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1 Introduction

In the past two decades, nonsmooth functions have emerged to play important roles in op-
timization [10, 15, 21, 42]. These functions, particularly those defined on finite-dimensional
spaces, tend to be close to being smooth (i.e., continuously differentiable) in the sense
that they are continuous everywhere and smooth almost everywhere. A well-known class
of functions of this type are the piecewise smooth (PS) functions, which are locally
representable as a selection from a finite collection of smooth functions; see Definition 1.
These functions and their applications have been well studied [1, 21, 22, 23, 28, 39, 43].
Examples include the 1-norm function and the co-norm function and, more generally, piece-
wise linear functions composed with smooth functions. The PS functions have the nice
properties that they are locally Lipschitzian (i.e., strictly continuous [10, 42]), and
semismooth [25]. These properties ensure that these functions have generalized Jacobians
[10] and B-subdifferentials [31]. Moreover, nonsmooth equations involving these functions
can be efficiently solved by nonsmooth Newton methods [36]. Recently, there emerged many
interesting nonsmooth functions that have similarly nice properties. These include the p-
norm function on R" with 1 < p < oo and n > 2, the Fischer-Burmeister function [16] and
other nonlinear complementarity (NCP) functions [15, 20, 24, 32, 45], smoothing/penalty
functions [5, 6, 7, 8, 15, 35|, and integral functions involving splines and projection onto
the nonnegative reals [12, 13, 18, 34]. Are these functions PS also? If yes, then they can
be treated within a well studied unifying framework. If not, then can they be treated
systematically within some new framework?

By using an observation of Pang and Ralph [28] that the B-subdifferential of a PS
function at a point has only finitely many distinct elements, Dontchev, Qi, and Qi [13]
showed that the aforementioned integral functions are not PS due to their B-subdifferentials
at the origin having infinitely many elements. This proof is specialized and does not appear
to extend to other functions. This motivated a conjecture by the first author that a function
defined on R™ with n > 2 is not PS if it is smooth everywhere except at one point. This
conjecture was recently proved by Rockafellar [41], showing that the nonsmooth point set
of a PS function defined on R™ (n > 2) cannot be a singleton (or, more generally, isolated
points); see Theorem 1(c). Motivated by the above results, we make further studies in this
paper of the nonsmooth point sets of PS functions, and use our results to formulate and
study a new class of ‘nice’ nonsmooth functions, which we call “almost smooth” functions,
that are not PS but encompasses the aforementioned functions like the p-norm function,
smoothing/penalty functions, and integral functions.

Our first contribution is a generalization of the result of Rockafellar [41]. We show that
the smooth point set of a PS function f defined on R™ (n > 2) is locally disconnected
around each point where f is not strictly differentiable [42]; see Theorem 2(c). We also
give a characterization of strict differentiability for PS functions. A corollary of this result
is that the smooth point sets of f cannot be locally connected around all the nonsmooth
points; see Corollary 1. Intuitively, the nonsmooth point set of a PS function f defined on
R"™ partitions R"™ into multiple connected components, with f being smooth on the interior
of each component. For example, when n = 2, the nonsmooth point set can be the union of



lines and curves. All such lines and curves should either exclude their endpoints or extend
to “infinity” without endpoints.

Our second contribution is a systematic treatment of nonsmooth functions such as the
aforementioned p-norm function (1 < p < oo, n > 2), NCP functions, smoothing/penalty
functions, and integral functions, within a common framework. In particular, these func-
tions are not only locally Lipschitzian and semismooth, they share the additional property
that their smooth point sets are locally connected around all the nonsmooth points. Thus
these functions are not PS. We call a function weakly almost smooth if it is locally Lip-
schitzian and has this additional property; see Definition 3. We call it almost smooth
(respectively, strongly almost smooth) if, in addition, it is semismooth (respectively,
strongly semismooth); see Definition 4. In what follows, we will often abbreviate “almost
smooth” as “AS”. We study the subdifferential properties of AS functions. In particular,
we show that the B-subdifferential of a weakly AS function at a point contains either a
single element (in this case it is strictly differentiable at that point) or infinitely many ele-
ments; see Theorem 3. This property further distinguishes AS functions from PS functions.
We define the principal part of the B-subdifferential of a locally Lipschitzian function, a
notion also used by Klatte and Kummer [21, Eq. (6.30)] in analyzing nonsmooth Newton
methods. For PS functions, the B-subdifferential coincides with its principal part. We show
that this is also true for a weakly AS function that is smooth everywhere except at isolated
points; see Theorem 4. We also show that if f is smooth everywhere except at a point and
f is positively homogeneous about that point, then f is AS. If in addition V f is locally
Lipschitzian everywhere except at that point, then f is strongly AS; see Theorem 5. This
provides an easy check for positively homogeneous functions to be AS.

In Section 4, we make further studies of AS functions, with more examples and appli-
cations. In Subsections 4.1 and 4.2, the AS functions include the p-norm function defined
on R" (1 < p < oo, n > 2), certain NCP functions, and integral function associated with
convex best interpolation. In Subsection 4.3, we derive general conditions for a class of
smoothing/penalty functions for NCP and constrained optimization to be AS. We then
apply them to various examples, including the Chen-Mangasarian class of smoothing func-
tions and the exponential penalty function, to show they are AS. In Subsection 4.4, we study
conditions for a certain integral function to be strongly AS. While particular instances of
AS functions have been studied in disparate contexts [13, 16, 30, 32, 35|, this is the first
systematic study of such functions.

Throughout this paper, for any z € R", we use ||z|| to denote the Euclidean norm of z.
For any z € R" and ¢ > 0, we denote the open Euclidean ball B.(Z) = {z € R": ||z — || <
e}. We use “:=” to mean “define”. R, and R_ denote, respectively, the nonnegative reals
and the nonpositive reals. A subset S C R" is connected if, for any two points y and z in S,
there exists a continuous function z : [0, 1] — R" satisfying z(0) = y, (1) = 2z, and z(t) € S
for allt € [0,1]. For a closed set S C R" and z € R", we denote dist(z, S) := minseg ||z —5||.
For any a € R, a; = max{0,a}.

Throughout, differentiability will always mean Fréchet differentiability, which for lo-
cally Lipschitzian functions is equivalent to Gateaux differentiability [10]. For a locally



Lipschitzian function f defined on an open set O C R", a property stronger than differen-
tiability is strict differentiability [10, 42] (i.e., Vf is continuous when approached from
the set of differentiable points), while a property stronger than strict differentiability is
smoothness (i.e., V f exists and is continuous). We denote

F; = {z € O: f is differentiable at z},
Sy = {x € O: f is strictly differentiable at z},
Xy = {z€O0: fissmooth at z}.

Then Ff 2 Sf 2 Xf.
Let f be a real-valued locally Lipschitzian function defined on a nonempty open set
O C R". The B-subdifferential of f at a point z € O [31] is defined as

951(w) = { lim Y/}
ekeFy

It is well known that Op f(z) is nonempty and compact for all x € O [31]. Moreover, f is
strictly differentiable at z if and only if Opf(z) = {V f(z)}. f is semismooth at z € O if
in addition f is directionally differentiable at x and

fle+h) = fl@) = g"h=o(hll) Vg€ dpf(z+h).
f is strongly semismooth if o(]|A||) can be replaced by O(||h]?).

2 Piecewise Smooth Functions

We begin with a definition of a PS function.

Definition 1 A real-valued function f defined on a nonempty open set O C R™ is piece-
wise smooth (PS) on O if it is continuous on O and there exists a finite collection of
smooth functions f; : O — R, 1 =1,...,m, such that

flx)e{fi(z):ie{1,...,m}} VzeO.
Such a collection (not necessarily unique) is called a representation for f on O.

A PS function is locally Lipschitzian and semismooth. We next give the definition of a
minimal local representation for a PS function, a term used by Rockafellar [41]. Scholtes
used the term “essentially active selection” [43, Section 4.1].

Definition 2 Let f be a real-valued PS function defined on a nonempty open set O C R”",
and let fi, ..., fm be a representation for f on O. A collection {f;}ier with I C {1,...,m}
forms a local representation for f at a ¥ € O if there exists € > 0 such that

f(z) e{filx):iel} VzeONnB.(z). (1)

A local representation for f at T is minimal if no proper subcollection forms a local repre-
sentation for f at T.



The results of Rockafellar can be stated in full as follows.

