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Abstract

The question of nonemptiness of the intersection of a nested sequence of closed sets is
fundamental in a number of important optimization topics, including the existence of optimal
solutions, the validity of the minimax inequality in zero sum games, and the absence of a duality
gap in constrained optimization. We introduce the new notion of an asymptotic direction of a
sequence of closed sets, and the associated notions of retractive, horizon, and critical directions,
and we provide several conditions that guarantee the nonemptiness of the corresponding intersec-
tion. We show how these conditions can be used to obtain simple proofs of some known results
on existence of optimal solutions, and to derive some new results, including an extension of the
Frank-Wolfe Theorem for (nonconvex) quadratic programming.

1 Research supported by Grant NSF Grant ECS-0218328. Thanks are due to Huitzen Yu for
helpful interactions.

2 Dept. of Electrical Engineering and Computer Science, M.I.T., Cambridge, Mass., 02139.
3 Dept. Mathematics, University of Washington, Seattle, WA 98195

1



1. INTRODUCTION

In this paper, we focus on the question whether a set intersection ∩∞
k=0Sk is nonempty, where

{Sk} is a sequence of nonempty closed sets in �n with Sk+1 ⊂ Sk for all k. This is a fundamental

issue in optimization, because it lies at the heart of a number of important questions, such as the

following:

(a) Does a function f : �n �→ (−∞,∞] attain a minimum over a set X? This is true if and

only if the intersection

∩∞
k=0

{
x ∈ X | f(x) ≤ γk

}

is nonempty, where {γk} is a scalar sequence with γk ↓ infx∈X f(x).

(b) If C is a closed set and A is a matrix, is A C closed? To prove this, we may let {yk} be

a sequence in A C that converges to some y ∈ �n, and then show that y ∈ A C. If we

introduce the sets

Wk =
{
z | ‖z − y‖ ≤ ‖yk − y‖

}
, Nk = {x | Ax ∈ Wk},

and

Sk = C ∩ Nk,

it is sufficient to show that the intersection ∩∞
k=0Sk is nonempty.

(c) Given a function F : �n+m �→ (−∞,∞] that is closed (i.e., has a closed epigraph), is the

function f : �n �→ [−∞,∞] defined by f(x) = infz∈�m F (x, z) closed? It is known that this

is a critical question in duality theory and minimax theory (see, e.g., [AuT03], [BNO03],

[Roc70]). Properties of epi(f), the epigraph of f , can be inferred from properties of epi(F ),

the epigraph of F , by using the relation

P
(
epi(F )

)
⊂ epi(f) ⊂ cl

(
P

(
epi(F )

))
,

where cl(·) denotes closure of a set and P (·) denotes projection on the space of (x, w), i.e.,

P (x, z, w) = (x, w). [The left-hand side of this relation follows from the definition

epi(f) =
{

(x, w)
∣∣∣ inf

z∈�m
F (x, z) ≤ w

}
.

To show the right-hand side, note that for any (x, w) ∈ epi(f) and every k, there exists

a zk such that (x, zk, w + 1/k) ∈ epi(F ), so that (x, w + 1/k) ∈ P
(
epi(F )

)
and (x, w) ∈

cl
(
P

(
epi(F )

))
.] If F is closed and we can show that the projection P (·) preserves closedness

[a special case of question (b) above], it follows that epi(f) is closed and f is closed.
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If the sets Sk are compact, then ∩∞
k=0Sk is nonempty and compact, a fact that underlies

Weierstrass’ Theorem (a closed function f attains a minimum over a compact set X); see the

reasoning in (a) above. The special case where the sets Sk are convex has been the subject of much

research, following the work of Helly [Hel21] and others (e.g., Fenchel [Fen51] and Rockafellar

[Roc70]). A recent line of analysis that focuses on the issues (a)-(c) discussed above, is given

in Section 1.5 of Bertsekas, Nedić, and Ozdaglar [BNO03], and is based on the notions of a

direction of recession and lineality space. In this paper, we develop conditions that guarantee

the nonemptiness of the intersection ∩∞
k=0Sk in the general case where the sets Sk may not be

bounded and may not be convex.

Our analysis is based on an extension of the notion of a direction of recession, the notion

of an asymptotic direction of the set sequence {Sk}. This and the related notion of a retractive

direction (see Section 2) are new in the form given here, but are closely related to ideas developed,

principally within the context of optimization, by Auslender; see, for example, [Aus96], [Aus97],

[Aus00], and the book by Auslender and Teboulle [AuT03]. These sources focus on asymptotic

directions of sets and functions, rather than sequences of sets. It appears that our notion of

asymptotic direction of a sequence of sets (rather than a set or a function) is simpler and often

more convenient for the intended optimization applications. We also develop the notions of a

horizon and critical directions, which are formulated here for the first time, for both cases of a

single set and a sequence of sets. We show that the notions of asymptotic, retractive, horizon, and

critical directions provide the basis for new set intersection theorems, new existence of optimal

solutions results, and simpler proofs of known theorems.

We note that in the case where the sets Sk are convex, as well as closed, the set of asymptotic

directions of {Sk} is in effect the intersection of the recession cones of the sets Sk, and the set of

retractive directions is related (but is not equal) to the intersection of the lineality spaces of the

sets Sk. A horizon direction of {Sk} is also somewhat related to common directions of recession

of the sets Sk (see the discussion of Section 3).

We note also that the set of asymptotic directions, when specialized to a closed, possibly

nonconvex, set (rather than a nested sequence of closed sets), is essentially the horizon cone

described by Rockafellar and Wets [RoW98], and the asymptotic cone described by Auslender

and Teboulle [AuT03]. These cones have been introduced in the works of Dedieu [Ded77], [Ded79],

and have been the subject of considerable attention recently; see the references in [AuT03] and

[RoW98].

We organize the material as follows. In Section 2, we introduce asymptotic directions, we

develop some of their properties, and we prove our central results relating to the nonemptiness
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of a closed set intersection. In Section 3, we introduce horizon and critical directions, and we use

them to derive additional set intersection theorems. Some of these theorems relate to level sets of

bidirectionally flat functions, a class that includes convex quadratic and, more generally, convex

polynomial functions. Finally, in Section 4 we extend some known results on the existence of op-

timal solutions, including a generalization of the Frank-Wolfe Theorem of (nonconvex) quadratic

programming. While we do not discuss in this paper the application of our set intersection results

to questions of preservation of closedness under linear transformation and partial minimization,

our results can also be used for the analysis of these issues, as discussed earlier.

Throughout the paper, all analysis is done in the n-dimensional Euclidean �n. Thus, unless

otherwise specified, vectors and subsets are from �n. All vectors are viewed as columns vectors,

and a prime denotes transpose. The standard Euclidean norm, ‖x‖ =
√

x′x is used throughout.

2. ASYMPTOTIC DIRECTIONS

We first introduce the basic notion of this paper in the following definition. A set sequence {Sk}
such that Sk+1 ⊂ Sk for all k, will be referred to as being nested .

Definition 2.1: Let {Sk} be a nested sequence of nonempty closed sets. We say that a

vector d is an asymptotic direction of {Sk} if there exists a sequence {xk} such that

xk ∈ Sk, k = 0, 1, . . . ,

and

‖xk‖ → ∞,
xk

‖xk‖
→ d

‖d‖ .

A sequence {xk} associated with an asymptotic direction d as above is called an asymptotic

sequence corresponding to d. An asymptotic direction d of {Sk} is called retractive if, for

every corresponding asymptotic sequence {xk} and every scalar α > 0, there exists an integer

k such that

xk − αd ∈ Sk, ∀ α ∈ (0, α], k ≥ k.

The set sequence {Sk} is called retractive if all its asymptotic directions are retractive.

Roughly speaking, an asymptotic direction is a direction along which we can escape towards

∞ through each of the sets Sk (see Fig. 2.1). In particular, {Sk} has an asymptotic direction

if and only if all the sets Sk are unbounded . An alternative and equivalent definition is that a
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Figure 2.1. Illustration of an asymptotic direction of a sequence of nonconvex

sets and a corresponding asymptotic sequence. The normalized direction sequence

xk/‖xk‖ must converge to the normalized direction d/‖d‖.

vector d �= 0 is an asymptotic direction of {Sk} if there exists a sequence {xk} and a positive

sequence {tk} with xk ∈ Sk for all k, tk → ∞, and

xk

tk
→ d.

A retractive asymptotic direction d is one whose asymptotic sequences still belong to the cor-

responding sets Sk when shifted in the opposite direction −d by any step α in some bounded

interval of positive numbers (see Fig. 2.2). The importance of the notion of a retractive direction

may not be apparent at first sight, but is motivated by the following proposition, a key result of

this paper. The proof uses a minimum norm vector xk from each set Sk, and involves two ideas:

(a) The intersection ∩∞
k=0 Sk is empty if and only if there is an unbounded sequence {xk}

consisting of minimum norm vectors from the sets Sk.

