

The remaining argument is similar to the proof of [144, Theorem 4], but using (64) and the
strong convexity of h in place of the strong convexity of f . For each k, since rk is a solution of
the subproblem (47), by Fermat’s rule [118, Theorem 10.1],

rk ∈ arg min
d

〈gk + rk, d〉 + P (xk + d).

Hence
〈gk + rk, rk〉 + P (xk + rk) ≤ 〈gk + rk, x̄k − xk〉 + P (x̄k).

Since x̄k ∈ X̄ and ∇f(x̄k) = ḡ, we have similarly that

P (x̄k) ≤ 〈ḡ, xk + rk − x̄k〉 + P (xk + rk).

Adding the above two inequalities and simplifying yield

〈gk − ḡ, xk − x̄k〉 + ‖rk‖2
2 ≤ 〈ḡ − gk, rk〉 + 〈rk, x̄k − xk〉.

Since Axk and Ax̄k = ȳ are in Y , we also have from (62), (63), and (64) that

〈gk − ḡ, xk − x̄k〉 = 〈∇h(Axk) −∇h(ȳ), Axk − ȳ〉 ≥ σ‖Axk − ȳ‖2
2 ≥ σ

κ2
‖xk − x̄k‖2

2.

Combining these two inequalities and using (63) yield

σ

κ2
‖xk − x̄k‖2

2 + ‖rk‖2
2 ≤ 〈∇h(ȳ) −∇h(Axk), Ark〉 + 〈rk, x̄k − xk〉

≤ L‖A‖2
2‖xk − x̄k‖2‖rk‖2 + ‖xk − x̄k‖2‖rk‖2,

where ‖A‖2 := max
‖d‖2=1

‖Ad‖2. Thus

σ

κ2
‖xk − x̄k‖2

2 ≤ (L‖A‖2
2 + 1)‖xk − x̄k‖2‖rk‖2 ∀k.

Dividing both sides by ‖x− x̄k‖2 yields a contradiction to (61).

The key to the above proof is the bound (64). An analogous bound was used in the proof
of [78, Lemma 2.6(b)] for the case of (16) with X polyhedral and f satisfying C1. The above
proof is more complex due to P being non-polyhedral.
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[54] Friedman, J., Hastie, T., Höfling, H., and Tibshirani, R., Pathwise coordinate optimiza-
tion, Ann. Appl. Stat. 1 (2007), 302-332.

[55] Friedman, J., Hastie, T., and Tibshirani, Regularization paths for generalized linear
models via coordinate descent, Report, Department of Statistics, Stanford University,
Stanford, July 2008.

[56] Fuchs, J.-J., On sparse representations in arbitrary redundant bases, IEEE Trans. Inf.
Theory 50 (2004), 1341-1344.

[57] Fuchs, J.-J., Recovery of exact sparse representations in the presence of bounded noise,
IEEE Trans. Inf. Theory, 51 (2005), 3601-3608.

[58] Fukushima, M., Parallel variable transformation in unconstrained optimization, SIAM
J. Optim. 8 (1998), 658-672.

[59] Gilbert, A. C., Muthukrishnan, S., and Strauss, M. J., Approximation of functions over
redundant dictionaries using coherence, Proc. 14th Annual ACM-SIAM Symposium on
Discrete Algorithms, ACM, New York, 2003, 243-252.

[60] Goldfarb, D. and Yin, W., Second-order cone programming methods for total variation
based image restoration, SIAM J. Sci. Comput. 27 (2005), 622-645.

27



[61] Gonzaga, C. C. and Karas, E. W., Optimal steepest descent algorithms for uncon-
strained convex problems: fine tuning Nesterov’s method, Report, Department of Math-
ematics, Federal University of Santa Catarina, Florianópolis, August 2008.
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