Theorem 1 (Rockafellar 2003) Let f be a real-valued PS function defined on a nonempty
open set O C R™. For any T € O and any minimal local representation { f;}icr for f at Z,
the following results hold.

(a) For every i € I, there is an open set O; C O such that T € clO; and f = f; on O;.

(b) If f is differentiable at T, then there exists i € I such that f(z) = fi(Z) and Vf(z) =
Vfi(Z).

(c) If n > 2 and f is smooth on O \ {Z}, then f is smooth at T and V f(z) = V fi(Z) for
alliel.

Part (¢) of Theorem 1 is the main result in [41], whose proof uses parts (a) and (b).
In fact, parts (a) and (b) were shown earlier by Scholtes [43, Propositions 4.1.1 and 4.1.3].
A related result of Scholtes [43, Proposition 4.1.5] shows that a PS function defined on a
nonempty open set O is smooth on some open dense subset of O.

We extend Theorem 1(c) below by relaxing the assumption that f is smooth everywhere
except possibly at some point to f is smooth on a dense subset which is locally connected
around some point. Our proof uses Theorem 1(a),(b), as well an argument involving con-
nected graph. An alternative proof that may be viewed as a direct extension of Rockafellar’s
approach is given in Section 5.

Theorem 2 Let f be a real-valued PS function defined on a nonempty open set O C R"
with representation fi, ..., fm. For any T € O and any minimal local representation { f;}icr
for f at z, the following results hold.

(a) Let Dy C O be any open set containing T such that
f(z) e {fi(x)}ier Vz € D;.
For each nonempty J C I, there exists a (possibly empty) open set Oy C Dy such that
f(z) = filz) Vi € J, f(z) # filz) Vie I\J
and U;crclOy = clD;.

(b) If f is differentiable at T, then f is strictly differentiable at T if and only if Vf(z) =
Vfi(z) for allie I.

(c) Suppose n > 2 and f is smooth on a subset X C O with c1X 2 O and Z € O\ X.
Suppose that there exists an & > 0 such that

X NB.(Z) is connected Ve € (0,8). (2)

Then f is strictly differentiable at T, and V f(z) = V fi(Z) for all i € I.



Proof. (a) For k = 1,2,...,cardl, denote J; := {J C I : cardJ = k} and, for each
J € i, define Cy := {z € Dy : f(z) = fi(z) Vi € J}, Oy := Dp \ (Uyegisy Cr), and
define inductively
D41 := D \ (UsezclOy).

It can be seen by induction that, for all £ = 1,2, ..., cardl, Dy and O; are open (since each

C} is closed relative to Dy) and O, C C; for all J € J;. Moreover, we have f(z) # f;(x)
for all ¢ ¢ J and all z € O;. Also, it can be seen that U;c;clO; = clD;.

(b) Suppose that z € Fy and Vf(z) = Vf;(z) for all i € I. Since {f;}icr is a minimal
local representation for f at , there exists & > 0 satisfying (1). Thus, for any sequence
{z*} C F} converging to Z, we have z* € B.(z) for all k sufficiently large, in which case
Theorem 1(b) implies V f(z¥) = V f(z*) for some ¥ € I. Since Vf; is continuous at T
and Vf;(z) = Vf(z) for all i € I, this shows that Vf(z*) — Vf(Z). Thus f is strictly
differentiable at Z.

Suppose f is strictly differentiable at z. By Theorem 1(a), for each i € I, there exists
an open set O; C O such that z € clO; and f = f; on O;. Then there exists a sequence
{z*} C O; converging to Z and Vf = V f; on O; C F}. Since V f; is continuous, this implies
Vf(z*) — Vf;(z). Since f is strictly differentiable at Z, we must also have Vf(z*) —
V£(z). Thus Vf;(Z) = Vf(z) for all i € I.

(c) Let Dy and Cy, Oy, J C I, be defined as in (a). Let V :={J C I :z € clO;}. For
¢ > 0 sufficiently small, we have B;(Z) C D; and

U clU; = cIB:(z), (3)

where we define U; := O; N B;(Z). For each J € V, U is a nonempty open subset of C}.
By taking € smaller if necessary, we can assume that, for every (J,J') € A := {(J,J') :
JJ eV, J£J,(U;NclUyp) N X # (0}, we have

((cUyNclUy) NB(Z))NX #0 Ve e (0,8, (4)

Since (2) holds, by taking € even smaller if necessary, we can further assume that B.(z) N X
is connected for every e € (0,€]. Notice that this set is also nonempty since X is dense in
0.

For each J € V, U, is a nonempty open subset of C';. Since X is dense in O, then U;NX
is dense in Uy so U; N X is nonempty. For each i € J, since f; is smooth and equal to f on
Uy, then f is smooth on Uy and V f(z) = Vfi(x) for all z € U;. Since f is smooth on X
and f; is smooth on O so that Vf and V f; are continuous on clU; N X, this implies

Vfi(x)=Vfi(z) VYVxecdU;NnX, Vi€l (5)

For each (J,J') € A, we have from (4) that there exists a sequence {zF}2°, C (clU; N X)N
(clU; N X) converging to Z. Then, (5) implies V f;(z¥) = Vf;(z*) for all 4,5 € JU J'
and all k. Since Vf;, Vf; are continuous, we have in the limit as k& — oo that Vf;(Z) =



V(@) for all ¢,j € JU J'. Since B;(Z) N X is nonempty and connected, then (3) implies
Usey (clU; N X) is nonempty and connected, so that the (undirected) graph G = (V, A) is
connected. (Notice that (J, J') € A if and only if J # J" and (clU; N X) N (clUy NX) # 0.)
Hence V f;(z) = Vf;(z) for all i, j € Ujey J. For each i € I, we have {i} € V (else f; would
be superfluous in the minimal local representation), so Uy J = 1.

Thus f is differentiable at z and Vf(z) = Vf;(z) for all i« € I. By (b), f is strictly
differentiable at z. O

It can be seen from its proof that Theorem 2(a) holds for any nonempty open set D; C O
and any representation {f;}:c; for f on D;. Taking D; = O, it shows that, for a real-valued
PS function f defined on a nonempty open set O C R", X contains an open subset that is
dense in O. This gives an alternative proof of [43, Proposition 4.1.5].

Theorem 1(b) shows that if a PS function f is differentiable at Z, and { f; }ics is @ minimal
local representation for f at Z, then Vf(z) = Vf;(Z) for some ¢ € I. Theorem 2(b) shows
that if in addition Vf(z) = Vf;(z) for all i € I, then f is strictly differentiable at Z. This
additional condition cannot be dropped, as the following example shows. Geometrically, f
can fail to be strictly differentiable at z when there exists some ¢ € I and open set O; such
that z € clO;, f = f; on O; and V f;(Z) is a normal vector to clO; at Z.

Example 1 Consider the PS function

To if |zo| < (21)%,
flzr,20) =< (21)*  if 20 > (21)?,
—(331)2 if Ty < —(331)2;

defined on O = R?. It can be seen that f is differentiable at the origin with V f(0,0) = 0,
but is not strictly differentiable there. In particular, for z* = (%, 0), k =1,2,..., we have
¥ — (0,0) while Vf(zF) = (0,1) 4 V£(0,0). Notice that (0,1) is a normal vector to
{(z1,72) : |za| < (21)?} at (0,0). Here, F; = R*\ {(z1,22) : 22| = (21)%, 21 # 0} and
Sy =Xy =Fr\{(0,0)}.

Theorem 2(c) shows that, for a real-valued PS function defined on open set O C R",
each point of O \ Sy lies in some open ball whose intersection with X is disconnected. For
example, when n = 2, O \ Sy cannot include any “relative boundary point” of O \ X;. By
using Theorem 2(b), we have the following generalization of Theorem 1(c).

Corollary 1 Let f be a real-valued PS function defined on a nonempty open set O C R"
(n > 2). Suppose f is smooth on a subset X C O with cl X D O. Suppose also that, for
every T € O\ X, there exists an & > 0 such that (2) holds. Then f is smooth on O.

Proof. By Theorem 2(c), f is strictly differentiable on O. Then Sy = Fy = O. Since
V f is continuous at each each point in Sy when approached from Fy, this implies V f is
continuous on O, so f is smooth on O. |

Lastly, Theorem 2(c) is false if we drop the assumption of cIX D O or the existence of
£ > 0 such that (2) holds. This is illustrated with the example below.