(b) An asymptotic sequence {xk} consisting of minimum norm vectors from the sets Sk cannot

correspond to a retractive direction, because such a sequence eventually (for large k) gets
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Figure 2.2. Illustration of retractive and nonretractive directions in �2. In both

cases the set of asymptotic directions is
{

(0, β) | β > 0
}

, and the intersection of

the corresponding sequence is the set
{

(0, x2) | x2 ≥ 0
}

. In (a), we have

Sk =

{
(x1, x2)

∣∣∣ |x1| ≤
1

k + 1
, x2 ≥ − 1

k + 1

}
,

and it can be seen that every asymptotic direction is retractive. In (b), we have

Sk =
{

(x1, x2)
∣∣ x2 ≥ (k + 1)x2

1

}
,

and it can be seen that all asymptotic directions are not retractive. As an ex-

ample, for the asymptotic direction (0, 1), the corresponding asymptotic sequence{
(k, (k + 1)k2)

}
does not belong to Sk when shifted in the opposite direction

(0,−1).

closer to 0 when shifted in the opposite of the corresponding asymptotic direction d (see

Fig. 2.3).

Proposition 2.1: A retractive nested sequence of nonempty closed sets has nonempty

intersection.

Proof: Let {Sk} be the given sequence. For each k, let xk be a vector of minimum norm

on the closed set Sk (such a vector exists by Weierstrass’ theorem, since it can be obtained by

minimizing ‖x‖ over all x in the compact set Sk ∩ {x | ‖x‖ ≤ ‖xk‖}, where xk is any vector in

Sk). It will be sufficient to show that a subsequence {xk}k∈K is bounded. Then, since {Sk} is
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Figure 2.3. Geometric interpretation of the proof idea of Prop. 2.1. An asymp-

totic sequence {xk} corresponding to an asymptotic direction d eventually (for

large k) gets closer to 0 when shifted in the opposite direction −d, so such a se-

quence cannot consist of vectors of minimum norm from Sk without contradicting

the retractiveness assumption.

nested, for each m, we have xk ∈ Sm for all k ∈ K, k ≥ m, and since Sm is closed, each of the

limit points of {xk}k∈K will belong to each Sm and hence also to ∩∞
m=0 Sm, thereby showing the

result. Thus, we will prove the proposition by showing that there is no subsequence of {xk} that

is unbounded.

Indeed, assume the contrary, let {xk}k∈K be a subsequence such that

lim
k→∞, k∈K

‖xk‖ = ∞,

and let d be the limit of a subsequence
{
xk/‖xk‖

}
k∈K, where K ⊂ K. For each k = 0, 1, . . .,

define yk = xm, where m is the smallest index m ∈ K with k ≤ m. Then, since yk ∈ Sk for all

k and limk→∞{yk/‖yk‖} = d, we see that d is an asymptotic direction of {Sk} and {yk} is an

asymptotic sequence corresponding to d. Using the retractiveness assumption, let α > 0 and k

be such that yk − αd ∈ Sk for all α ∈ (0, α] and k ≥ k. We have d′yk → ∞, since ‖d‖ = 1 and

d′yk/‖yk‖ → 1, so for all k ≥ k with 2d′yk > α, we obtain

‖yk − αd‖2 = ‖yk‖2 − α(2d′yk − α) < ‖yk‖2.

This is a contradiction, since for infinitely many k, yk is the vector of minimum norm on Sk.

Q.E.D.

For an example where the above proposition applies, consider the sequence {Sk} of Fig.

2.2(a). Here the asymptotic directions, (0, β), β > 0, are retractive, and indeed the intersection
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∩∞
k=0 Sk is nonempty. On the other hand, the condition for nonemptiness of ∩∞

k=0 Sk of the

proposition is far from necessary. For example, the sequence {Sk} of Fig. 2.2(b) has nonempty

intersection, yet the asymptotic directions, (0, β), β > 0, are not retractive.

We note that the conclusion of the preceding proposition holds also under a weaker definition

of asymptotic direction, whereby d is called retractive if, for every corresponding asymptotic

sequence {xk}, there exists a bounded sequence of positive scalars {αk} and an index k such

that xk − αkd ∈ Sk for all k ≥ k. This definition does not work well, however, when we consider

intersections of two or more sequences. By contrast, under the given Definition 2.1, it follows

that the sequence obtained by intersection of two retractive sequences is retractive. In particular,

we have the following proposition.

Proposition 2.2: Let {Sj
k}, j = 1, . . . , r, be retractive nested sequences of nonempty

closed sets. Consider the sets

Sk = S1
k ∩ S2

k ∩ · · · ∩ Sr
k, k = 0, 1, . . . ,

and assume that they are nonempty for all k. Then {Sk} is retractive.

The definition of a retractive set sequence also implies that the sequence obtained by the

union of two retractive sequences is retractive.

Proposition 2.3: Let {Sj
k}, j = 1, . . . , r, be retractive nested sequences of nonempty

closed sets. Then the sequence {Sk}, where

Sk = S1
k ∪ S2

k ∪ · · · ∪ Sr
k, k = 0, 1, . . . ,

is retractive.

Asymptotic Directions of Closed Sets

We now specialize the definitions of asymptotic directions and retractiveness to the case where

all the sets in the sequence are the same. For this case, the notion of asymptotic direction was

studied in the works of Dedieu [Ded77], [Ded79].
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Definition 2.4: Given a nonempty closed set S, we say that d is an asymptotic direction

of S if it is an asymptotic direction of the sequence {Sk}, where Sk = S for all k, i.e., if

d �= 0 and there exists a sequence {xk} ⊂ S, called an asymptotic sequence corresponding to

d, such that ‖xk‖ → ∞, and
xk

‖xk‖
→ d

‖d‖ .

An asymptotic direction d is called retractive if, for every corresponding asymptotic direction

{xk} and every scalar α > 0, there exists an integer k such that

xk − αd ∈ S, ∀ α ∈ (0, α], k ≥ k.

The set S is called retractive if all its asymptotic directions d are retractive.

We note that the definition of retractive closed sets was introduced by Auslender [Aus00],

and Auslender and Teboulle [AuT03] (see [AuT03], p. 37; the definition given there is slightly

different from ours).

Let us provide a characterization of asymptotic directions in the case where the sets are

convex. We recall that given a nonempty convex set C, we say that a vector d is a direction of

recession of C if x + αd ∈ C for all x ∈ C and α ≥ 0 (see, e.g., [Roc70], [BNO03]). The set of all

directions of recession of C, denoted by RC , is the recession cone of C. The lineality space of C,

denoted by LC , is the set of directions of recession d whose opposite, −d, are also directions of

recession:

LC = RC ∩ (−RC).

For a closed proper convex function f : �n �→ (−∞,∞], the recession cone of f and the constancy

space of f , denoted Rf and Lf , respectively, are the (common) recession cone and lineality space

of its nonempty level sets (see, e.g., [BNO03], [Roc70]).

The next proposition shows that the asymptotic directions of a closed convex set sequence

are the nonzero common directions of recession of the sets in the sequence.

Proposition 2.4: Let {Ck} be a nested sequence of nonempty closed convex sets. Then d

is an asymptotic direction of {Ck} if and only if d �= 0 and d ∈ ∩∞
k=0RCk

.

Proof: Let d be a nonzero vector in ∩∞
k=0RCk

, and for each k, let zk be a vector in Ck. Define

xk = zk + k(‖zk‖ + 1)d, k = 0, 1, . . .
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Then, by the convexity of Ck, since d ∈ RCk
, we have xk ∈ Ck for all k. Furthermore, using the

triangle inequality, we have

(k‖d‖ − 1)‖zk‖ + k‖d‖ ≤ ‖xk‖ ≤ (k‖d‖ + 1)‖zk‖ + k‖d‖,

from which it is seen that

‖xk‖ → ∞,
xk

‖xk‖
→ d

‖d‖ .

Hence, d is an asymptotic direction of {Ck}.

Conversely, let d be an asymptotic direction of {Ck}, and let {xk} be a corresponding

asymptotic sequence. In view of the convexity of Ck, to show that d ∈ ∩∞
k=0RCk

, it will suffice

to choose an arbitrary k and vector z ∈ Ck, and to show that z + d ∈ Ck. We assume without

loss of generality that z �= xk for all k, and we define

yk =
xk − z

‖xk − z‖‖d‖.

Since {xk} is unbounded, for sufficiently large k, the vector z + yk lies in the line segment

connecting z and xk, and since xk ∈ Ck for k ≥ k, we have z + yk ∈ Ck. On the other hand, it

is seen that since xk/‖xk‖ → d/‖d‖, we have z + yk → z + d. Since Ck is closed, it follows that

z + d ∈ Ck. Q.E.D.