Example 2 Consider the PS function

f(z1,22) = max{0,z;}

defined on O = R?. For X = {(z1,0) : z; > 0} and T = (0,0), we have that (2) holds with
€ =1 but f is not differentiable at T. For X = {(z1,x9) : 1 # 0} and T = (0,0), we see
that c1X D O but f is not differentiable at T.

3 Almost Smooth Functions

Theorems 1(c), 2(c) and Corollary 1 describe topological properties of the nonsmooth point
set of a PS function. In particular, Corollary 1 shows that a function cannot be PS if its
smooth point set is locally connected around all its nonsmooth points. As we mentioned
in Section 1, nonsmooth functions that possess this property, in addition to being locally
Lipschitzian and semismooth, are surprisingly abundant. These include the p-norm function
defined on R™ (1 < p < 0o, n > 2), NCP functions, smoothing/penalty functions, integral
functions. For some of these functions, the nonsmooth point set comprise isolated points
(e.g., the sum of p-norm functions each composed with affine mappings). For others, the
nonsmooth point set has dimension less than n — 1 but greater than 0 (e.g., the exponential
penalty function in Example 5, whose nonsmooth point set is the union of (n —1)(n — 2)
subspaces of dimension n — 2; and the integral function in Subsection 4.4, whose nonsmooth
point set is a manifold of dimension n — 2). In this and next section, we study this class of
nonsmooth functions, which we call almost smooth (AS) functions.

Definition 3 Let f be a real-valued locally Lipschitzian function defined on a nonempty
open set O CR". Then f is weakly almost smooth if, for every z € O\ Xy, there is an
€ > 0 such that

X¢ N B(x) is nonempty and connected Ve € (0,¢). (6)
[ is basic weakly almost smooth if n > 2 and O\ X comprises isolated points.?

The above definition of a weakly AS function f, motivated by (2), implies that X is
dense in O, and is locally connected around each point not in X;. Note that when n =1,
a weakly AS function is a smooth function. When n > 2, a weakly AS function is either
smooth or else, by Corollary 1, it is not PS. Also, a basic weakly AS function f is weakly
AS.

According to Pang and Ralph [28] (also see [43, Proposition A.4.1]), the B-subdifferential
of a PS function at a point contains only a finite number of elements. We show below that,
for a weakly AS function f, the elements of Opf(x) are not isolated if f is not strictly
differentiable at x. This implies that the B-subdifferential of a weakly AS function f at
a point contains either a single element (i.e., f is strictly differentiable at that point) or
infinitely many elements. Thus, the subdifferential structure of a weakly AS function is
very different from that of a PS function.

?In other words, for every z € O\ Xy, there is an open ball B centered at Z such that X; B = B\ {z}.



Theorem 3 Let f be a real-valued weakly AS function defined on a nonempty open set
O CR" withn > 2. Let Z € O\ Sy. Then, Ogf(Z) has infinitely many elements and none
of its elements is isolated in it.

Proof. Since f is locally Lipschitz continuous, 0p f(Z) is nonempty. Since Z & Sy, 0 f(Z)
has at least two elements. Suppose that dpf(Z) has an isolated element g. We show below
that this yields a contradiction.

Let G := 0gf(z) \ {g}. Since dzf(z) has at least two elements, G # (). Since 0gf(Z) is
closed and g is isolated in 0 f(Z), G is closed. Then the scalar quantity

6 := dist(g, Q) (7)

is positive. Let
X, == X;NB.(7).

Since f is smooth on Xy, the definition of 0p f(Z) implies

lim sup V £ (X.) € 9 f (7).
el0

This convergence is uniform in ¢ in the sense that

sup dist(Vf(z),0pf(Z)) -0 as /0.

reXe

Thus, there exists € > 0 such that for any € € (0,¢), we have B.(z) C X; and

sup dist(Vf(z),0sf(z)) < /3 Vee (0,¢). (8)
T€EXe
Let Dy, :={z € X, : |[Vf(z) —g|| < 0/3} and D¢ := {2 € X, : dist(Vf(z),G) < §/3}.
Moreover, (7) implies that D, and D¢ are disjoint, while (8) and G = dpf(Z) \ {g} imply
that
X. =D, U Dg.

But X, is connected. Thus, one of D, and D should be empty. This contradicts the
assumption that g € dpf(Z) and the fact that G # (). m|

For any real-valued locally Lipschitzian function f defined on a nonempty open set
O C R" with X dense in O, we define the principal part of the B-subdifferential as

Opf(x) = { lim Vf(")).
zkEXf
Since X is dense in O and X; C FY, it readily follows that Op f(z) is nonempty and compact
for all x € O, and Opf(x) C dpf(x). In fact, dpf had been used by Klatte and Kummer
[21, Eq. (6.30)] in the context of Newton map for a pseudo-smooth function f : R" — R,
i.e., f is locally Lipschitzian and O \ X is open and dense in R". Thus 0pf is of practical
interest.
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If f is PS, then it is known [28, Lemma 2|, [43, Proposition A.4.1] that dpf(z) =
{V fi(x)}ier for any x € O, where {f;};cr is any minimal local representation for f at z.
(This can also be proved using Theorem 1(a),(b).) Moreover, Theorem 1(a) shows that

Opf(z) D {Vfi(z)}icr, so in fact
Opf(z) =0pf(x) VzeO. 9)

Is this property of PS functions shared by weakly AS functions? The following theorem
shows that the answer is yes for a basic weakly AS function. For a general weakly AS, this
question remains open.

Theorem 4 Let f be a real-valued basic weakly AS function defined on a monempty open
set O CR™. Then (9) holds.

Proof. Since O \ X comprises isolated points, X is dense in O. It suffices to show that
(9) holds for all z € O \ X;. Consider any T € O\ X. Since f is basic weakly AS, there
exists an open ball B centered at z such that

X;NnB=B\{z}.

If 7 ¢ Fy, then Fy N B = X; N B so that (9) holds for z = z. Otherwise z € FY}, so
that Fy "B = (X; N B) U {Z}. We prove below that Vf(Z) € 0pf(Z) and hence, by
FynB = (X;NnB)U{z}, 0pf(z) = 0pf(Z).

Without loss of generality, assume Z = 0 and Vf(Z) = 0. We argue by contradiction.
Suppose 0 € Op f(Z). Then there exist € > 0 and p > 0 such that B:(0) C B and

V@)l = p VzeB0)\{0}. (10)

Since f is locally Lipschitzian at Z, then Theorem 9.13 in [42] implies that, by taking €
sufficiently small, we can assume that V f is uniformly bounded on B;(0), i.e., there exists
M > 0 such that

IVf(z)|]| < M Vze Bg(0). (11)

Consider any ¢ € (0,é/3). Denote R, := {x € R™ : ¢ < ||z|| < 3¢}. Then R, C
B:(0) \ {0} ¢ B\ {0}. Let z. be any point satisfying ||z|| = 2¢. Since f is smooth on
B\ {0}, then V[ is defined and continuous on R.. Since R, is compact, V f is uniformly
continuous on R,. Thus, by choosing an integer k£ > 1 sufficiently large (k¥ depends on ¢),
we have

IVf(z) = Vf(y)l| <e whenever =z,y€ R, [|z—y[ <5, (12)

where ¢ := 2 Define

. 5 .
° =2, and 27! := a:j—f—MVf(xJ), j=0,1,..,k—1, and y.:=z"
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We have that ||277" — 27|| = 5[|V.f(27)||. Since the distance from z, to the boundary of
R, is € and ||V f(2?)|| < M whenever 27 € R, an induction argument shows that

|27t — 27| <6 and [27, 27T C R, j=0,1,...k—1 (13)

(Recall that [z,y] denotes the closed line segment joining x and y.) Then, for each j, we
can apply the mean value theorem to conclude that there exists 2/ € [27, 277] such that

f@t) = f@’) = V(Sf(zj)T(xj“ — /)

= MVf(zj)TVf(xj)
0 i INT N9 NI
= (V) = V)TV + V)]

v

1) j j j 0 YAYIE:
—27 V(&) = VIV @) + 31V )]

(5 2
> _
> —de+ "
where the last inequality uses (10)—(13). Summing this inequality over j = 0,1,....k — 1
yields
flye) — f(ze) > —k‘56+k—6 7= —¢ +6—'02 = o(e) +e—p2
‘ o= M M M

However, this contracts our hypothesis that f is differentiable at 0 with V f(0) = 0 and the
fact that x,y. € R, so that

fxe) = f(0) = o([lzel]) = ol€),  F(ye) = £(0) = o([lyell) = o(e),

implying f(y.) — f(zc) = o(e). O

In general, a locally Lipschitzian function f with dense smooth point set need not satisfy
(9), as the following example shows.

Example 3 Let f : R — R be the function whose graph is obtained by taking the line
through (—1,1) with slope —2, reflecting it up (with slope 2) whenever it hits the z-azxis and
down (with slope —2) whenever it hits the parabola y = x*. This defines f(z) for all x < 0.
We define f(x) symmetrically (about the y-azxis) for all z > 0, and define f(0) = 0. Thus,
the graph of f is bounded between the x-azxis and the parabola y = x* and comprises infinitely
many line segments with slopes of either 2 or —2.

It can be calculated that these line segments have endpoints +aq, +as, ..., where

i =g, Ok = Goven (@26-1), Qo1 = @, q(a2k), k=1,2,...,

and we define .. (r) =2z +1-1, ¢_,,(z) :=x — 2?/2.
It is readily seen that f 1is locally Lipschitzian on R and is differentiable at 0, with
V£(0) =0, but f is not continuously differentiable at 0. Thus, Fy = R\ {+a1,+as,...} and
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Figure 1: Graph of function f for Example 3.

Xy = Fp\{0}. Then 0pf(0) = {—2,2} while 0pf(0) = {—2,2,0}. Since a PS function f
defined on an open set O must satisfy (9), this proves that f is not PS. Since n =1 and f
s not smooth, f is also not weakly AS. It can be further checked that f is not semismooth
at 0, though f is pseudo-smooth in the sense of [21].

Definition 4 A real-valued function f defined on a nonempty open set O C R"™ is (basic)
almost smooth if f is (basic) weakly almost smooth and semismooth. If in addition f is
strongly semismooth, then f is (basic) strongly almost smooth.

In general, a weakly AS function need not be semismooth. For example, let f : R® — R,

n > 2, be defined by
_ ll=Psin (), ifz #0,
/(@) {o, if = 0.
This function is locally Lipschitzian, differentiable everywhere. It is smooth everywhere

except at the origin, so it is basic weakly AS but not PS. In particular, 0 f(0) is the unit
ball, which contains infinitely many elements. It is readily seen that

1
O = £0) = £m) = il cos ) + OUIKIE) v o,
so f is not semismooth at 0.
Since sum and product of locally Lipschitzian semismooth functions are also locally
Lipschitzian semismooth, the following properties of AS functions readily follow:

P1 If fi, f, are real-valued AS functions defined on an open set O C R™ and O \ Xy,
O\ Xy, are manifolds of dimension less than n — 1, then f; + fo and fi f are both
AS functions defined on O.

3We say Y C O is a manifold of dimension k¥ < n if Y = {z € O : F(z) = 0} for some smooth mapping
F : O — RX whose Jacobian has rank n — k on O.
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P2 If f is a real-valued AS function defined on an open set O C R" and F' is a smooth
1-to-1 mapping from an open set O’ C R" to O, then f o F'is an AS function defined
on O'.

P3 If f is a real-valued basic AS function defined on an open set O C R"™ and F is a smooth
mapping from an open set O' C R™ to O with the Jacobian of F' having rank greater
than 1 on O, then fo F is an AS function defined on O'.

Klatte and Kummer [21, page 128] had proposed a locally PC! function as a gener-
alization of PS functions and the Euclidean norm function. In particular, f : R® — R is
locally PC! if (i) f is pseudo-smooth; (ii) f is selected from a finite collection of continuous
functions f1, ..., fi, With f; smooth on some open set O; C R" and V f; uniformly continuous
on each bounded subset of O;; and (iii) for each Z € R", there is an open ball B centered
at T such that x € X; N B implies f(z) = fi(2), f(z) = fi(z), Vf(z) = Vfi(z), and
|z, 2[C O; for some i € {1,...,m}. (Here |Z,z[={tZ+ (1 —t)z : 0 < t < 1}.) It is shown
in [21, Theorem 6.18] that locally PC' functions have properties similar to semismoothness
but with dpf in place of dgf. Moreover, locally PC! functions include PS functions, the
composition of the Euclidean norm with a linear mapping, and the composition of a smooth
mapping with two PC! functions [21, Lemma 6.17]. In fact, conditions (ii) and (iii) hold
(with m = 1) whenever Vf is uniformly continuous on each bounded subset of X; and
O \ Xy is polyhedral. If O\ X is not polyhedral, then (iii) may fail to hold. For example,
the function

f(@1,22,03) = /(@) + (22)? = 22)* + (22)”

is pseudo-smooth with X; = R3\ {(#1,0,23) : (21)?> = x3}. Let T be the origin. For any
0 <e <1, wehave z = (¢/2,0,(¢/2)?) € B.(Z) but |z,z[Z X;. Thus, f does not appear
to be locally PC'. On the other hand, f is semismooth and X; has dimension 1, so f is
AS. This also follows from property P3 and the observation that f is the composition of the
Euclidean norm with a smooth mapping whose Jacobian has rank greater than 1.

As a referee noted, apart from 0p f and O f, there is another subdifferential, first studied
by Mordukhovich [26] and now playing a central role in variational analysis [27, 42]. For a
real-valued locally Lipschitzian function f defined on a nonempty open set O C R", this
subdifferential is defined as

0f (x) :== { lim vk},

ak—a
mkGRf,vkEBf(zk)

where Ry := {z € O : Of(z) # 0} and 8f(z) == {v € R" : f(y) > f(z) +v"(y — ) +
o(|ly — z||)}. Since Fy C Ry, it follows that 0pf(z) C O0f(x) for all z € O. If f is basic
weakly AS, then 8f(z) = 0pf(x) U df(x). As examples, for f(z) = ||z||, df(0) is the
closed unit ball; while for f(z) = —||z||, df(0) = 0. For f in Example 3, df(0) = {0} and
0f(0) = [—2,2]. In general, what can we say about 0f when f is weakly AS or (basic) AS?
This is an interesting question for future investigation.

By Theorem 4, a basic weakly AS function shares with PS functions the subdifferential
property (9). Example 1 shows that a differentiable PS function need not be smooth. What
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about a basic AS function? Since such a function is smooth everywhere except at isolated
points and is semismooth there, might differentiability imply smoothness? The following
example shows that this is false. The motivation for the example comes from the observation
that if f is differentiable and semismooth at the origin 0 and (without loss of generality)
Vf(0) = 0, then for any sequence z* converging to 0, we have V f(z¥)Tz*/||z*|| — 0. Thus,
if Vf(2*) 4 0, then V f(2*) must be perpendicular to z*/||z¥|| asymptotically. The example
constructs a function f with such a property.

Example 4 We define f below. Let ¢ : R* — R be any smooth function satisfying (i)
o(x) = 0 whenever ||z|| > 1, and (i1) Vip(z) # 0 for some I satisfying ||Z|| < 1. (Here
Vi@ denotes the partial derivative with respect to x1.) Fork = 2,3, ..., we scale and translate

@ to obtain the function
1 1 1
_— ——k2,——k)).
Pr(z) = 1o ( (I1 o

Notice that o 1s smooth and vanishes outside of

X = {(331,152):'(%1_]“2 __k)H }

Moreover, Xy, k = 2,3, ..., are disjoint. In particular, observe that x € Xy implies \i—k2| <
= and \i — k| < ¢ or, equivalently, 1/(k* + ) < 21 < 1/(k* — 3) and 1/(k + ) < @5 <
1/(l<: - —) Now, deﬁne

f(z) = { (1)%0k(x) if z € Xy for some k € {2,3,...};
' 0 else.

Roughly speaking, the graph of f comprises a sequence of “bumps” along the parabola x1 =
(x2)?, with each bump of radius approzimately To and height O((z1)%x,).

We have that X, C R2, for all k = 2,3, ..., so it follows from the chain rule that f is
smooth at every x € int Xy for each k. Since @y is smooth and has value 0 on the boundary
of Xy, it is also readily seen that f is smooth on the boundary of Xi. Also, clearly f is
smooth at every x outside of (UL ,Xy) U{(0,0)}. Thus, f is smooth on R*\ {(0,0)}.