As a special case of the preceding proposition, we obtain that for a closed convex set, the

set of asymptotic directions coincides with the set of nonzero directions of recession. It can be

seen also that for a closed convex set, the lineality space directions are retractive.

An important case of a retractive set is a polyhedral set, i.e., a set of the form

S = {x | a′
jx ≤ bj , j = 1, . . . , r},

where a1, . . . , ar are vectors, and b1, . . . , br are scalars. Then, the asymptotic directions of S are

the nonzero vectors d that satisfy a′
jd ≤ 0 for all j = 1, . . . , r, and all of them are retractive. This

is a special case of the following proposition.

Proposition 2.5: Let S be a set which is the vector sum of a compact set and a polyhedral

cone N . Then S is retractive and its asymptotic directions are the nonzero vectors in N .

Proof: Let S = S + N , where S is compact, and N is the polyhedral cone

N = {y | a′
jy ≤ 0, j = 1, . . . , r},
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where a1, . . . , ar are some vectors. Any x ∈ S can be written as x = x + y, where x ∈ S and

y ∈ N , so for any d ∈ N , we have x + αd = x + (y + αd) ∈ S for all α ≥ 0. It follows that d is

an asymptotic direction of S.

Conversely, let d be an asymptotic direction of S, and let {xk} be a corresponding asymp-

totic sequence. We can represent xk as

xk = xk + yk, ∀ k = 0, 1, . . . ,

where xk ∈ S and yk ∈ N , so that

a′
jxk = a′

j(xk + yk), ∀ k = 0, 1, . . . , j = 1, . . . , r.

Dividing both sides with ‖xk‖ and taking the limit as k → ∞, we obtain

a′
jd = lim

k→∞

a′
jyk

‖xk‖
.

Since a′
jyk ≤ 0 for all k and j, we obtain that a′

jd ≤ 0 for all j, so that d ∈ N .

We will now show that d is retractive. Fix any α > 0. We consider two cases:

(1) a′
jd = 0. In this case, a′

j(yk − αd) ≤ 0 for all k, since yk ∈ N and a′
jyk ≤ 0.

(2) a′
jd < 0. In this case, we have

1
‖xk‖

a′
j(yk − αd) =

1
‖xk‖

a′
j(xk − xk − αd),

so that since xk
‖xk‖ → d, {xk} is unbounded, and {xk} is bounded, we obtain

lim
k→∞

1
‖xk‖

a′
j(yk − αd) = a′

jd < 0.

Hence a′
j(yk − αd) < 0 for k greater than some k.

Thus, for k ≥ k and α ∈ (0, α], we have a′
j(yk − αd) ≤ a′

j(yk − αd) ≤ 0 for all j, so that

yk − αd ∈ N and xk − αd ∈ S. Q.E.D.

We recall that every polyhedral set can be written as the vector sum of a compact polyhedral

set (the convex hull of a finite number of points) and a polyhedral cone (the Minkowski-Weyl

representation, see, e.g., [Roc70], [BNO03]). Hence, the preceding proposition applies to the

case where the set S is polyhedral. On the other hand, examples show that the polyhedrality

assumption on the cone N in Prop. 2.5 cannot be easily relaxed.

Note that from Props. 2.2 and 2.5, it follows that the asymptotic directions of a nonempty

set of the form S = S1 ∩ · · · ∩ Sm such that each of the sets Si, i = 1, . . . , m, is the vector sum
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of a compact set and a polyhedral cone N i, are the nonzero vectors in ∩m
i=1N

i. Furthermore, S

is retractive. The result of Prop. 2.5 can also be shown for a set S which is the vector sum of a

compact set and the union of a finite number of polyhedral cones. Sets of this type have been

studied within the class of asymptotically polyhedral sets introduced by Auslender and Teboulle

[AuT03], who prove results that are similar to Prop. 2.5.

The following result does not seem to have been reported in the literature. It shows that

closed level sets associated with concave functions are retractive.

Proposition 2.6: Let S be a nonempty closed set of the form

S =
{
x | f(x) ≥ 0

}
,

where f : �n �→ (−∞,∞] is a proper convex function. Then S is retractive.

Proof: Assume, to arrive at a contradiction, that there exists an asymptotic direction d of S that

is not retractive, and let {xk} be a corresponding asymptotic sequence for which the definition of

retractiveness is violated. Then there must exist a bounded sequence of positive scalars αk with

f(xk −αkd) < 0 for an infinite subsequence of indexes k. Without loss of generality, assume that

this is true for all indexes k. We have xk/‖xk‖ → d/‖d‖ and ‖xk‖ → ∞, so that ‖xk−αkd‖ → ∞
and (xk − αkd)/‖(xk − αkd)‖ → d/‖d‖. It follows that {xk − αkd} is an asymptotic sequence of

the closure of the set {x | f(x) < 0} and d is the corresponding asymptotic direction. By Prop.

2.4, d is a direction of recession of this closed convex set. Since xk − αkd lies in the interior of

this set [xk − αkd belongs to {x | f(x) < 0}, which is the complement of S and hence an open

set], xk also lies in the interior of this set, i.e., f(xk) < 0, contradicting the hypothesis xk ∈ S.

Q.E.D.

We finally provide some set intersection results involving convexity assumptions. Part (a)

of the following proposition and the special case where X is a polyhedral set in part (b) are

known (see [BNO03] and the references given there), but the proof given here is simpler than

those found in the literature.

Proposition 2.7: Let {Ck} be a nested sequence of nonempty closed convex sets. Denote

R = ∩∞
k=0RCk

, L = ∩∞
k=0LCk

.
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(a) If R = L, then {Ck} is retractive, and ∩∞
k=0 Ck is nonempty.

(b) Let X be a retractive closed set with set of asymptotic directions denoted by A. Assume

that all the sets Sk = X ∩ Ck are nonempty, and that

A ∩ R ⊂ L.

Then, {Sk} is retractive, and ∩∞
k=0 Sk is nonempty.

Proof: (a) By Prop. 2.4, the asymptotic directions of {Ck} are the nonzero directions in R, and

by hypothesis, these are also directions in L. This implies that for an asymptotic direction d, we

have d ∈ LCk
for all k, so for any corresponding asymptotic sequence {xk}, we have xk −αd ∈ Ck

for all k and α ≥ 0. Hence d is retractive, and ∩∞
k=0 Ck is nonempty by Prop. 2.1.

(b) An asymptotic direction d of {Sk} must belong to A ∩ R, and hence also to L. Thus, for

any corresponding asymptotic sequence {xk} we have xk ∈ Ck and hence xk − αd ∈ Ck for all

k and α ≥ 0. Since d is an asymptotic direction of X and X is retractive, this implies that d is

retractive for {Sk}. From Prop. 2.1, it follows that ∩∞
k=0 Sk is nonempty. Q.E.D.

Proposition 2.7(b) applies to the case where X is the vector sum of a compact set and a

polyhedral cone N (see Prop. 2.5), or to the case where X is specified by concave inequalities

(see Prop. 2.6).

3. HORIZON DIRECTIONS AND ASSOCIATED INTERSECTION THEOREMS

We now focus on a key question: Given two set sequences {S1
k} and {S2

k} each with nonempty

intersection by itself, and with

S1
k ∩ S2

k �= ∅, k = 0, 1, . . . ,

what causes the intersection sequence {S1
k ∩ S2

k} to have an empty intersection? By sketching a

few examples (see Fig. 3.1), one can see that the trouble lies with the existence of some “critical

asymptotes.” Roughly, these are asymptotic directions d, common to {S1
k} and {S2

k}, and such

that starting at ∩kS2
k (or ∩kS1

k) and looking at the horizon along d, we do not meet ∩kS1
k (or

∩kS2
k, respectively). With this in mind, we introduce a subset of asymptotic directions, called
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S2

Sk1

d: “Critical Asymptote”

Figure 3.1. Illustration of a set sequence {S1
k} and a set S2 with

S1
k ∩ S2 �= ∅,

for all k, and ∩∞
k=0 S1

k ∩ S2 = ∅. The problem is that there exists some “critical

asymptote” along which the two sequences “asymptotically lose contact.”

horizon directions, which we will subsequently use to make precise the meaning of a “critical

asymptote.”

Definition 3.1: Given a nested closed set sequence {Sk} with nonempty intersection, we

say that an asymptotic direction d of {Sk} is a horizon direction with respect to a set G if,

for every x ∈ G, there exists a scalar a ≥ 0 such that x+αd ∈ ∩∞
k=0 Sk for all α ≥ a. We say

that d is a global horizon direction if G = �n, and we say that it is a local horizon direction

if G = ∩∞
k=0 Sk.

Thus d is a horizon direction with respect to G if starting at any point of G and going

along d we eventually enter and stay in ∩∞
k=0 Sk. The definition of a horizon direction of a set

sequence specializes naturally to the case of single closed set S by viewing the set as the constant

sequence of sets {Sk}, where Sk = S for all k. Thus, for example, the statement that d is a

horizon direction of S with respect to G means that d is a horizon direction of the sequence {Sk}
with respect to G, where Sk = S for all k.