We claim that [ is differentiable at (0,0) with Vf(0,0) = (0,0). Since f(0,0) = 0,
it suffices to show that f(x) = o(||z||) for  # (0,0). For z ¢ (U2,Xx) U {(0,0)}, this
is clearly true. For x € Xy for some k € {2,3,...}, we have that z1 is in the order of
1/k* and x5 is in the order of 1/k, so that z; = O((z2)?). Since ¢y is bounded, this yields
(z1)%pk(z) = o(w1 + 72) and hence f(z) = o(||z]]).

We claim that f is semismooth at (0,0). Since f(0,0) =0 and f(z) = o(||z||), it suffices
to show that V f(z)"z = o(||z||) for z # (0,0). We have that Vf(z) = (0,0) if x & UL, Xk,
s0 this holds immediately. If x € Xy for some k € {2,3,...}, then we have from the chain
rule and the form of ¢y that

Vife) = 2wian@) - Vi (k (K <)),
Vof(z) = 83 Vo (k (xil =3 %2 - k)) .
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Since 5 is in the order of 1/k and ¢(z) = O(3), then gp(z) = O(xs). Thus 2z1¢4(z) =
O(z173) = o(||z]]). Since z; = O((x2)?), then (71)%/(x2)* = O(z1) and z; = O(||:r|| ).
Then, the boundedness of V1o and Vo yield that V,f(z) - z, = O(z1) = O(||z]|*) and
Vof (x) - 13 = O(x122) = O(||z||?). Thus V f(x)Tz = O(||z||?).

The above argument also shows that V f is bounded. Thus, by the mean value theorem
or Theorem 9.13 in [42], f is locally Lipschz’tzian everywhere.

Finally, for each k € {2,3, ...}, define z* = (2%, 2%) by

S S S
VTR ik T k4 d )k

Then x* € X} and we have from the above formula for V. f that

Vif(a*) = 2zt (") — Vip().

Thus V1 f(2*) — Vip(2) # 0 while 2* — (0,0) as k — oo. Since V1f(0,0) = 0, this shows
that f is not smooth at (0,0).

A basic AS function need not be pseudo-smooth in the sense of [21]. For an example,
let ¢ : R*> —» R be a function that (i) vanishes outside the unit Euclidean ball and (ii) is
smooth everywhere except at the origin and is differentiable and semismooth there. Such a
¢ can be constructed by modifying the function f in Example 4 which satisfies (ii). Define
f:R? = R by

> 1

f@) = 3 e (27 = 275,0).

It can be verified that V f(z) = £V (2k+2(ac — (275, O))) if |z —(27%,0)|| < 1/252 for some
k and otherwise V f(x) = 0. Moreover, f is locally Lipschitzian and semismooth everywhere
and Vf is continuous at the origin. Thus R? \ X; = {(27%,0)}x=12,.. comprises isolated
points, so f is basic AS. However, X is not open, so f is not pseudo-smooth.

The next theorem shows that if a function f defined on R"™ (n > 2) is smooth everywhere
except at one point and is positively homogeneous about that point, then f is basic AS. If in
addition V f is locally Lipschitzian everywhere outside that point, then f is basic strongly
AS. The p-norm function on R™ with 1 < p < oo and the Fischer-Burmeister function are
examples of such functions; see Subsection 4.1 for further discussions.

Theorem 5 Let f be a real-valued function defined on R™. Suppose that f is smooth
everywhere except at some T € R"™. Also, suppose that [ is positively homogeneous about T,
i.e., for any h e R" andt € Ry,

f(x+th) =tf(z + h).

Then f is Lipschitz continuous on R™ and is strongly semismooth at . If furthermore V f
is locally Lipschitzian on R™ \ {Z}, then f is a strongly semismooth function.



16

Proof. First, we prove that f is Lipschitz continuous on R". Clearly, f(z) = 0. Since
f and Vf are continuous on the compact unit sphere S° := {z € R™ : ||z — Z|| = 1}, then
there exists scalar L > 0 such that |f(z)| < L and |V f(z)|| < L for all z € S°. Using the
fact that the arclength of the geodesic on S° between any two points x,y € S° is at most
5llz—yl|, it is readily shown by parameterizing the geodesic that |f(z)— f(y)| < 5L||z -yl
Consider any h,k € R™. If h # 0 and k£ # 0, we have

fE+h) —f@+k) = f <i—|— ||h||”—z||> ~f <f+ ||kllﬁ>
= ||Allf <x + ”—Z”> — [[k[lf (ff + ﬁ)

= (Ul = k07 (24 g )+ 080 (1 (4 ) = 1 (4 7)),

[f (@ +h) = f(z+ k)|

and hence

IN

T h k
il = 1K1+ k0 5 H— _ —H
o

'nzn - ||Z||H ’ HIIZII - ||Z||H>

™ ™
= |lAll = &1L + 5 L) + S Lllh — K|

IN

m
Il = 1 2+ el

< |lh—Kl(L+5L) + 5 LIA - K.

If h# 0 and k = 0, then

[f(z+h) = f(Z+E)| = Al

h
/ (:H m)‘ < [BIL = Ih - K|L.

The case of h =0 and k£ # 0 can be treated similarly.
For any h € R™ with h # 0, f is smooth at Z + h and
f@+h)—f@) -Vf@E+h"h = f(@+h)—f(Z+hh)
— (@ 4h) _]imf(f—i-h—l-th) —f(@+h)
0 t
= 0.

This shows that f is strongly semismooth at . Since f is smooth everywhere except at
7, then f is semismooth everywhere. If Vf is locally Lipschitzian on R™ \ {Z}, then f is
strongly semismooth everywhere, i.e., it is a strongly semismooth function. O

4 Further Results, Examples, and Applications

In this section, we make further studies of AS functions, with more examples and applica-
tions.
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4.1 p-Norm Functions and NCP Functions
The p-norm function f : R®™ — R, defined by

n 1/p
1) =llell = (3 e
i=1
for 1 < p < 00, is smooth everywhere except at the origin. In particular, X = Fy = R"\{0}.
It is positively homogeneous about the origin. Hence, when n > 2, by Theorem 5, it is a
basic AS function. If p > 2, then it is basic strongly AS. More generally, the function

flz) = ;IIFi(w)Ilm

where 1 < p; < oo, n; > 2, F; : R™ — R™ is a smooth mapping whose Jacobian has
rank greater than 1 on R™, is an AS function defined on R™. These p-norm functions arise
frequently in nonlinear optimization [38, 47].

An NCP function is a function f : R?> — R with the property that f(a,b) = 0 if and
only if a > 0, b > 0, ab = 0. A well-known NCP function closely related to 2-norm is the
Fischer-Burmeister function [16], defined by

f(a,b) :=||(a,b)|] —a—b V(a,b) € R

This function is basic strongly AS. It is used extensively in the solution of nonlinear com-
plementarity and variational inequality problems [11, 14, 15, 16, 19, 33, 48]. Qi [32] showed
that the Fischer-Burmeister function and its several variants, such as the Tseng-Luo NCP
function [24, 45| and the Kanzow-Kleinmichel NCP function [20], are smooth away from
the origin and are strongly semismooth at the origin.* The Fischer-Burmeister function and
these variants are irrational. Qi [32] proposed a class of piecewise rational NCP functions
having the same strongly semismooth property. All these functions are basic strongly AS.

4.2 Convex best Interpolation

By using the first-order optimality condition and duality, a certain convex best interpolation
problem may be reformulated equivalently as a system of nonsmooth equations

F() =d, (14)
where the 7th component of F' has the form

EO) = [ ’ (g )\lBl(t)> Bi(t)dt.

+

Here B; is the normalized B-spline of order two associated with the problem data.

4This can also be deduced from [21, Theorem 6.18(ii)] and Theorem 4.



18

Irvine, Marin and Smith [18] proposed in 1986 a Newton-type method for solving the
equation (14). They observed fast convergence in numerical experiments and raised the
question of theoretically estimating the rate of convergence. Dontchev, Qi and Qi [12]
answered this question by proving that F' is semismooth. Dontchev, Qi and Qi [13] further
proved that F is strongly semismooth, based on which quadratic convergence of the above
method was proved. Specifically, they proved that

Fi(A) = &1(A\) +T1(A, A),
Fi(A) = Ti(Xic, M) + (A, Aiy1), i=2,...,N—1,
Fy(A) = Tn(An—1,An) + P2(An),

where ®; and ®, are piecewise linear, and each I'; and ¥; are strongly semismooth, and
smooth with a Lipschitzian gradient away from the origin. Moreover, they showed that each
['; and ¥; are not PS, and neither is F'. This also follows from Theorem 1(c) or Corollary 1.
Using the terminology in this paper, we see that I'; and ¥; are basic strongly AS functions.