It can be seen that if the sets Sk are convex, the set of local horizon directions is equal to

the set of asymptotic directions, and also to the set of nonzero common directions of recession of

all the sets Sk (see Prop. 2.4). The set of global horizon directions may be a strict subset of the

set of asymptotic directions, even if the sets Sk are convex (take, for example, all the sets Sk to
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be equal to the same line on the plane).

Note also that if {S1
k} and {S2

k} are nested closed set sequences such that the sequence

{S1
k ∩S2

k} has nonempty intersection, then a vector which is a horizon direction of both {S1
k} and

{S2
k} with respect to a (common) set G is also a horizon direction of {S1

k ∩ S2
k} with respect to

G. However, the converse is not true, as simple examples indicate. On the other hand, the set of

vectors that are global horizon directions of both {S1
k} and {S2

k} coincides with the set of global

horizon directions of {S1
k ∩ S2

k}.

Here are some examples illustrating horizon directions.

Example 3.1

Let S be the complement of a bounded open set. Then all nonzero directions are asymptotic

directions as well as global horizon directions.

Example 3.2

Let f : �n → � be a convex function that is coercive, and let S =
{
x | f(x) ≥ γ

}
where γ is a

scalar. Then S is closed and nonempty (since f is real-valued and hence continuous over �n, as

well as coercive), and the complement of S is bounded (since f is coercive). Hence all nonzero

directions are asymptotic directions as well as global horizon directions of S.

Example 3.3 (Vector Sums of Compact Sets and Polyhedral Cones)

Let S = X1 ∩ X2 ∩ · · · ∩ Xm, where each Xi is the vector sum of a compact set and a polyhedral

cone Ni. Then the set of asymptotic directions is ∩m
i=1 Ni and is also equal to the set of local

horizon directions. However, the set of global horizon directions may be strictly smaller, and in

fact may be empty, even if ∩m
i=1 Ni contains a nonzero direction (take for example m = 1 and X1

to be a half-line on the plane).

Let us introduce a class of convex functions that includes convex quadratic and, more

generally, convex polynomial functions. These functions are first introduced in Exercise 2.7 of

[BNO03], and were shown to be interesting within the set intersection and existence of optimal

solutions contexts. We recall that, for any closed proper convex function f : �n �→ (−∞,∞], a

direction d belongs to the recession cone Rf if and only if, for every x ∈ dom(f), we have

lim
α→∞

f(x + αd) − f(x)
α

≤ 0,

(see [Roc70], Theorems 8.5, 8.6).
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Example 3.4 (Bidirectionally Flat Convex Functions)

Let f : �n �→ (−∞,∞] be a closed proper convex function with the property that a direction d

belongs to the constancy space Lf if and only if

lim
α→∞

f(x + αd) − f(x)

α
= 0, ∀ x ∈ dom(f). (3.1)

Functions of this type will be referred to as bidirectionally flat . It is clear that convex polynomial

functions, including convex quadratic functions, are bidirectionally flat, since they are polynomial

along any direction, and hence constant along any direction d satisfying Eq. (3.1). Another class

of bidirectionally flat functions, which also includes convex quadratic functions, have the form

f(x) = h(Ax) + c′x + b,

where A is an m × n matrix, c is a vector, b is a scalar, and h : �m �→ (−∞,∞] is a closed proper

convex function satisfying

lim inf
‖y‖→∞

h(y)

‖y‖ = ∞.

In view of this property, we see that Eq. (3.1) is satisfied if and only if d is in the nullspace of A

and c′d = 0, which is true if and only if d ∈ Lf .

Let {Sk} be a set sequence defined by the level sets of f :

Sk = {x | f(x) ≤ γk},

where {γk} is a scalar nonnegative sequence with γk ↓ 0, and such that all the sets Sk are nonempty.

Then for any nonzero d ∈ Rf , one of the following two cases holds:

(1) d ∈ Lf , in which case d is a local horizon direction that is retractive.

(2) d /∈ Lf , in which case

lim
α→∞

f(x + αd) − f(x)

α
< 0, ∀ x ∈ �n.

In the latter case, we have limα→∞ f(x + αd) = −∞ for all x ∈ dom(f), implying that x + αd ∈
∩∞

k=0Sk, for all sufficiently large α. Thus, d is a horizon direction with respect to dom(f).

Also, if there exists a direction d with d ∈ Rf but d /∈ Lf , then by the preceding argument,

we must have infx∈�n f(x) = −∞, so that ∩∞
k=0Sk �= ∅. If on the other hand, we have Rf = Lf ,

then by Prop. 2.7(a), f attains its minimum over �n, so again ∩∞
k=0Sk �= ∅.

In conclusion, if f is bidirectionally flat, every asymptotic direction of {Sk} is either a horizon

direction with respect to dom(f), or else it is a local horizon direction that is retractive. Further-

more, ∩∞
k=0Sk �= ∅.

As a special case of the preceding example, consider a set sequence {Sk} defined by convex

quadratic inequalities:

Sk = {x | x′Qx + c′x + b ≤ γk}.
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For each asymptotic direction d, there are two possibilities:

(a) d is a global horizon direction that satisfies Qd = 0 and c′d < 0.

(b) d is a local horizon direction that is also a lineality direction (satisfies Qd = 0 and c′d = 0),

and hence it is retractive.

Note that this property is not shared by nonconvex quadratic inequalities (unless the quadratic

is strictly concave, see Example 3.2). As an example, for the subset of the plane

{
(x1, x2) | x1x2 ≥ 1

}
,

the set of asymptotic directions is

{
(d1, d2) | d1d2 ≥ 0

}
.

The asymptotic direction (0, 1) is not a global horizon direction. Furthermore, while it is a local

horizon direction, it is not retractive because, for some of its corresponding asymptotic sequences

[e.g., the sequence {(1/k, k)}], the requirement for retractiveness is not fulfilled.

Critical Directions

We now introduce another type of asymptotic direction whose character reflects some of the root

causes of emptiness of set intersections. The idea is that if two nested sequences {S1
k} and {S2

k},
each with nonempty intersection by itself (∩∞

k=0 S1
k �= ∅ and ∩∞

k=0 S2
k �= ∅), and with nonempty

intersection with the other (S1
k ∩ S2

k �= ∅, for all k), are combined to form an empty intersection

∩∞
k=0 (S1

k∩S2
k), then some of their common asymptotic directions must be “critical” in some sense.

The following definition formulates this idea, and is motivated by properties of the asymptotic

directions of level sets of bidirectionally flat functions.

Definition 3.2: Given a nested closed set sequence {Sk} with nonempty intersection, we

say that an asymptotic direction d of {Sk} is a critical direction with respect to a set G

if d is neither a horizon direction of {Sk} with respect to G, nor a retractive local horizon

direction of {Sk}. An asymptotic direction of {Sk} is referred to as noncritical with respect

to G if it is not critical with respect to G.

By convention, every asymptotic direction of {Sk} is noncritical with respect to the empty

set. In fact, Definitions 3.1 and 3.2 allow the possibility that the set G is empty, and are consistent

with this convention.
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Figure 3.2. Examples of horizon, critical, and noncritical directions of various

sets. In (a), the asymptotic direction (0, β), β > 0, is a horizon direction and

a noncritical direction with respect to any subset of the set
{

(x1, x2) | −1 <

x1 < 1
}

. It is not a horizon direction and it is a critical direction with respect

to any other subset. In (b), the given set is
{

(x1, x2) | x2
1 ≤ x2

}
, and all

the asymptotic directions [(0, β), β > 0] are global horizon directions and hence

noncritical directions with respect to any subset. The sets in (c) and (d) are

retractive. In (c), some asymptotic directions [such as (0, β), β > 0] are local

horizon directions, while others are not and are therefore critical with respect to

some sets. In (d), all asymptotic directions are local horizon directions and are

therefore noncritical with respect to any set.

The definition of a critical and noncritical direction of a set sequence specializes naturally

to the case of a single closed set S by viewing the set as the constant sequence of sets {Sk},
where Sk = S for all k; see Fig 3.2. Note that all global horizon directions and all retractive local

horizon directions are noncritical with respect to any nonempty set; see Fig. 3.3. Note also that

all asymptotic directions of sequences of level sets of bidirectionally flat functions f , such as the

ones considered in Example 3.4, are noncritical with respect to dom(f). In particular, sequences
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of nonempty convex quadratic level sets Sk = {x | x′Qx + c′x + b ≤ γk}, where γk ↓ 0, have

noncritical asymptotic directions with respect to �n.

The significance of critical directions is illustrated by the following proposition, which shows

that a sequence {S1
k ∩ · · · ∩ Sr

k} with empty intersection must have an asymptotic direction that

is critical for at least one of its components {Sj
k} with respect to some of the other components.