4.3 Smoothing/Penalty Functions

A popular technique to deal with nonsmooth functions is to approximate them by smooth
functions [9, 35]. Suppose a function g : R®™ — R is nonsmooth. We choose a locally
Lipschitzian function f : R**! — R such that

f(z,0) = g(z) VzeR"

and f is smooth at all (z,¢) with ¢ # 0. Then, instead of g, we work with f at ¢t # 0 and
drive t — 0. Such a function f is called a smoothing function of g.

Since a smoothing function f is locally Lipschitzian and is smooth at all (x,t) with
t # 0, it is readily seen that f satisfies the definition of a weakly AS function ezcept for
possibly the local connectedness of X; at each (z,0) € R""' \ X}, i.e., property (6). The
local connectedness of X; needs to be checked separately since in general we only know that
X; contains {(z,t) € R™! : ¢ # 0}, which is not locally connected around its boundary
points. We will also be interested in smoothing functions that are (strongly) AS, which
means checking (strong) semismoothness of f. We do this below for some popular classes
of smoothing/penalty functions.

Let ¢ : R® — R be a smooth convex function. Consider the function f : R"™! — R

defined by

_ [ [tp/lt]) it e #0,
where 1), denotes the recession function of ¢, i.e., Yo () := limy o t1p(z/t) [40, Corollary
8.5.2]. It is known that 1, is proper closed convex and positively homogeneous about the
origin. Two well-known examples of ) are

ba) = fzy ) (16)
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w(z) = In (ée$> (17)

with Yo (z) = ||z||1 and Yo (z) = max{z,...,x,}, respectively. The exponential penalty
function ([3, 4, 29, 30|, [40, page 68]) corresponds to f(x,t) with ¢ given by (17). The
Chen-Mangasarian class of smoothing functions for g(x) = z, = max{0,z} corresponds
to f(z,t), with ¢ : R — R being a smooth convex function satisfying lim, , o ¥(z) =
limy oo ¥(z) — 2z = 0 [7, 8, 46]. This class includes the popular Chen-Harker-Kanzow-
Smale (CHKS) function [5, 17, 44], which is a special case of f(z,t) with

T +Vr2+1

vw) =0

It also includes the “neural network” function [7, 8], which is a special case of f(xz,t) with
() = In(e” + 1).

Here 1o (z) = max{0, z}.

The relationship between 1., and the parameterized smoothing/penalty function (- /t)
has been much studied, particular in the context of penalty functions for constrained op-
timization; see [3, 8, 46] and references therein. Moreover, it is known that f is a convex
function on R™ x Ry [40, Theorem 8.2]. It readily follows that f is a convex function on
R"™ x R_ also. However, f need not be a convex function on R®™!. The theorem below
shows that f is convex on R™"! provided 1/, is majorized by 1.

Theorem 6 Let ¢ : R™ — R be a conver function satisfying Yoo (z) < ¥(z) for all z € R™.
Then f defined by (15) is a conver function on R™ .

Proof. Fix any (z,t), (y,s) € R""'. We will prove that
F(A =) (1) + Ay, 5)) < (L= A)f(z, ) + Af(y,s) VO<SALL

Ift > 0,s > 0, this follows from the convexity of f on R" x R . If t < 0,s < 0, this follows
from the convexity of f on R™ x R_. Suppose ¢t > 0 and s < 0. (The case of t < 0 and
s > 0 can be treated similarly.) Let \q := ¢/(t — s), which satisfies (1 — \g)t + Aos = 0.
Direct calculation shows that (1 — A\g)t = A\o(—s) = 3, where § := —st/(t — s). Thus,

FU=20)7 +Xy,0) = Yool(1 = Xo)T + Aoy)

= Yo (ﬁ% + 5(_—?{9))

=)
< v (5) o= ()
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N

< (¢ (5)++ ()
= 1= () +xo-0 )
= (L= 0@+ Ml (0. 9) (19

where the third equality is due to ¥, being positively homogeneous about the origin. For
0 < A< Ay, we have (1 — A\)t + As > 0 and hence the convexity of f on R™ x R yields

F((1 =@ 1) + Ay, 5) = f«}—ﬁjuwy+%«r—%n+Awm0

< (1 - %) fla,t) + %f(u — Xo) + Aoy, 0)
0 0

0 Ao
= (L=XNf(z, 1) + Af(y, ),

where the second inequality uses (18). Similarly, for \g < A < 1, we have (1 — A\)t+ As <0
and hence the convexity of f on R™ x R_ yields

< (1= 32) s+ 3 (= X0+ uf:5)

F(L =A@ 8 + Ay,8) = f ((1 - %) (v, 5) + 11_—30 (1= Xo)T + Aoy, 0))

1-A 1—-A

< (L—1_A)fwﬁ%+1_A(0—Awﬂ%ﬂ+AM@JD

1—=Xp 1=
where the second inequality uses (18). m

Since a real-valued convex function is locally Lipschitzian and directionally differentiable
everywhere [40], it follows from Theorem 6 that f is locally Lipschitzian and directionally
differentiable everywhere provided 1/, is real-valued and majorized by . In particular, this
holds for the examples (16), (17), as well as the CM class of smoothing functions. Notice
that 1 being positive-valued is not sufficient for 1., to be majorized by ¥. An example is
() =vV1+22—cwith0<ec< 1.

Suppose f is locally Lipschitzian and directionally differentiable everywhere. Since f is
smooth everywhere except possibly on R™ x {0}, then f is semismooth provided that, for
any T € R",

fl@,t) = f(2,0) = f((2,0); ( — 7,1)) = o(||lz — Z|| + [¢]) (19)
for all (x,t) in some neighborhood of (z,0). Similarly, f is strongly semismooth provided
that

f(@,t) = f(2,0) = f'((z,1); (& — 2,8)) = O(llz — z||* + ). (20)
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If t =0, then f(z,t) = Yoo(z) and f'((z,t); (x — Z,t)) = Y. (z; (x — Z)). Thus, provided
that 1 is semismooth (respectively, strongly semismooth), (19) (respectively, (20)) would
hold for all (z,0) in some neighborhood of (Z,0). For any (z,t) with ¢ # 0, the following
lemma gives a simplification of the left-hand side of (19).

Lemma 1 Let ¢ : R™ — R be a smooth convez function. Let f be defined by (15). For any
T € R" and any (z,t) € R"™ with t # 0,

02> f(z,t) = £(2,0) = Vf(z,8)" (z — 2, 1) = Vi(2/[t])" T — oo (). (21)

Proof. For any (z,t) with ¢ > 0, we have from (15) that Vf(z,t) = (Vy(z/t), v (z/t) —
Vi(x/t)Tz/t). This together with the convexity of f on R™ x R, yields

0 > f(x,t)— f(z,0) — Vf(z, )" (z — 7,1
= t(2/t) — Yoo(®) — (Vip(2/t)" (& — Z) + (V(x/t) — Vip(a/t) z/t)t)
= Vy(2/t)TT — Yoo ().

For t < 0, we have V f(x,t) = (V¢ (—z/t), —(—x/t) — Vap(—x/t)T 2 /t). This together with
the convexity of f on R"™ x R_ yields

0 > f(x’t) - f(:f,()) - Vf(x1t)T($ - j’t)
= —t(—2/t) = Yoo(@) — (VO (=2/1)" (& = T) + (—(=2/t) — Vib(~z/t) z/t)t)
= V(=2/t)'T — oo (T).