In particular, this implies that if all the components {Sj
k} have no critical directions, then the

intersection ∩∞
k=0 (S1

k ∩ · · · ∩Sr
k) is nonempty. The following proposition is actually a special case

of a more general proposition that we will prove shortly. We state the proposition separately

because it is simpler and is still sufficient to show most of the results on existence of optimal

solutions to be given in the next section.

Global Horizon
Directions

Retractive
Local Horizon
Directions

Noncritical
Directions
with Respect
to a Set

Asymptotic
Directions

Figure 3.3. Relations between different types of asymptotic directions.

Proposition 3.1: Consider a set sequence {Sk} of the form

Sk = S1
k ∩ S2

k ∩ · · · ∩ Sr
k,

where {Sj
k}, j = 1, . . . , r, are nested sequences of nonempty closed sets such that Sk �= ∅

for all k, and ∩∞
k=0 Sj

k �= ∅ for all j. If ∩∞
k=0 Sk = ∅, there exists a nonempty index subset

J ⊂ {1, . . . , r} such that ∩∞
k=0

(
∩j∈J Sj

k

)
= ∅, and an asymptotic direction of {∩j∈JSj

k} that

for some j ∈ J , is a critical direction of {Sj
k} with respect to ∪j∈J−{j} ∩∞

k=0 Sj
k.

The proof of the preceding proposition will be obtained as a special case of the subsequent

Prop. 3.2. The conclusion of the proposition cannot be replaced by the stronger conclusion that

if ∩∞
k=0 Sk = ∅, there exists an asymptotic direction of {Sk} that for some j ∈ {1, . . . , r}, is a

critical direction of {Sj
k} with respect to ∪j∈{1,...,r}−{j} ∩∞

k=0 Sj
k. This is shown by the following

counterexample.
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Example 3.5 (Counterexample)

Consider the following three sequences of nonempty closed sets:

S1
k =

{
(x, y, z)|0 ≤ z ≤ 1/k

}
, k = 0, 1, . . . ,

S2
k =

{
(x, y, z)|x > 0, 1/x ≤ z

}
, k = 0, 1, . . . ,

S3
k =

{
(x, y, z)|y ≥ x2

}
, k = 0, 1, . . . .

Each sequence has a nonempty intersection, and Sk = S1
k ∩ S2

k ∩ S3
k is nonempty for k = 0, 1, . . ..

The intersection of ∩∞
k=0 S1

k and ∩∞
k=0 S2

k is empty, and hence ∩∞
k=0 Sk is also empty. However,

all asymptotic directions of {Sk} are along the y axis, and are global horizon directions of {S3
k}.

These directions are also retractive local horizon directions for {S1
k} and {S2

k}. Hence they are

noncritical directions of {Sj
k} with respect to �3 (and hence also with respect to the smaller set

∪j∈{1,2,3}−{j} ∩∞
k=0 Sj

k) for all j ∈ {1, 2, 3}.

As an illustration of how Prop. 3.1 may be applied, consider a sequence {Sk} of the form

Sk = X ∩ S1
k ∩ S2

k ∩ · · · ∩ Sr
k,

where for each j, Sj
k is the ellipsoid given by

Sj
k = {x | x′Qjx + c′jx + bj ≤ γj

k},

and Qj is a real symmetric positive semidefinite matrix, cj is a vector, bj is a scalar, and {γj
k} is

a scalar positive sequence with γj
k ↓ 0. Furthermore, X is a nonempty closed set such that all its

asymptotic directions are local horizon directions that are retractive. Then all the asymptotic

directions of {Sj
k} and X are noncritical with respect to �n, Prop. 3.1 applies, and shows that

∩∞
k=0 Sk is nonempty, assuming the sets Sk are nonempty and ∩∞

k=0 Sj
k = {x | x′Qjx+c′jx+bj ≤ 0}

is nonempty for all j. Note that the purely quadratic case of this result (X = �n) is given by

Luo and Zhang [LuZ99].

The reasoning used above applies also in the more general case where the convex quadratic

functions are replaced by any real-valued bidirectionally flat functions. However, Prop. 3.1 does

not apply to set intersections involving extended real-valued bidirectionally flat functions (unless

the domains of these functions are identical). The following proposition is a generalization of

Prop. 3.1, which will allow us to deal with such situations (see Prop. 3.3 later in this section).
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Proposition 3.2: Consider a set sequence {Sk} of the form

Sk = Xk ∩ S1
k ∩ S2

k ∩ · · · ∩ Sr
k,

where {Xk} and {Sj
k}, j = 1, . . . , r, are nested sequences of nonempty closed sets, such

that Sk �= ∅ for all k, ∩∞
k=0 Xk �= ∅, and ∩∞

k=0 Sj
k �= ∅ for all j. If ∩∞

k=0 Sk = ∅, there

exists a nonempty index subset J ⊂ {1, . . . , r} such that ∩∞
k=0

(
Xk ∩ (∩j∈J Sj

k)
)

= ∅, and an

asymptotic direction d of
{
Xk ∩ (∩j∈JSj

k)
}

such that at least one of the following two holds:

(1) d is not a retractive local horizon direction of {Xk}.

(2) For some j ∈ J , d is a critical direction of {Sj
k} with respect to the set ∪j∈J−{j} ∩∞

k=0

(Xk ∩ Sj
k) (with the convention that this set equals ∩∞

k=0 Xk when J = {j}).

Proof: We assume the contrary, i.e., that for every J ⊂ {1, . . . , r} such that ∩∞
k=0

(
Xk ∩

(∩j∈J Sj
k)

)
= ∅, all asymptotic directions of

{
Xk ∩ (∩j∈JSj

k)
}

are noncritical directions of each

{Sj
k}, j ∈ J , with respect to ∪j∈J−{j} ∩∞

k=0 (Xk ∩ Sj
k) (which by our convention equals ∩∞

k=0 Xk

when r = 1), while they are also retractive local horizon directions of {Xk}.

Let A be the set of asymptotic directions of {Sk} (which is nonempty since ∩∞
k=0 Sk = ∅).

Then, taking J = {1, . . . , r}, we see that there must exist some j1 ∈ {1, . . . , r} and some d ∈ A

that is a horizon direction of {Sj1
k } with respect to ∪j∈J−{j1} ∩∞

k=0 (Xk ∩ Sj
k); otherwise each

d ∈ A would be retractive for {Xk} and for all {Sj
k}, and hence also retractive for {Sk}, so, by

Prop. 2.1, the hypothesis ∩∞
k=0 Sk = ∅ would be contradicted.

Consider the sequence
{
Sk(1)

}
, obtained from {Sk} when the sets Sj1

k are eliminated, i.e.,

Sk(1) = Xk ∩
(
∩j∈J−{j1} Sj

k

)
.

We argue by contradiction that ∩∞
k=0 Sk(1) = ∅. Suppose that this is not so. Take any x ∈

∩∞
k=0 Sk(1), and consider the direction d ∈ A that is a horizon direction of {Sj1

k } with respect to

∪j∈J−{j1} ∩∞
k=0 (Xk ∩ Sj

k). Since d ∈ A, d is also a retractive local horizon direction of {Xk}.
Then we have

x + αd ∈ ∩∞
k=0 Xk, ∀ α sufficiently large, (3.2)

x + αd ∈ ∩∞
k=0 Sj1

k , ∀ α sufficiently large. (3.3)

For the case where J has cardinality 2 or more, we show below that, for all j ∈ J −{j1}, we also

have

x + αd ∈ ∩∞
k=0 Sj

k, ∀ α sufficiently large, (3.4)
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which, combined with Eqs. (3.2) and (3.3), contradicts the assumed emptiness of ∩∞
k=0 Sk.

Indeed, for any j ∈ J − {j1}, under our working hypothesis, there are two possibilities:

(1) d is a retractive local horizon direction of {Sj
k}, in which case, since x ∈ ∩∞

k=0 Sj
k, Eq. (3.4)

holds.

(2) d is a horizon direction of {Sj
k} with respect to ∪j∈J−{j} ∩∞

k=0 (Xk ∩ Sj
k), and since j1 ∈

J − {j}, d is a horizon direction of {S j̄
k} with respect to ∩∞

k=0(Xk ∩ Sj1
k ). Since, by Eqs.

(3.2) and (3.3),

x + αd ∈ ∩∞
k=0(Xk ∩ Sj1

k )

for all α sufficiently large, this further implies that

(x + αd) + αd ∈ ∩∞
k=0S

j̄
k

for all α sufficiently large. Thus, Eq. (3.4) holds in this case as well.

In conclusion, Eq. (3.4) holds for all j ∈ J − {j1}. Combining Eqs. (3.2)-(3.4), we see

that x + αd ∈ ∩∞
k=0 Sk for sufficiently large α. Thus, the contradiction argument showing that

∩∞
k=0 Sk(1) = ∅ is complete.

We may now repeat this argument, with Sk replaced by Sk(1) and J redefined as

J = {1, . . . , r} − {j1},

to obtain another index j2 �= j1 such that ∩∞
k=0 Sk(2) = ∅, where Sk(2) is the set formed by

intersection of all the sets Sj
k except Sj1

k and Sj2
k , i.e.,

Sk(2) = Xk ∩
(
∩j∈J−{j2} Sj

k

)
.

Continuing the process, after r steps we conclude that ∩∞
k=0 Sk(r) = ∩∞

k=0 Xk = ∅, which contra-

dicts the hypothesis. Q.E.D.

Note that Prop. 3.1 is obtained as the special case of Prop. 3.2 where the sets Xk are all equal

to �n. By combining Example 3.4 with the preceding proposition, we obtain a generalization

of a result given as Exercise 2.7 of [BNO03] (the result of this exercise is the special case where

X = �n in the following proposition).
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Proposition 3.3: Consider a set sequence {Sk} of the form

Sk = Xk ∩ S1 ∩ S2 ∩ · · · ∩ Sr.

Here

Xk = X ∩ S0
k, k = 0, 1, . . . ,

where X is a closed set such that all its asymptotic directions are retractive local horizon

directions. Furthermore, S0
k and Sj , j = 1, . . . , r, are given by

S0
k = {x | f0(x) ≤ γk}, k = 0, 1, . . . , Sj = {x | fj(x) ≤ 0}, j = 1, . . . , r,

where {γk} is a scalar nonnegative sequence with γk ↓ 0, and for each j = 0, 1, . . . , r,

fj : �n �→ (−∞,∞] is a closed proper convex function that is bidirectionally flat. Assume

that Sk is nonempty for all k, and that ∩∞
k=0 Xk ⊂ ∩r

j=1 dom(fj). Then ∩∞
k=0 Sk is nonempty.

Proof: We first show that ∩∞
k=0 Xk �= ∅. Let A be the set of asymptotic directions of {Xk}.

Then for all d ∈ A, we have x+αd ∈ X for all x ∈ X and α sufficiently large, since the asymptotic

directions of X are local horizon directions. Also, d ∈ Rf0 . There are two cases (see Example

3.4):

(1) d /∈ Lf0 for some d ∈ A. Then, since f0 is closed, convex, and bidirectionally flat,

limα→∞ f0(x + αd) = −∞ for all x ∈ dom(f0), so that x + αd ∈ ∩∞
k=0 Xk for all x ∈

X ∩ dom(f0) and all α sufficiently large. It follows that ∩∞
k=0 Xk �= ∅.

(2) d ∈ Lf0 for all d ∈ A. Then, since f0 is closed, convex, and bidirectionally flat, all d ∈ A

are retractive for {S0
k} as well as retractive for X. Hence, all d ∈ A are retractive for {Xk},

and it follows that ∩∞
k=0 Xk �= ∅ by Prop. 2.1.

We will now prove that ∩∞
k=0 Sk �= ∅ by contradiction. In particular, we assume that

∩∞
k=0 Sk = ∅, and we will verify that the conclusion of Prop. 3.2 does not hold. Indeed, consider

an index subset J ⊂ {1, . . . , r} such that ∩∞
k=0

(
Xk ∩ (∩j∈JSj

k)
)

= ∅, and let d be an asymptotic

direction of
{
Xk ∩ (∩j∈JSj

k)
}
. We will show that d is a noncritical direction of all {Sj

k}, j ∈ J ,

with respect to ∩∞
k=0 Xk [and hence also with respect to the smaller set ∪j∈J−{j} ∩∞

k=0 (Xk∩Sj
k)],

while it is a retractive local horizon direction of {Xk}, thereby contradicting the conclusion of

Prop. 3.2.

We first note that d ∈ Rfj for all j ∈ J . It follows that for each j ∈ J , either d ∈ Lfj , in

23



which case d is a horizon direction of Sj that is retractive, or d /∈ Lfj , in which case (since fj is

closed, convex, and bidirectionally flat) d is a horizon direction of Sj with respect to dom(fj),

and hence also a horizon direction of Sj with respect to ∩∞
k=0 Xk [since ∩∞

k=0 Xk ⊂ dom(fj) by

assumption]. Thus, d is a noncritical direction of all Sj , j ∈ J , with respect to ∩∞
k=0 Xk.

We also have that d ∈ Rf0 . Assume that d /∈ Lf0 , and let x be any vector in X ∩ S0
0 ∩ S1 ∩

· · · ∩ Sr. Then for all α sufficiently large, we have

x + αd ∈ ∩∞
k=0 S0

k, (3.5)

since x ∈ dom(f0) and f0 is closed, convex, and bidirectionally flat, so that limα→∞ f0(x+αd) =

−∞. Furthermore, for all α sufficiently large, we have

x + αd ∈ X ∩
(
∩j∈J Sj

)
, (3.6)

since d is a local horizon direction of X and a direction of recession of each Sj , j ∈ J . Equations

(3.5) and (3.6) contradict the assumed emptiness of the intersection of
{
Xk ∩ (∩j∈JSj)

}
. Hence

d ∈ Lf0 , from which by arguing as in case (2) above, we see that d is a retractive local horizon

direction of {Xk}. Thus the conclusion of Prop. 3.2 is contradicted, and it follows that ∩∞
k=0 Sk

is nonempty. Q.E.D.

Example 3.6 (A Counterexample for Bidirectionally Flat Functions)

To see that the assumption ∩∞
k=0 Xk ⊂ ∩r

j=1 dom(fj) is essential in Prop. 3.3, let X = �2 and

consider the following two bidirectionally flat functions f0 and f1 defined on �2:

f0(x1, x2) = x1, f1(x1, x2) = φ(x1) − x2,

where the function φ : � �→ (−∞,∞] is convex, closed, and coercive with dom(φ) = (0, 1) [for

example, φ(t) = − ln t − ln(1 − t) for 0 < t < 1]. Take also {γk} to be any sequence in (0, 1) with

γk ↓ 0, so

Sk =
{
x | x1 ≤ γk, φ(x1) − x2 ≤ 0

}
.

Then it can be verified that Sk �= ∅ for every k [take x1 ↓ 0 and x2 ≥ φ(x1)], and we have

∩∞
k=0 Xk = ∩∞

k=0 S0
k =

{
x | f0(x) ≤ 0

}
= {x | x1 ≤ 0, x2 ∈ �},

and

∩∞
k=0 S1

k =
{
x | f1(x) ≤ 0

}
= {x | 0 < x1 < 1, x2 ∈ �} = dom(f1).

The two sets are disjoint, so the conclusion of Prop. 3.3 is violated, and in particular we have

∩∞
k=0 Sk =

{
x | f0(x) ≤ 0, f1(x) ≤ 0

}
=

(
∩∞

k=0 Xk

)
∩

(
∩∞

k=0 S1
k

)
= ∅.
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We now consider sets defined by a finite number of concave quadratic inequalities. We have

seen that the asymptotic directions of such sets are retractive (see Prop. 2.6). We will delineate

circumstances under which the asymptotic directions are also local horizon directions, so that

they are noncritical.

Example 3.7 (Level Sets of Concave Quadratic Functions)

Consider a set of the form

S = {x | x′Qx + c′x + b ≥ 0},

where Q is a positive semidefinite n × n matrix, c is a vector in �n, and b is a scalar. We first

derive the set of asymptotic directions of S, which we denote by A. We consider two cases:

(a) Q = 0. Then A is the set of nonzero directions of recession of the convex function −(c′x+ b),

as discussed earlier:

A = {d | c′d ≥ 0, d �= 0}.

(b) Q �= 0. Then we claim that the asymptotic directions of S are the nonzero vectors in �n:

A = {x | x �= 0}.

Indeed, take any d �= 0 and any y such that

y′Qy + c′d > 0.

We will show that for sufficiently large k, the sequence of vectors

xk = kd +
√

ky

is an asymptotic sequence of S that corresponds to d. We note that ‖xk‖ → ∞ and that

xk/‖xk‖ → d/‖d‖. Furthermore, we have

x′
kQxk + c′xk + b = k2d′Qd + 2k

√
ky′Qd + ky′Qy + kc′d +

√
kc′y + b. (3.7)

If d′Qd > 0, clearly we have xk ∈ S for sufficiently large k. On the other hand, if d′Qd = 0

(equivalently, Qd = 0, since Q is positive semidefinite), then from Eq. (3.7),

x′
kQxk + c′xk + b = k(y′Qy + c′d) +

√
kc′y + b.

Since y′Qy + c′d > 0, we again have xk ∈ S for sufficiently large k. Thus, for some integer

k, the subsequence of {xk | k ≥ k} fulfills the requirements for an asymptotic sequence of S

corresponding to d, and it follows that d is an asymptotic direction.