(The argument for the case of ¢ < 0 can alternatively be deduced from the case of ¢ > 0 by
using f(z,t) = f(z,—t) for all (z,1).) m

1
Example 5 Suppose v is given by (17). Then Vi)(z) = RS (", ...,e"). With-
er [P ern
out loss of generality, assume that Ty = max{Zy,..,Tn} = VYo(T) and let T = {i €
{1,..,n} : Z; # T1} and A = Ty — max;ez T;. Then, whenever ||z — Z||oc < A/4, we

have x; — x1 < —A/2 for all i € T so that

E?:l ewi/\ﬂji
E?:l ezi/lt|
Bt g e
T It n @
Yz e@iTm)/ it (z, — 7))
1+ S @ a0/

670.5A/|t\ Z(jl . 3—31)'

1€l

Vi(a/[t)'T - Yo(T) =

__/i-l

v
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This together with (21) shows that f defined by (15) satisfies
F(@,) = £(2,0) = V(@ t) (z — 2,1)| < e ™13 (3 —z) V>0,

€T
Notice that lim,_,q e~/ /|t|k = 0 for any k > 0 and, in particular, for k = 2. Since
Yoo s piecewise linear and hence strongly semismooth, then (20) holds, i.e., f is strongly
semismooth at (Z,0). In fact, f is semismooth of order k at (Z,0) for any k > 0.
Since f is twice continuously differentiable at any (T,t) with t # 0, this shows that f is
strongly semismooth on R™! [30].
Nezxt, we show that

Xr=A{(z,t):x e R",t #0} U{(x,0) : v(z) = 1},

where v(z) := Card{i € {1,...,n} : ¥o(x) = z;}. To see this, note that f is smooth at
every (z,t) with t # 0 and f is not differentiable at every (z,0) with v(z) > 2. Thus,
it suffices to verify that f is smooth at every (x,0) with v(z) = 1. Fiz any T € R™ with
v(Z) = 1. Without loss of generality we can assume that Ty > Z; for i = 2,...,n. Then, it
is straightforward to verify that f is differentiable at (z,0) with V f(z,0) = (1,0, ...,0). For
all (z,t) with t > 0, we have that

Vi,t) = (Vi(a/t),y(z/t) - Vi(z/t) z/t)
)

w1/t oEaft T/t S 4. Tn [t W/t
= <(627: ’e./t )71/)(-’13/t _(e ml/gn +/te - /)>
=1 €™ =1 €™
Tn—2x1)/t . Tn—T1)/t
_ (17 ) 6( _)/ ) ,ln 1+ Z e(mi—xl)/t + ﬂ . xl/t + + 6( _ )/ xn/t )
1+ Ez;ﬁl el@i—z1)/t il 4 1+ Zz;él elzi—z1)/t

As (x,t) — (,0), we have x; — 11 — T; — T, < 0 and hence e@=2V/* [t — 0 for all i # 1.
Then the above formula yields that V f(x,t) — (1,0, ...,0). For all (x,t) witht < 0, the same
conclusion is reached. For all (x,0) with x sufficiently near T, we have that v(z) =1 and
hence f is differentiable at (x,0) with V f(x) = (1,0,...,0). This verifies that f is smooth
at every (x,0) with v(x) = 1.

Finally, we verify that Xy is locally connected, which would establish that f is strongly
AS. Fiz any T € R" with v(z) > 2 and any ¢ > 0. X; N B.((z,0)) is nonempty since
it contains (Z,¢/2). Consider any two points (z',t') and (2%,t?) in X; N B.((z,0)). If t*
and t? have the same positive or negative sign, then the line segment joining them lies in
X;NB.((z,0)). The same is true if exactly one of t* and t* is nonzero. If both t* and t* are
zero, then the line segments from (x',t') to (T,&/2) and then from (Z,c/2) to (x?,1*) would
lie in X;NB.((z,0)). Ift' > 0 and t* < 0, then the line segments from (z',t*) to (*,0) and
then from (x*,0) to (2?,t*) would lie in X; N B.((Z,0)), where z* is a small perturbation
of T so that v(zs) = 1 and (x3,0) € B.((Z,0)). Thus, X; N B.((Z,0)) is nonempty and
connected.

Notice that f is not basic AS when n > 2 since R"™'\ X; = {(z,0) € R"*! : x; =
x; for some 1 < i < j < n}, being the union of n(n — 1) subspaces of dimension n — 1, is
not comprised of isolated points.
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Suppose ¥ : R — R is smooth convex and v, is real-valued. Then it is known that 1)’

is a nondecreasing function and 9 (z) = max{az, Sz}, where o := lim,_, ¢'(z) > —o0

and = lim; o, ¢¥'(z) < co. We note that f is semismooth at (Z,0) for any Z € R if and
only if

lim (¢'(z) — @)z =0, lim (8 — ¢'(z))z = 0. (22)

T——00 T—00

This is due to ¥, being piecewise linear (so that (20) holds for all (z,0) near (z,0)), (21),
and the observation that

(W' (z/lt) =)z if T <0,
U(/[t)Z — Yo(T) = { 0 if z=0,
(' (z/[t]) — )z if T >0.

z
Similarly, for any 1 < k < 2, we have that f defined by (15) is semismooth of order k at
(z,0) for any z € R if and only if
lim sup (¢’ (z) — a)|z|F < oo, lim sup(8 — ¢'(z))z* < oco.
T—r00

r—>—00
Suppose that, in addition to (22), we have o #  and

lim ¢(z) —az =0, lim ¢(x) — Bz = 0. (23)

T—r—00 T—00

Then we claim that
X;=R*\{(0,0)}.

To see this, note that f is smooth at every (z,t) with ¢ # 0 and, due to « # (3, f is not
differentiable at (0, 0). Thus, it suffices to verify that f is smooth at every (z,0) with z # 0.
Fix any z € R with Z > 0. It is straightforward to verify using (23) that f is differentiable
at (z,0) with Vf(z,0) = (5,0). For all (z,t) with ¢ > 0, we have

Vi,t) = @'(@/t),¢(z/t) = ¢ (z/t)z/t).

As (z,t) — (z,0), we have z/t — oo and hence ¢'(z/t) — 3. Also, (22) and (23) imply
that ¥(x/t) —¢'(z/t)x/t — 0. Thus, Vf(z,t) — (5,0). For all (x,t) with ¢ < 0, the same
conclusion is reached. For all (z,0) with z sufficiently near Z, we have that z > 0 and hence
f is differentiable at (z,0) with V f(z) = (8,0). This verifies that f is smooth at every
(x,0) with £ > 0. The case of z < 0 can be treated similarly.

We illustrate the above results with three examples below.

Example 6 Suppose ¥(z) = V1+ 22 with x € R. Then, Yo(x) = |z| and o = —1 and
B =1. Moreover,
72
_>

’ 2 _ L $2: 1
(V' (z) — )z —<m+1> VI+22(V1+a22—z) 2

as xr — —OQ.

2

/ 2 _ _ z 2 _ z 1
(B—'(z))x —<1 7\/@)1“ —\/1+$2(\/1+x2+$)—>2 as x — 0.
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Thus, by the above fact, f defined by (15) is strongly semismooth at (Z,0). Since f is
twice continuously differentiable at any (Z,t) with t # 0, then f is strongly semismooth on
R"™. Also, v is majorized by v and (23) holds, so f is locally Lipschitzian, directionally
differentiable, and smooth everywhere except at (0,0). Thus f is basic strongly AS. In
particular, this shows that the CHKS function is basic strongly AS. Since f is positively
homogeneous about (0,0), Theorem 5 shows that f is in fact Lipschitz continuous.

Example 7 Suppose 1 : R — R is given by

e
2 — if x>
W(@) = T+ Iz if x> e,
e ¢+3e—1 ifx<e.

This is a smooth conver function and, in particular, its derivative

(& .
W(x) = {2 T o U2
€

r—e ifr <e,
is an increasing function. Also, Vo (x) = 2max{0,z} and a = 0,8 = 2. We have

(W' (z) —a)r ="z =0 asx — —00,
e

(ﬁ - W(@)x = (1111‘)2

0 (22) holds. Thus, by the above result, f defined by (15) is semismooth at (z,0) for any
T € R. Hence f is semismooth on R?. However, it is easily seen that (8 — v¢'(x))z* — oo
for any k > 0, so f is not semismooth of order k at (Z,0). Also, 1 is majorized by 1)
and (23) holds, so f is locally Lipschitzian, directionally differentiable, smooth everywhere
except at (0,0). Thus f is basic AS. Since f is positively homogeneous about (0,0), Theorem
5 shows that f is in fact Lipschitz continuous.

—0 aszx — o0,

Example 8 Suppose ¢/ : R — R is given by

_ [2x—elnz if x> e,
w(z)_{e“e—i—e—l if v <e.

This is a smooth conver function and, in particular, its derivative
¥(x) = {2‘5 yoze
er ¢ ifx <e,
is an increasing function. Also, Vo (x) = 2max{0,z} and a« = 0,8 = 2. We have
B—Y(x)x=€e/A0 asz— 0.
Thus f is not semismooth at (Z,0) when T > 0.