We know from Prop. 2.6 that all asymptotic directions of S are retractive. However, some of

these directions may be critical because they are not local horizon directions. For example, let

S =
{
(x1, x2) | x1 ≤ x2

2

}
.
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Then the vector (1, 0) is a retractive asymptotic direction (by the preceding analysis), but is not

a local horizon direction. More generally, the set of asymptotic directions S that are not local

horizon directions is the set

A = {d | Qd = 0, c′d < 0}. (3.8)

To see this, note that it is true in the case where Q = 0, where A = {x | x �= 0}, and A = ∅. In the

case where Q �= 0, note that for any x ∈ S, d ∈ A, and α ≥ 0, we have

(x + αd)′Q(x + αd) + c′(x + αd) + b = x′Qx + c′x + b + α2d′Qd + α(2Qx + c)′d.

It follows that x + αd ∈ S for sufficiently large α if and only if either d′Qd > 0, or Qd = 0 and

c′d ≥ 0. This proves Eq. (3.8).

Consider now a set sequence {Sk} defined by a finite number of concave quadratic inequalities:

Sk = P ∩ {x | x′Qjx + c′jx + bj ≥ γj
k, j = 1, . . . , r},

where {γj
k} are scalar sequences with γj

k ↑ 0, P is a polyhedral set, Qj are nonzero positive

semidefinite n × n matrices, cj are vectors in �n, and bj are scalars. A slight extension of the

preceding analysis, shows that the asymptotic directions of {Sk} are a subset of the nonzero vectors

in the recession cone RP , and all of them are retractive. A sufficient condition for all asymptotic

directions to be noncritical local horizon directions of {Sk} is that RP ∩ N(Qj) = {0} for all

j = 1, . . . , r, where N(Qj) is the nullspace of Qj . This is true in particular if all the matrices Qj

are positive definite.

Let us also introduce a class of nonconvex functions whose level sets have the essential

property needed for application of Props. 3.1 and 3.2, so that they can be used in place of convex

quadratic or real-valued bidirectionally flat functions to assert nonemptiness of a set intersection.

Example 3.8

Let {Sk} be a level set sequence

Sk = {x | f(x) ≤ γk},

defined by a function f of the form

f(x) = h(Ax) + c′x + b,

where A is an m × n matrix, h : �m �→ � is a closed proper function satisfying

lim inf
‖y‖→∞

h(y)

‖y‖ = ∞,

c is a vector, and b is a scalar. We assume that {γk} is a scalar positive sequence with γk ↓ 0, and

that {x | f(x) ≤ 0} = ∩∞
k=0Sk is nonempty.
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We have

f(x + αd) = h(Ax + αAd) + c′(x + αd) + b.

A vector d �= 0 is a local horizon direction if and only if for every x with f(x) ≤ 0, there exists

α ≥ 0 such that for all α ≥ α, we have f(x + αd) ≤ 0. In view of the coercivity property of h, this

is true if and only if Ad = 0 and c′d ≤ 0. A vector d �= 0 is a global horizon direction if and only

if, for every x ∈ �n, there exists α ≥ 0 such that for all α ≥ α, we have f(x + ad) ≤ 0. This is

true if and only if Ad = 0 and c′d < 0. Thus, every asymptotic direction of {Sk} is either a global

horizon direction, or else it is a local horizon direction that is retractive, i.e., it is noncritical with

respect to �n, and Prop. 3.1 applies.

4. EXISTENCE OF OPTIMAL SOLUTIONS

We will now consider the problem of minimizing a closed function f : �n �→ (−∞,∞] over a

closed set X ⊂ �n. Let {γk} be a scalar sequence with γk ↓ infx∈X f(x), and consider the

(nonempty) level sets

Vk =
{
x | f(x) ≤ γk

}
.

The set of vectors that minimize f over X is the intersection

X∗ = ∩∞
k=0(X ∩ Vk),

so to show existence of an optimal solution, we can use asymptotic directions, and the theory

of Sections 2 and 3. In particular, it is sufficient to show that all asymptotic directions of the

sequence {X ∩ Vk} are retractive (see Prop. 2.1). Also, if X is polyhedral or more generally, if it

is the vector sum of a compact set and a polyhedral cone N , it is sufficient to show that all the

asymptotic directions of {Vk} that belong to N are retractive (see Prop. 2.2).

We first consider the case of a closed convex function f . The preceding analysis yields the

following results.

Proposition 4.1: Let X be a closed subset of �n, and let f : �n �→ (−∞,∞] be a closed

convex function such that X ∩ dom(f) �= ∅. The set of minimizing points of f over X is

nonempty under any one of the following two conditions:

(1) X is convex, and RX ∩ Rf = LX ∩ Lf .
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(2) X is retractive and

A ∩ Rf ⊂ Lf ,

where A is the set of asymptotic directions of X.

Proof: Let

Vk =
{
x | f(x) ≤ γk

}
,

where {γk} is a scalar sequence such that γk ↓ infx∈X f(x). We show that under each of the two

conditions, the intersection ∩∞
k=0(X ∩ Vk) (which is the set of minimizing points) is nonempty.

Let condition (1) hold. The sets X ∩Vk are nonempty, closed, convex, and nested. Further-

more, they have the same recession cone, RX ∩ Rf , and the same lineality space LX ∩ Lf , while

by assumption, RX ∩ Rf = LX ∩ Lf . The result follows from Prop. 2.7(a).

Let condition (2) hold. The sets Vk are nested and the intersection X ∩ Vk is nonempty for

all k. Furthermore, the sets Vk have the same recession cone, Rf , and the same lineality space,

Lf , while by assumption, A ∩ Rf ⊂ Lf . The result follows from Prop. 2.7(b). Q.E.D.

The arguments used in the preceding proof rely on the convexity and closedness of the

level sets of the cost function. As a result, they apply also to the case of a closed function

f : �n �→ (−∞,∞] that is quasiconvex , in the sense that all its level sets
{
x | f(x) ≤ γ

}
are

convex.

Proposition 4.2: (Quasiconvex Problems) Let X be a closed subset of �n, and let

f : �n �→ (−∞,∞] be a closed quasiconvex function such that X ∩ dom(f) �= ∅. Let Γ be

the set of all γ > infx∈X f(x), and denote

Rf = ∩γ∈ΓRγ , Lf = ∩γ∈ΓLγ ,

where Rγ and Lγ are the recession cone and the lineality space of the level set
{
x | f(x) ≤ γ

}
,

respectively. Then f attains a minimum over X if any one of the following conditions holds:

(1) X is convex, and RX ∩ Rf = LX ∩ Lf .

(2) X is retractive and

A ∩ Rf ⊂ Lf ,

where A is the set of asymptotic directions of X.
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Proof: Similar to the proof of Prop. 4.1. Q.E.D.

We now give a result involving convex bidirectionally flat functions (see Example 3.4), which

relies on the use of horizon directions. The following proposition extends an existence result given

in [BNO03] as Exercise 2.7(c), and also a result of Belousov, which dates to 1977 (as discussed in

[BeK02]) and deals with the case where the functions involved are convex polynomial functions (a

special case of bidirectionally flat functions, as discussed in Example 3.4). The purely quadratic

case of this result (X = �n and fj(x) = x′Qjx + c′jx + bj) was independently given by Terlaky

[Ter85]; see also Luo and Zhang [LuZ99], who prove some additional results that involve in part

nonconvex quadratic functions.

Proposition 4.3: (Bidirectionally Flat Functions) For j = 0, 1, . . . , r, let fj : �n �→
(−∞,∞] be closed proper convex functions that are bidirectionally flat, and let X be a closed

set such that all its asymptotic directions are retractive local horizon directions. Assume

that
(
X ∩ dom(f0)

)
⊂ ∩r

j=1 dom(fj). Then the problem

minimize f0(x)

subject to x ∈ X, fj(x) ≤ 0, j = 1, . . . , r,

has at least one optimal solution if and only if its optimal value is finite.

Proof: Assume that f∗, the optimal value, is finite, and let {γk} be a scalar sequence such that

γk ↓ 0. Consider the set sequence {Sk} given by

Sk = Xk ∩ S1 ∩ S2 ∩ · · · ∩ Sr,

where

Xk = X ∩ S0
k, S0

k = {x | f0(x) − f∗ ≤ γk}, k = 0, 1, . . . ,

Sj = {x | fj(x) ≤ 0}, j = 1, . . . , r.

Using Prop. 3.3, we have that ∩∞
k=0 Sk, the optimal solution set, is nonempty. Q.E.D.

We now consider another type of direction, which when used in conjunction with horizon

directions, yields some conditions that slightly improve on the conditions of Prop. 4.1. Let

f : �n �→ (−∞,∞] be a closed proper convex function, and let Ff be the set of all directions y

such that for every x ∈ dom(f), the limit limα→∞ f(x + αy) exists. We refer to Ff as the set of

directions along which f is flat . Note that

Lf ⊂ Ff ⊂ Rf ,
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where Lf and Rf are the lineality space and recession cone of f , respectively. We have the

following variant of Prop. 4.1.

Proposition 4.4: Let f : �n �→ (−∞,∞] be a closed proper convex function, and let X

be a closed set such that all its asymptotic directions are local horizon directions that are

retractive. Assume that

A ∩ Ff ⊂ Lf ,

where A is the set of asymptotic directions of X. Then the problem

minimize f(x)

subject to x ∈ X

has at least one optimal solution if and only if its optimal value is finite.

Proof: Assume that the optimal value is finite. Then X ∩ dom(f) �= ∅. Let d ∈ A ∩ Rf . If

d /∈ Ff , then we must have limα→∞ f(x + αd) = −∞, for some x ∈ dom(f) ∩ X. Since d is a

local horizon direction of X, we have x+αd ∈ X for all x ∈ X and sufficiently large α. It follows

that infx∈X f(x) = −∞, a contradiction. Therefore, we must have A ∩ Ff = A ∩ Rf , so using

the hypothesis, we obtain A ∩ Rf ⊂ Lf . From Prop. 4.1, it follows that there exists at least one

optimal solution. Q.E.D.

The following proposition extends a classical result, known as the Frank-Wolfe Theorem

[FrW56], which states that every (possibly nonconvex) quadratic programming problem has an

optimal solution if and only if it has finite optimal value. The following proposition becomes the

Frank-Wolfe Theorem in the special case where the constraint set X is a polyhedral set.

Proposition 4.5: (Extended Frank-Wolfe Theorem I) Let Q be a real symmetric

n×n matrix, and c be a vector in �n. Let also X be a closed set such that all its asymptotic

directions are retractive local horizon directions. Then the problem

minimize x′Qx + c′x

subject to x ∈ X

has at least one optimal solution if and only if its optimal value is finite.

Proof: Assume that f∗, the optimal value, is finite. Let {γk} be a scalar sequence with γk ↓ f∗,
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and denote the nonempty closed set

Vk = {x | x′Qx + c′x ≤ γk}.

The set of optimal solutions is ∩∞
k=0 (X ∩ Vk), so by Prop. 2.2, it will suffice to show that each

asymptotic direction d of {X ∩Vk} is retractive for {Vk} (then since d is also retractive for X by

assumption, d is retractive for {X ∩ Vk}, and Prop. 2.1 applies).

Indeed, let {xk} be an asymptotic sequence corresponding to an asymptotic direction d of

{X ∩ Vk}. Since xk ∈ Vk for all k, we have x′
kQxk + c′xk ≤ γk. Denoting dk = xk/‖xk‖ and

dividing by ‖xk‖2, we obtain

dk
′Qdk +

c′dk

‖xk‖
≤ γk

‖xk‖2
.

Taking the limit as k → ∞, and using the fact dk → d and ‖xk‖ → ∞, we see that d′Qd ≤ 0.

For any x ∈ X, consider the vectors x̃k = x + kd, k = 0, 1, . . .. Since d is an asymptotic

direction of {X ∩ Vk}, it is also an asymptotic direction of X, and by the hypothesis, d is a local

horizon direction of X. Thus, we have x̃k ∈ X for sufficiently large k, so the cost function value

corresponding to x̃k is no less than f∗, and we have

f∗ ≤ (x + kd)′Q(x + kd) + c′(x + kd)

= x′Qx + c′x + k2d′Qd + k(c + 2Qx)′d

≤ x′Qx + c′x + k(c + 2Qx)′d,

where in the last inequality, we used the fact d′Qd ≤ 0 shown earlier. From the finiteness of f∗,

it follows that

(c + 2Qx)′d ≥ 0, ∀ x ∈ X.

Now consider the asymptotic sequence {xk} corresponding to the asymptotic direction d of

{X ∩ Vk}. For all sufficiently large k and α ≥ 0, the cost corresponding to xk − αd satisfies

(xk − αd)′Q(xk − αd) + c′(xk − αd) = xk
′Qxk + c′xk − α(c + 2Qxk)′d + α2d′Qd

≤ xk
′Qxk + c′xk

≤ γk,

where the first inequality follows from the facts d′Qd ≤ 0 and (c + 2Qxk)′d ≥ 0 shown earlier.

Thus for all sufficiently large k and α ≥ 0, we have xk −αd ∈ Vk, so that d is retractive for {Vk}.
Q.E.D.

In the case where X = X1∩X2∩· · ·∩Xm, with each Xi being the vector sum of a compact

set and a polyhedral cone Ni (for example, when X is a polyhedral set), all asymptotic directions
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of X are retractive local horizon directions (see Example 3.3). Thus, the assumption on X of the

preceding proposition is satisfied, and there exists an optimal solution when the optimal value

is finite. This extended version of the Frank-Wolfe Theorem is credited to Kummer [Kum77]

by Belousov and Klatte [BeK02]. The version of Frank-Wolfe Theorem given here is, of course,

more general. For example, it applies to some situations where the constraint set is defined by

concave inequalities (see Prop. 2.6, Example 3.7). In particular, a quadratic cost function attains

a minimum over a set X defined by linear or strictly concave quadratic inequalities:

X = {x | x′Qjx + c′jx + bj ≤ 0, j = 1, . . . , r},

where each matrix Qj is either equal to 0 or is a negative definite matrix (see Example 3.7).

Note also that the preceding proof can be used to show the result under a slightly weaker

assumption: one may assume that only the asymptotic directions d of X that satisfy d′Qd ≤ 0

are retractive local horizon directions (rather than all asymptotic directions of X).

Finally, motivated by the argument of the preceding proof, we derive a further extension

of the Frank-Wolfe Theorem, where the cost function may not be quadratic. The preceding

proposition is obtained by verifying that in the special case where f is a quadratic function,

assumption (2) of the following proposition is satisfied.

Proposition 4.6: (Extended Frank-Wolfe Theorem II) Let f : �n �→ (−∞,∞] be a

closed proper function and let X be a closed set such that X ∩ dom(f) �= ∅. Assume that:

(1) All the asymptotic directions X are retractive local horizon directions.

(2) For every decreasing scalar sequence {γk} such that the sets

Sk = X ∩
{
x | f(x) ≤ γk

}
, k = 0, 1, . . . ,

are nonempty, for every asymptotic direction d of {Sk}, and for each x ∈ X, we either

have limα→∞ f(x + αd) = −∞, or else f(x + αd) is a nondecreasing function of the

scalar α.

Then the problem
minimize f(x)

subject to x ∈ X

has at least one optimal solution if and only if its optimal value is finite.

Proof: The proof follows the line of the proof of Prop. 4.5. Assume that f∗, the optimal value,
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is finite. Let {γk} be a scalar sequence with γk ↓ f∗, and denote

Vk =
{
x | f(x) ≤ γk

}
,

so that Sk = X ∩Vk. It will suffice to show that each asymptotic direction d of {Sk} is retractive

for {Vk} (since d is also retractive for X by assumption, this shows that d is retractive for {Sk},
and Prop. 2.1 applies).

Indeed, if d is an asymptotic direction of {Sk}, then d is a local horizon direction of X, so

that for each x ∈ X and all α sufficiently large, x + αd ∈ X and hence f(x + αd) ≥ f∗. Thus, we

cannot have limα→∞ f(x + αd) = −∞, and from our assumptions, it follows that f(x + αd) is a

monotonically nondecreasing function of α for all x ∈ X.

Now consider the asymptotic sequence {xk} corresponding to the asymptotic direction d

of {Sk}. For all k, f(xk + αd) is a monotonically nondecreasing function of α, so the cost

corresponding to xk − αd, α ≥ 0, is no greater than f(xk). Since xk ∈ Vk, this shows that

xk − αd ∈ Vk for all α ≥ 0 and hence d is retractive for {Vk}. Since d is also an asymptotic

direction of X and hence is retractive for X, it follows that d is retractive for {Sk}. Q.E.D.

An example of a function that satisfies assumption (2) of the preceding proposition is a

function of the form

f(x) = p(x′Qx) + c′x + b,

where Q is a positive semidefinite matrix, c is a vector, b is scalar, and p(·) is a polynomial.

Indeed, assumption (2) clearly holds if p is a constant. If p is not a constant, for any asymptotic

direction d of {Sk}, there are two cases: (1) Qd �= 0, in which case the highest degree term in p(·)
has a negative coefficient and hence limα→∞ f(x + αd) = −∞; (2) Qd = 0, in which case either

limα→∞ f(x + αd) = −∞ or f(x + αd) is a nondecreasing function of α, depending on whether

c′d < 0 or c′d ≥ 0. Thus, assumption (2) again holds.
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