As Example 8 shows, ¥ being smooth convex and positive-valued is not sufficient for f
given by (15) to be semismooth.
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4.4 Integral Functions

The result of Dontchev, Qi and Qi [13] cited in Subsection 4.1 was proved by showing that an
integral function involving B-splines is strongly semismooth. This result was then extended
by Qi and Yin [37] to a more general class of functions; also see [34, Section 5]. In particular,
they showed that if g is a continuous function on [a,b] (—o0 < a < b < 00) and u, v are two
real-valued strongly semismooth functions on R", then the integral function f : R -+ R
defined by

£@) = [ (@) + (@), o(0)dt (24)

is strongly semismooth on R". This result was used in [37] to prove quadratic convergence
of a Newton-type method proposed by Andersson, Elfving, Iliev and Vlaxhkova [2] for in-
terpolation of convex scattered data. Notice that, although the integrand in (24) is strongly
semismooth, this alone is not sufficient for the integral function to be strongly semismooth,
as is shown by a counterexample in [37].

Since the integrand in (24) is PS for each t, is the function f defined by (24) a PS
function also? In the case where u and v are linear, i.e., u(z) = @'z, v(z) = v*z for some
u,v € R™, Qi and Yin proved the following result [37].

(a) If u and v are linearly dependent, then f is piecewise linear and hence PS.

(b) If w and v are linearly independent, then f is smooth and strongly semismooth on
R"\ {r € R" : 4"z = vz = 0}. If in addition g #Z 0 on [a,b], then f is strongly
semismooth on R™ and X; = Fy =R"\ {z e R": 2"z = v"2 = 0}.

It readily follows from Definition 4 that if 4,7 are linearly independent, then f is basic
strongly AS for n = 2 and f is strongly AS but not basic strongly AS for n > 2 (since
Xy = Fy is a subspace of dimension n — 2). Then, by Corollary 1, f is not PS whenever 4
and v are linearly independent.

What about nonlinear u,v? We study this general case below. Suppose u,v : R" - R
are smooth and g¢ is continuous on [a,b] (—oo0 < a < b < o0). It can be shown that f
defined by (24) is locally Lipschitzian and semismooth on R"; see [12]. Moreover, by using
the formula (24), it is straightforward to show that f is smooth at every x € R" such that
u(z),v(x) are not both zero. In particular,

(0 b if u(z) =
/a (tVu(z) + Vo(z))g(t)dt if u(z) =
Vf(z) =« /ma"{””‘“’}(tw(x) + Vo(z))g)dt if u(z) > 0,

max{a,r(z)}

/min{b,r(w)} (tVu(z) + Vo(z))gt)dt  if u(z) < 0,

\ /min{a,r(z)}

where 7(z) := —v(z)/u(z). Thus R"\ X; C Y = {z € R" : u(z) = v(z) = 0}, so, in
order to verify that f is AS, it suffices to show that for every Z € Y there isa & > 0
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satisfying (6). Fix any Z € Y. Suppose that Vu(z), Vv(z) are linearly independent for
all z € R™ (n > 2). It follows from the implicit function theorem that there exist indices
1<i<j<m,openballsB, CR,B; CR,BgC R"? centered at Z;, zj, Zg,> respectively,
and differentiable functions ¢;, ¢, : Bk — R such that z; = ¢;(zr),z; = ¢;(zg) if and only
ifx €Y, (x,2;,zr) € B; x B; x Bg. Suppose that ¢; changes concavity finitely many
times on each line segment lying in some open ball By C By centered at Zp and similarly
for ;.° (Roughly speaking, the manifold Y is not too “wiggly”.) Then we have that the
open set

X =R"\Y = {(z;,zj,zr) € B; x B, x Br: 1 # pi(xgr) or x; # ;i(zr)}

is nonempty and connected. This is because, for any two points (Z;, Z;, Zr) and (Z;, Z, £g) in
X, the line segment joining them intersects Y at (z;, z;,zg) if and only if the line segment
joining (Z;,Zr) and (%;,Zg) intersects the graph of ¢; at (z;,zx) and the line segment
joining (Z;,Zg) and (Z;,Zg) intersects the graph of ¢, at (z;,2g). By our assumption
on ¢;, the number of such intersection points on its graph is finite and similarly for ¢;.
Thus, perturbing either Z; or ; changes the xr component of each intersection point on the
graph of ¢; while leaving the intersection points on the graph of ¢; unchanged. Since ¢; is
continuous, this means that, for sufficiently small perburbation, the xz component of each
intersection point on the graph of ; differs from the xz component of each intersection
point on the graph of ¢;. Thus the perturbed line segment does not intersect ¥ and lies
entirely in X. This shows that there is a £ > 0 satisfying (6). Hence f is AS under the
above assumption on the (implicit) functions ¢; and ¢; defined around each z € Y. If in
addition u and v are strongly semismooth, then the result of Qi and Yin [37] implies that f
is strongly AS. By Corollary 1, f is either smooth or not PS.

Example 9 Suppose n > 3 and u(z) = z1 + p(xs,...,2T,), v(r) = z3 + q(z3,...,2,),
where p,q : R"2 — R are polynomial functions. Then u,v are infinitely differentiable and
Vu(z), Vu(x) are linearly independent for all x € R"™. Moreover, we can take i =1,j = 2
and ¢; = —p, ¢; = —q. Then ¢;, ¢; are polynomial functions and hence they change
concavity finitely many times on any line segment in R™ 2. Thus, by the above discussion,
if g is continuous on [a,b], then f defined by (24) is strongly AS.

It is an open question whether we can relax the above assumption of finitely many
concavity changes on the (implicit) functions ¢;, ;. In particular, complication arises if the
graphs of these functions can have infinitely many intersection points with a line segment.

5 Appendix

In this appendix, we give an alternative proof of Theorem 2(c) that is a more direct extension
of Rockafellar’s proof.

°For any z € R™, we denote by zg the reduced vector in R"~? obtained by dropping z;, z; from z.
6More precisely, for any zg,yr € Bg, the derivative of the function ¢ — ;((1 — t)zg + tyr) changes
sign a finite number of times over 0 < ¢ < 1, and the same holds for ¢; in place of ;.
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Let € > 0 be small enough such that (1) holds with € = £ and clX; C O, where we define
X, = XNB.(z) Vee(0,8).
Notice that X, is nonempty for every ¢ > 0 since X is dense in 0. For each i € I, let

D;:={z€0: f(z) = fi(x),Vf(z) = Vfi(z)}.

On X,, the mapping V f is continuous, and it agrees with V f; on D, N X,. For each z € X,
{fi}ier forms a local representation for f at  and hence, by Theorem 1(b), z € D; for some
i € I. This implies that the sets D;, i € I, cover X, for all € € (0,&). By Theorem 1(a), for
each 7 € I there is an open set O; such that z € clO; and f = f; on O;. The latter implies
f is smooth on O; and Vf = Vf; on O;. Hence D; O O; N B.(z) # 0 for all € € (0,¢), so
that T € clD;. Since D;, i € I, cover X, for all € € (0,&) and V f; is continuous on each D;,
whose closure contains z, we have
1im¢sup V(X)) C{Vfi(z):ie I}
€l0

On the other hand, Vf is continuous on X, and X, is nonempty and connected by (2), so
the image V f(X.) is nonempty and connected. Hence the set V f(X.), which is uniformly
bounded as € | 0, must converge to some particular element of {V f;(Z) : i € I}, say V f5(Z)
for some i € I. Thus, Vf has a continuous extension from X to X U {Z}.

For each i € I, since O; N X, is dense in O; N B.(Z) whose closure contains Z, then
z € cl(0; N X,). Since Vf = Vf; on O;, the continuity of V f; on O; implies

Vfi(z) =limsup Vf(0; N X,) Climsup Vf(X.) = V£(Z). (25)
el0 el0
Then, for any x € O N B.(Z), we have f(z) = f;i(z) for some ¢ € I and f(Z) = f;(7),
V f;(z) = V fi(z). This, together with smoothness of f;, implies

f(@) = f(@) = V@) (x—7) = filz) - fi(@) = V(2)" (z — %) = 0;(h),

where limjj 0 0i(h)/|||| = 0. Since I is a finite set, this shows that f is differentiable at Z
with Vf(Z) = V f;(Z). The last claim of the theorem follows from (25).

Thus f is differentiable at Z and Vf(z) = Vf;(Z) for all i € I. By (b), f is strictly
differentiable at z.
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